504 research outputs found

    Cost-minimization model of a multidisciplinary Antibiotic Stewardship Team based on a successful implementation on a urology ward of an academic hospital

    Get PDF
    BackgroundIn order to stimulate appropriate antimicrobial use and thereby lower the chances of resistance development, an Antibiotic Stewardship Team (A-Team) has been implemented at the University Medical Center Groningen, the Netherlands. Focus of the A-Team was a pro-active day 2 case-audit, which was financially evaluated here to calculate the return on investment from a hospital perspective.MethodsEffects were evaluated by comparing audited patients with a historic cohort with the same diagnosis-related groups. Based upon this evaluation a cost-minimization model was created that can be used to predict the financial effects of a day 2 case-audit. Sensitivity analyses were performed to deal with uncertainties. Finally, the model was used to financially evaluate the A-Team.ResultsOne whole year including 114 patients was evaluated. Implementation costs were calculated to be (sic)17,732, which represent total costs spent to implement this A-Team. For this specific patient group admitted to a urology ward and consulted on day 2 by the A-Team, the model estimated total savings of (sic)60,306 after one year for this single department, leading to a return on investment of 5.9.ConclusionsThe implemented multi-disciplinary A-Team performing a day 2 case-audit in the hospital had a positive return on investment caused by a reduced length of stay due to a more appropriate antibiotic therapy. Based on the extensive data analysis, a model of this intervention could be constructed. This model could be used by other institutions, using their own data to estimate the effects of a day 2 case-audit in their hospital.</p

    Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter and sulfur dioxide from vehicles and brick kilns and their impacts on air quality in the Kathmandu Valley, Nepal

    Get PDF
    Air pollution is one of the most pressing environmental issues in the Kathmandu Valley, where the capital city of Nepal is located. We estimated emissions from two of the major source types in the valley (vehicles and brick kilns) and analyzed the corresponding impacts on regional air quality. First, we estimated the on-road vehicle emissions in the valley using the International Vehicle Emissions (IVE) model with local emissions factors and the latest available data for vehicle registration. We also identified the locations of the brick kilns in the Kathmandu Valley and developed an emissions inventory for these kilns using emissions factors measured during the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) field campaign in April 2015. Our results indicate that the commonly used global emissions inventory, the Hemispheric Transport of Air Pollution (HTAP_v2.2), underestimates particulate matter emissions from vehicles in the Kathmandu Valley by a factor greater than 100. HTAP_v2.2 does not include the brick sector and we found that our sulfur dioxide (SO2) emissions estimates from brick kilns are comparable to 70 % of the total SO2 emissions considered in HTAP_v2.2. Next, we simulated air quality using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for April 2015 based on three different emissions scenarios: HTAP only, HTAP with updated vehicle emissions, and HTAP with both updated vehicle and brick kilns emissions. Comparisons between simulated results and observations indicate that the model underestimates observed surface elemental carbon (EC) and SO2 concentrations under all emissions scenarios. However, our updated estimates of vehicle emissions significantly reduced model bias for EC, while updated emissions from brick kilns improved model performance in simulating SO2. These results highlight the importance of improving local emissions estimates for air quality modeling. We further find that model overestimation of surface wind leads to underestimated air pollutant concentrations in the Kathmandu Valley. Future work should focus on improving local emissions estimates for other major and underrepresented sources (e.g., crop residue burning and garbage burning) with a high spatial resolution, as well as the model\u27s boundary layer representation, to capture strong spatial gradients of air pollutant concentrations

    Long-term changes in dysnatremia incidence in the ICU: a shift from hyponatremia to hypernatremia

    Get PDF
    Background: Dysnatremia is associated with adverse outcome in critically ill patients. Changes in patients or treatment strategies may have affected the incidence of dysnatremia over time. We investigated long-term changes in the incidence of dysnatremia and analyzed its association with mortality. Methods: Over a 21-year period (1992–2012), all serum sodium measurements were analyzed retrospectively in two university hospital ICUs, up to day 28 of ICU admission for the presence of dysnatremia. The study period was divided into five periods. All serum sodium measurements were collected from the electronic databases of both ICUs. Serum sodium was measured at the clinical chemistry departments using standard methods. All sodium measurements were categorized in the following categories: 160 mmol/L. Mortality was determined at 90 days after ICU admission. Results: In 80,571 ICU patients, 913,272 serum sodium measurements were analyzed. A striking shift in the pattern of ICU-acquired dysnatremias was observed: The incidence of hyponatremia almost halved (47–25 %, p  155 mmol/L) increased dramatically over the years. On ICU day 10 this incidence was 0.7 % in the 1992–1996 period, compared to 6.3 % in the 2009–2012 period (p < 0.001). More severe dysnatremia was associated with significantly higher mortality throughout the 21-year study period (p < 0.001). Conclusions: In two large Dutch cohorts, we observed a marked shift in the incidence of dysnatremia from hyponatremia to hypernatremia over two decades. As hypernatremia was mostly ICU acquired, this strongly suggests changes in treatment as underlying causes. This shift may be related to the increased use of sodium-containing infusions, diuretics, and hydrocortisone. As ICU-acquired hypernatremia is largely iatrogenic, it should be—to an important extent—preventable, and its incidence may be considered as an indicator of quality of care. Strategies to prevent hypernatremia deserve more emphasis; therefore, we recommend that further study should be focused on interventions to prevent the occurrence of dysnatremias during ICU stay

    Speciated online PM1 from South Asian combustion sources-Part 1: Fuel-based emission factors and size distributions

    Get PDF
    Combustion of biomass, garbage, and fossil fuels in South Asia has led to poor air quality in the region and has uncertain climate forcing impacts. Online measurements of submicron aerosol (PM1) emissions were conducted as part of the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) to investigate and report emission factors (EFs) and vacuum aerodynamic diameter (dva) size distributions from prevalent but poorly characterized combustion sources. The online aerosol instrumentation included a qmini aerosol mass spectrometer (mAMS) and a dual-spot eight-channel aethalometer (AE33). The mAMS measured non-refractory PM1 mass, composition, and size. The AE33-measured black carbon (BC) mass and estimated light absorption at 370 nm due to organic aerosol or brown carbon. Complementary gas-phase measurements of carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4) were collected using a Picarro Inc. cavity ring-down spectrometer (CRDS) to calculate fuel-based EFs using the carbon mass balance approach. The investigated emission sources include open garbage burning, diesel-powered irrigation pumps, idling motorcycles, traditional cookstoves fueled with dung and wood, agricultural residue fires, and coal-fired brick-making kilns, all of which were tested in the field. Open-garbage-burning emissions, which included mixed refuse and segregated plastics, were found to have some of the largest PM1 EFs (3.77-19.8 g k-1) and the highest variability of the investigated emission sources. Non-refractory organic aerosol (OA) size distributions measured by the mAMS from garbage-burning emissions were observed to have lognormal mode dva values ranging from 145 to 380 nm. Particle-phase hydrogen chloride (HCl) was observed from open garbage burning and was attributed to the burning of chlorinated plastics. Emissions from two diesel-powered irrigation pumps with different operational ages were tested during NAMaSTE. Organic aerosol and BC were the primary components of the emissions and the OA size distributions were centered at ∼ 80 nm dva. The older pump was observed to have significantly larger EFOA than the newer pump (5.18 g k-1 compared to 0.45 g k-1) and similar EFBC. Emissions from two distinct types of coal-fired brick-making kilns were investigated. The less advanced, intermittently fired clamp kiln was observed to have relatively large EFs of inorganic aerosol, including sulfate (0.48 g k-1) and ammonium (0.17 g k-1), compared to the other investigated emission sources. The clamp kiln was also observed to have the largest absorption Ångström exponent (AAE Combining double low line 4) and organic carbon (OC) to BC ratio (OC: BC Combining double low line 52). The continuously fired zigzag kiln was observed to have the largest fraction of sulfate emissions with an EFSO4 of 0.96 g k-1. Non-refractory aerosol size distributions for the brick kilns were centered at ∼ 400 nm dva. The biomass burning samples were all observed to have significant fractions of OA and non-refractory chloride; based on the size distribution results, the chloride was mostly externally mixed from the OA. The dung-fueled traditional cookstoves were observed to emit ammonium, suggesting that the chloride emissions were partially neutralized. In addition to reporting EFs and size distributions, aerosol optical properties and mass ratios of OC to BC were investigated to make comparisons with other NAMaSTE results (i.e., online photoacoustic extinctiometer (PAX) and off-line filter based) and the existing literature. This work provides critical field measurements of aerosol emissions from important yet under-characterized combustion sources common to South Asia and the developing world

    Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources

    Get PDF
    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP) of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient) combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning), crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR) spectroscopy, whole-air sampling (WAS), and photoacoustic extinctiometers (PAX; 405 and 870nm) based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs) for scattering and absorption coefficients (EF Bscat, EF Babs, inm2kg-1 fuel burned), single scattering albedos (SSAs), and absorption Ångström exponents (AAEs). From these data we estimate black and brown carbon (BC, BrC) emission factors (gkg-1 fuel burned). The trace gas measurements provide EFs (gkg-1) for CO2, CO, CH4, selected non-methane hydrocarbons up to C10, a large suite of oxygenated organic compounds, NH3, HCN, NOx, SO2, HCl, HF, etc. (up to ∼ 80 gases in all). The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63±0.68) was significantly higher than for wood-fuel cooking fires (3.01±0.10). Dung-fuel cooking fires also emitted high levels of NH3 (3.00±1.33gkg-1), organic acids (7.66±6.90gkg-1), and HCN (2.01±1.25gkg-1), where the latter could contribute to satellite observations of high levels of HCN in the lower stratosphere above the Asian monsoon. HCN was also emitted in significant quantities by several non-biomass burning sources. BTEX compounds (benzene, toluene, ethylbenzene, xylenes) were major emissions from both dung- (∼4.5gkg-1) and wood-fuel (∼1.5gkg-1) cooking fires, and a simple method to estimate indoor exposure to the many measured important air toxics is described. Biogas emerged as the cleanest cooking technology of approximately a dozen stove-fuel combinations measured. Crop residue burning produced relatively high emissions of oxygenated organic compounds (∼12gkg-1) and SO2 (2.54±1.09gkg-1). Two brick kilns co-firing different amounts of biomass with coal as the primary fuel produced contrasting results. A zigzag kiln burning mostly coal at high efficiency produced larger amounts of BC, HF, HCl, and NOx, with the halogenated emissions likely coming from the clay. The clamp kiln (with relatively more biomass fuel) produced much greater quantities of most individual organic gases, about twice as much BrC, and significantly more known and likely organic aerosol precursors. Both kilns were significant SO2 sources with their emission factors averaging 12.8±0.2gkg-1. Mixed-garbage burning produced significantly more BC (3.3±3.88gkg-1) and BTEX (∼4.5gkg-1) emissions than in previous measurements. For all fossil fuel sources, diesel burned more efficiently than gasoline but produced larger NOx and aerosol emission factors. Among the least efficient sources sampled were gasoline-fueled motorcycles during start-up and idling for which the CO EF was on the order of ∼700gkg-1 - or about 10 times that of a typical biomass fire. Minor motorcycle servicing led to minimal if any reduction in gaseous pollutants but reduced particulate emissions, as detailed in a companion paper (Jayarathne et al., 2016). A small gasoline-powered generator and an insect repellent fire were also among the sources with the highest emission factors for pollutants. These measurements begin to address the critical data gap for these important, undersampled sources, but due to their diversity and abundance, more work is needed

    Polar opposites? NGOs, left parties and the fight for social change in Nepal

    Get PDF
    In the early 1990s, when NGOs were rising to prominence as an ostensible force for social change in Nepal, the Maoists were also beginning to organise, and denounced NGOs as agents of imperialism. The Maoists came to prominence by fighting a People’s War launched in 1996, with the intention of improving life for the poor peasant and working-class majority. But after a decade-long struggle, the Maoists became incorporated into the parliamentary system. While Nepal’s first democratic revolution in 1990 met formal, popular political demands, which were consolidated in a subsequent revolution in 2006 overthrowing the monarchy and bringing the People’s War to an end, there was little socio-economic progress for the vast majority. The argument advanced in this article is that this lack of progress relied on the interplay of two phenomena: an anti-Maoist alliance consisting of the international community, the domestic ruling elite and NGOs, and a fundamental ambiguity at the heart of the Maoists’ political theory

    Participatory policy analysis in health policy and systems research: reflections from a study in Nepal.

    Get PDF
    Background Participatory policy analysis (PPA) as a method in health policy and system research remains underexplored. Using our experiences of conducting PPA workshops in Nepal to explore the impact of the country’s move to federalism on its health system, we reflect on the method’s strengths and challenges. We provide an account of the study context, the design and implementation of the workshops, and our reflections on the approach’s strengths and challenges. Findings on the impact of federalism on the health system are beyond the scope of this manuscript. Main body We conducted PPA workshops with a wide range of health system stakeholders (political, administrative and service-level workforce) at the local and provincial levels in Nepal. The workshops consisted of three activities: river of life, brainstorming and prioritization, and problem-tree analysis. Our experiences show that PPA workshops can be a valuable approach to explore health policy and system issues – especially in a context of widespread systemic change which impacts all stakeholders within the health system. Effective engagement of stakeholders and activities that encourage both individual- and system-level reflections and discussions not only help in generating rich qualitative data, but can also address gaps in participants’ understanding of practical, technical and political aspects of the health system, aid policy dissemination of research findings, and assist in identifying short- and long-term practice and policy issues that need to be addressed for better health system performance and outcomes. Conducting PPA workshops is, however, challenging for a number of reasons, including the influence of gatekeepers and power dynamics between stakeholders/participants. The role and skills of researchers/facilitators in navigating such challenges are vital for success. Although the long-term impact of such workshops needs further research, our study shows the usefulness of PPA workshops for researchers, for participants and for the wider health system. Conclusions PPA workshops can effectively generate and synthesize health policy and system evidence through collaborative engagement of health system stakeholders with varied roles. When designed with careful consideration for context and stakeholders’ needs, it has great potential as a method in health policy and systems research
    • …
    corecore