
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Chemistry and Biochemistry Faculty 
Publications Chemistry and Biochemistry 

6-24-2019 

Nepal Ambient Monitoring and Source Testing Experiment Nepal Ambient Monitoring and Source Testing Experiment 

(NAMaSTE): Emissions of particulate matter and sulfur dioxide (NAMaSTE): Emissions of particulate matter and sulfur dioxide 

from vehicles and brick kilns and their impacts on air quality in the from vehicles and brick kilns and their impacts on air quality in the 

Kathmandu Valley, Nepal Kathmandu Valley, Nepal 

Min Zhong 
Emory University 

Eri Saikawa 
Emory University 

Alexander Avramov 
Emory University 

Chen Chen 
Emory University 

Boya Sun 
Emory University 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.umt.edu/chem_pubs 

 Part of the Biochemistry Commons, and the Chemistry Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Zhong, Min; Saikawa, Eri; Avramov, Alexander; Chen, Chen; Sun, Boya; Ye, Wenlu; Keene, William C.; 
Yokelson, Robert J.; Jayarathne, Thilina; Stone, Elizabeth A.; Rupakheti, Maheswar; and Panday, Arnico K., 
"Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter 
and sulfur dioxide from vehicles and brick kilns and their impacts on air quality in the Kathmandu Valley, 
Nepal" (2019). Chemistry and Biochemistry Faculty Publications. 102. 
https://scholarworks.umt.edu/chem_pubs/102 

This Article is brought to you for free and open access by the Chemistry and Biochemistry at ScholarWorks at 
University of Montana. It has been accepted for inclusion in Chemistry and Biochemistry Faculty Publications by an 
authorized administrator of ScholarWorks at University of Montana. For more information, please contact 
scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/chem_pubs
https://scholarworks.umt.edu/chem_pubs
https://scholarworks.umt.edu/chem
https://scholarworks.umt.edu/chem_pubs?utm_source=scholarworks.umt.edu%2Fchem_pubs%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=scholarworks.umt.edu%2Fchem_pubs%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=scholarworks.umt.edu%2Fchem_pubs%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/chem_pubs/102?utm_source=scholarworks.umt.edu%2Fchem_pubs%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


Authors Authors 
Min Zhong, Eri Saikawa, Alexander Avramov, Chen Chen, Boya Sun, Wenlu Ye, William C. Keene, Robert J. 
Yokelson, Thilina Jayarathne, Elizabeth A. Stone, Maheswar Rupakheti, and Arnico K. Panday 

This article is available at ScholarWorks at University of Montana: https://scholarworks.umt.edu/chem_pubs/102 

https://scholarworks.umt.edu/chem_pubs/102


Atmos. Chem. Phys., 19, 8209–8228, 2019
https://doi.org/10.5194/acp-19-8209-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Nepal Ambient Monitoring and Source Testing Experiment
(NAMaSTE): emissions of particulate matter and sulfur dioxide
from vehicles and brick kilns and their impacts on air quality in the
Kathmandu Valley, Nepal
Min Zhong1,a, Eri Saikawa1,2, Alexander Avramov1, Chen Chen1, Boya Sun1,c, Wenlu Ye2, William C. Keene3,
Robert J. Yokelson4, Thilina Jayarathne5,b, Elizabeth A. Stone5, Maheswar Rupakheti6, and Arnico K. Panday7

1Department of Environmental Sciences, Emory University, Atlanta, GA, USA
2Rollins School of Public Health, Emory University, Atlanta, GA, USA
3Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
4Department of Chemistry, University of Montana, Missoula, MT, USA
5Department of Chemistry, University of Iowa, Iowa City, IA, USA
6Institute for Advanced Sustainability Studies, Potsdam, Germany
7International Centre for Integrated Mountain Development (ICIMOD), Khumaltar, Lalitpur, Nepal
anow at: Environmental Analysis and Outcomes Division, Minnesota Pollution Control Agency, MN, USA
bnow at: Department of Chemistry, Purdue University, West Lafayette, IN, USA
cnow at: Rubicon Global, Atlanta, GA, USA

Correspondence: Eri Saikawa (eri.saikawa@emory.edu)

Received: 19 June 2018 – Discussion started: 15 August 2018
Revised: 12 April 2019 – Accepted: 5 June 2019 – Published: 24 June 2019

Abstract. Air pollution is one of the most pressing environ-
mental issues in the Kathmandu Valley, where the capital city
of Nepal is located. We estimated emissions from two of the
major source types in the valley (vehicles and brick kilns)
and analyzed the corresponding impacts on regional air qual-
ity. First, we estimated the on-road vehicle emissions in the
valley using the International Vehicle Emissions (IVE) model
with local emissions factors and the latest available data for
vehicle registration. We also identified the locations of the
brick kilns in the Kathmandu Valley and developed an emis-
sions inventory for these kilns using emissions factors mea-
sured during the Nepal Ambient Monitoring and Source Test-
ing Experiment (NAMaSTE) field campaign in April 2015.
Our results indicate that the commonly used global emis-
sions inventory, the Hemispheric Transport of Air Pollu-
tion (HTAP_v2.2), underestimates particulate matter emis-
sions from vehicles in the Kathmandu Valley by a factor
greater than 100. HTAP_v2.2 does not include the brick sec-
tor and we found that our sulfur dioxide (SO2) emissions es-
timates from brick kilns are comparable to 70 % of the total

SO2 emissions considered in HTAP_v2.2. Next, we simu-
lated air quality using the Weather Research and Forecast-
ing model coupled with Chemistry (WRF-Chem) for April
2015 based on three different emissions scenarios: HTAP
only, HTAP with updated vehicle emissions, and HTAP with
both updated vehicle and brick kilns emissions. Compar-
isons between simulated results and observations indicate
that the model underestimates observed surface elemental
carbon (EC) and SO2 concentrations under all emissions sce-
narios. However, our updated estimates of vehicle emissions
significantly reduced model bias for EC, while updated emis-
sions from brick kilns improved model performance in simu-
lating SO2. These results highlight the importance of improv-
ing local emissions estimates for air quality modeling. We
further find that model overestimation of surface wind leads
to underestimated air pollutant concentrations in the Kath-
mandu Valley. Future work should focus on improving lo-
cal emissions estimates for other major and underrepresented
sources (e.g., crop residue burning and garbage burning) with
a high spatial resolution, as well as the model’s boundary-
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8210 M. Zhong et al.: Vehicle and brick kiln emissions in Nepal

layer representation, to capture strong spatial gradients of air
pollutant concentrations.

1 Introduction

Air pollution is one of the most pressing environmental is-
sues in South Asia. According to the 2016 Environmental
Performance Index, air quality in Nepal ranked fourth worst
in the world (Angel and Alisa, 2016) and Kathmandu, its cap-
ital and largest metropolis, is one of the most polluted cities
in Asia. Kathmandu lies in a bowl-shaped valley with a floor
elevation of ∼ 1300 m surrounded by mountains of 2000 to
2800 m. It is inhabited by approximately 2.5 million people
with a steady population growth of 4 % yr−1 (Muzzini and
Aparicio, 2013). The primary sources of air pollution within
the valley are uncontrolled emissions from vehicles, brick
kilns, and biomass and garbage combustion coupled with
dust originating from both local fugitive emissions and long-
distance transport (Gronskei et al., 1996; Kim et al., 2015;
Shakya et al., 2010; Stone et al., 2010, 2012). The unique
topography coupled with high emissions of pollutants con-
tribute to low air quality in the valley.

The rapid growth of the vehicle fleet is of particular con-
cern. According to the Department of Transport Management
(DoTM) in Nepal, the total number of registered vehicles in
the Bagmati Zone (most of which operate in the Kathmandu
Valley) increased from 292 697 to 922 831 (12 % yr−1), be-
tween 2005 and 2015 (DoTM, 2017). Approximately 80 % of
the total registered vehicles are motorcycles, while cars and
pickup trucks account for another 13 %. These vehicles emit
air pollutants, including carbon monoxide (CO), nitrogen ox-
ides (NOx =NO+NO2), non-methane volatile organic com-
pounds (NMVOCs), particulate matter (PM), elemental car-
bon (EC), and organic carbon (OC). Buses were estimated to
emit more than 90 % of OC, EC, and NOx among all vehi-
cles, while motorcycles were estimated to emit large amounts
of CO (50 %) and NMVOCs (66 %) by Shrestha et al. (2013).
In 2010, the annual emissions of EC and OC from diesel-
powered vehicles in the Kathmandu Valley were estimated at
2117 and 570 t yr−1, respectively (Shrestha et al., 2013). Rel-
ative to estimates for the Kathmandu Valley in 2010 based on
the global emissions inventory Hemispheric Transport of Air
Pollution (HTAP_v2.2; Janssens-Maenhout et al., 2015), the
above estimates for vehicle emissions of EC and OC are 80
and 20 times higher, respectively, than those estimated for all
sectors combined in HTAP. Considering that Shrestha et al.
(2013) did not include emissions from personal cars or trucks
in their estimates, vehicle emissions in the Kathmandu Valley
appear to be significantly underestimated in HTAP_v2.2.

More than 100 brick kilns of different types throughout the
Kathmandu Valley produce over 600 million bricks per year
(Quest Forum Pvt. Ltd, 2017; Gronskei et al., 1996; Weyant
et al., 2014). The majority of these kilns (97 %) use the fixed-

chimney Bull’s trench kiln (FCBTK) technology and its vari-
ations such as zigzag kilns. In the Kathmandu Valley, brick
kilns typically operate for 6 months a year, generally from
December to May. The main fuels burned in brick kilns are
biomass and high-sulfur coal (Joshi and Dudani, 2008), both
of which emit SO2 and PM but in differing amounts. Burn-
ing biomass emits relatively greater amounts of PM, whereas
coal combustion emits relatively greater amounts of SO2
(Stockwell et al., 2016; Jayarathne et al., 2018). Weyant et al.
(2014) estimate the total emissions from the brick industry
in South Asia to be 120 Tg yr−1 carbon dioxide, 2.5 Tg yr−1

CO, 0.19 Tg yr−1 PM2.5 (PM with an aerodynamic diameter
less than 2.5 µm), and 0.12 Tg yr−1 EC. Pariyar et al. (2013)
report that brick kilns contribute more than 60 % of total SO2
and PM emissions in the Kathmandu Valley. Using a source
apportionment method, Kim et al. (2015) found that brick
kilns contribute 40 % of EC concentrations in the Kathmandu
Valley in winter. Despite being one of the major sources of
air pollution, brick kiln emissions are not included in the
existing gridded inventory estimates. The developers of the
Regional Emission inventory in ASia version 2 (REAS v2;
Kurokawa et al., 2013) discussed that brick kilns are one of
the major sources of EC, but their inventory did not include
emissions from this sector. HTAP_v2.2 uses REAS v2 for
Nepal and thus does not include emissions from brick kilns
in their inventory either. Due to the lack of gridded emis-
sions estimates, to date, no studies have explicitly simulated
the impacts of brick kiln emissions on regional air quality.

The purpose of this study was to analyze the emissions and
air quality impacts due to on-road vehicles and brick kilns in
the Kathmandu Valley. Mues et al. (2018) reported that an
emissions database is essential to improve the simulation of
EC using regional chemical transport models in the Kath-
mandu region. We first estimated on-road traffic emissions
using the latest number of registered vehicles and emissions
factors generated for local conditions. We also created a point
source emissions inventory for brick kilns using the newly
measured emissions factors in the Kathmandu Valley. In the
recent Nepal Ambient Monitoring and Source Testing Ex-
periment (NAMaSTE) in April 2015, in situ emissions from
several important under-characterized combustion emissions
sources were measured, including brick kilns and motorcy-
cles (Jayarathne et al., 2018; Stockwell et al., 2016). Emis-
sions factors obtained from NAMaSTE were used to create
the point source emissions inventory of brick kilns. We then
modified the HTAP_v2.2 estimates with updated emissions
from vehicles and brick kilns. Next, we conducted three sim-
ulations using Weather Research and Forecasting model cou-
pled with Chemistry (WRF-Chem) to explore the impacts of
emissions from vehicles and brick kilns on the local air qual-
ity. These three simulations differed only in emissions sce-
narios for vehicles and brick kilns; all other model conditions
were kept the same.

Atmos. Chem. Phys., 19, 8209–8228, 2019 www.atmos-chem-phys.net/19/8209/2019/
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2 Method

2.1 WRF-Chem model description

We used the regional chemical transport model WRF-Chem
version 3.5 in this study. The Regional Atmospheric Chem-
istry Mechanism (RACM) (Stockwell et al., 1997) is used for
gas-phase reactions. Aerosol chemistry is represented by the
Model Aerosol Dynamics for Europe with the Secondary Or-
ganic Aerosol Model (MADE/SORGAM) (Ackermann et al.,
1998; Schell et al., 2001). MADE/SORGAM predicts the
mass of several particulate-phase species, including sulfate,
ammonium, nitrate, sea salt, dust, EC, OC, and secondary
organic aerosols in the three aerosol modes (Aitken, accu-
mulation, and coarse). This aerosol model has been widely
used in previous studies (e.g., Gao et al., 2014; Kumar et al.,
2012; Saikawa et al., 2011; Tuccella et al., 2012; Zhong et al.,
2016). Photolysis rates are based on the Fast-J photolysis
scheme (Wild et al., 2000). The Rapid Radiative Transfer
Model (RRTM) (Mlawer et al., 1997) accounts for aerosol
radiative feedbacks. Lin et al. (1983) and one and a half lo-
cal Mellor–Yamada–Nakanishi–Niino Level 2.5 (Nakanishi
and Niino, 2006) schemes are used to parameterize cloud
microphysical and sub-grid processes in the planetary bound-
ary layer (PBL), respectively. The horizontal winds, temper-
ature, and moisture at all vertical levels are nudged to the
large-scale meteorological fields from the National Centers
for Environmental Prediction (NCEP) Global Forecast Sys-
tem final gridded analysis datasets.

The model domain covered large parts of the Himalayas,
India, Nepal, and southwest China (Fig. 1). The domain in-
cluded three levels of one-way nesting with horizontal grid
spacing of 27, 9, and 3 km, each of which was centered
on the Kathmandu Valley. The topography of the innermost
model domain is complicated, with the Himalayan range sit-
ting across west to east and separating the Indian subcon-
tinent from the Tibetan Plateau. Even when we use 3 km
spacing for the nested domain, the model is unable to re-
solve the very steep topographic features but this was the
best we could do with this project, given the resolution of
emissions available. There are 31 vertical levels from the sur-
face to 50 mbar. The Model for Ozone and Related Chemical
Tracers (MOZART) global chemical transport model (Em-
mons et al., 2010) was used to provide initial and lateral
boundary conditions for chemical species in the outermost
domain. We found that the inclusion of dust from MOZART
led to overestimated aerosol optical depth (AOD) at Jomsom
in Nepal and at Qomolangma (Mt. Everest) station for Atmo-
spheric and Environmental Observation and Research, Chi-
nese Academy of Sciences (QOMS_CAS) in Tibet, China.
Therefore, in our simulations, dust concentrations were cal-
culated online, using the Air Force Weather Agency (AFWA)
emissions scheme (Marticorena and Bergametti, 1995) with
zero initial conditions.

To analyze the impact of emissions from vehicles and
brick kilns on air quality in the Kathmandu Valley, we per-
formed a set of three nested model simulations, referred to as
HTAP, HTAP_vehicle, and HTAP_vehicle_brick. The HTAP
simulation used the original HTAP_v2.2 emissions inventory
as inputs. The HTAP_vehicle simulation used HTAP_v2.2
with updated vehicle emissions (Sect. 2.2.1) as inputs. The
HTAP_vehicle_brick simulation used the HTAP_v2.2 with
updated vehicle emissions and the additional brick kiln emis-
sions (Sect. 2.2.2) as inputs. The same meteorology and
boundary inputs were used for all three nesting simulations
as our focus is to understand the impact of emissions on the
local air quality. We conducted each simulation for the 2-
week period of 12–24 April 2015 during which observational
data from the NAMaSTE field campaign were available for
comparison (Sect. 2.3). The model was spun up for 5 d pre-
ceding the simulation period, which was sufficient to venti-
late the regional domain.

2.2 Emissions

2.2.1 Emissions scenarios in 2015

We used three emissions scenarios (Table 1) to investigate
the impact of emissions on local air quality in the Kath-
mandu Valley. The first emissions scenario is the same as
the original HTAP_v2.2 (Janssens-Maenhout et al., 2015).
HTAP is a gridded global emissions inventory combined
with the regional inventories and gap-filled with the Emis-
sions Database for Global Atmospheric Research (EDGAR
v4.3) (Janssens-Maenhout et al., 2013). In Asia, HTAP_v2.2
uses the MIX inventory, a regional emissions inventory in
Asia, which is also developed based on the “mosaic” ap-
proach including multiple existing national inventories (Li
et al., 2017). The second emissions scenario utilizes the origi-
nal HTAP_v2.2 with updated vehicle emissions (Sect. 2.2.2).
The third scenario is built on the second scenario and adding
emissions from brick kilns (Sect. 2.2.3). We used the latest
available HTAP_v2.2 for 2010 as the baseline inventory, as
this is the closest year to 2015 that we have the data for. The
vehicle and brick kiln emissions were developed for the year
2015.

2.2.2 Emissions from vehicles

Emissions from the road transport sector in the Kathmandu
Valley were estimated using the International Vehicle Emis-
sions (IVE) model version 2.0 (Davis et al., 2005). The IVE
model is specifically designed to calculate emissions from
motor vehicles in developing countries for local conditions
and has been used extensively in several countries world-
wide, including Nepal (Shrestha et al., 2013), India (Barth
et al., 2007), China (Guo et al., 2007; Wang et al., 2008), and
Iran (Shahbazi et al., 2016). Emissions were estimated by
the product of the base emissions factors, the correction fac-
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Figure 1. Nested model domains with the terrain heights in meters (color shaded) and the locations of four measurement sites: Jomsom,
Nepal (blue asterisk); QOMS_CAS, China (pink dot); Bode, Nepal (red triangle); and the Tribhuvan International Airport, Nepal (black
cross).

Table 1. Description for each emissions scenario in 2015.

Emissions scenario Description

HTAP Original HTAP_v2.2 emissions inventory
HTAP_vehicle Original HTAP_v2.2+ updated vehicle emissions
HTAP_vehicle_brick Original HTAP_v2.2+ updated vehicle emissions+ brick kiln emissions

tors, and the distance traveled or the total starts for each of
the vehicle categories. We classified vehicles into six over-
all categories (motorcycles, buses, cars, trucks, taxis, and
three-wheelers), numerous technology-based subcategories,
and two fuel types (gasoline and diesel). For fuel quality in-
put values, we used unleaded gasoline with a sulfur content
of 300 ppm and diesel with a sulfur content of 500 ppm. The
base emissions factors are derived from emissions tests con-
ducted mainly in the USA, along with data collected in devel-
oping countries. The correction factors consider local con-
ditions (meteorology, altitude, inspection/maintenance pro-
gram, etc.), fuel quality, and power and driving characteris-
tics (vehicle specific power pattern, road grade, air condition-
ing usage, and start pattern). Local meteorology data, such

as ambient temperature and relative humidity, were obtained
from Weather Underground for April 2015. Driving char-
acteristics for motorcycles, buses, taxis, and three-wheelers
were adopted from surveys in the Kathmandu Valley, docu-
mented by Shrestha et al. (2013). Since we lack survey data
for trucks and cars in Kathmandu, we used the data from
Pune, India, for these two types of vehicles (Barth et al.,
2007). Pune was the only representative city within South
Asia, where the International Sustainable Systems Research
Center (ISSRC) conducted a detailed study of vehicle ac-
tivity. The travel distances were obtained from the vehicle
registration number and vehicle kilometers traveled (VKTs).
Daily VKT and the number of starts per day were adopted
from Shrestha et al. (2013), which is specific for vehicles in

Atmos. Chem. Phys., 19, 8209–8228, 2019 www.atmos-chem-phys.net/19/8209/2019/
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Table 2. Number of vehicles, daily mileage, and starts for vehicles
in the Bagmati Zone, Nepal, in 2015.

Vehicle category Number of Daily VKT Number of
vehicles, 2015a (km d−1)b starts per day

Motorcycle 722 695 15 3.8
Bus/mini bus 20 207 96 9
Taxi 6206 87 15
Car/pickup/jeep 136 391 44 15
Van/microbus 2123 42 10.3
Three-wheeler (tempo) 2528 63 12
Truck/mini-truck 18 917 107 9

a We obtained the number of vehicles in 2015 from the Department of Transport,
Nepal. b VKT of truck/mini-truck are from Malla (2014).

the Kathmandu Valley. The number of vehicles in 2015 was
taken from the government report of the DoTM (2017). Data
used for the number of vehicles and VKTs for each vehicle
category in 2015 are summarized in Table 2. Table S1 in the
Supplement lists the detailed technology of each category,
fraction of vehicles with different technology in fleet, and
corresponding European vehicle emissions standards (Euro
Standards).

We used the IVE model to estimate emissions of CO, NOx ,
NMVOC, SO2, PM, and some greenhouse gases. All emitted
PM was assumed to be PM2.5 because the ratio of PM2.5 to
PM10 is 0.92 for diesel vehicles and 0.88 for gasoline vehi-
cles in the EPA 2014 MOVES model. Studies such as Gillies
et al. (2001) and Handler et al. (2008) have also found that
74 % and 67 % of PM10 is PM2.5 in on-road studies. Al-
though we understand that assuming all emitted PM10 to be
PM2.5 is potentially an overestimation, we believe that this is
acceptable, given the lack of observational data in Nepal or
in South Asia.

Because the IVE model does not directly estimate emis-
sions of EC or OC, we used conversion factors derived from
the study of Kim Oanh et al. (2010) to estimate these emis-
sions. Kim Oanh et al. (2010) specifically focused on the
emissions of diesel vehicles in developing countries and
tested a large number of vehicles. For vans, we used an
EC / PM mass ratio of 0.46 and OC / PM of 0.2, while for
trucks and buses, we used EC / PM of 0.48 and OC / PM
of 0.13. We collected a group of these conversion factors
from different studies in Table S3. Our EC / PM mass ratio is
close to the median value of all the studies listed below. The
total vehicle emissions from IVE were distributed spatially
and temporally based on HTAP_v2.2. While we acknowl-
edge that using conversion factors from one study ignores
the potential uncertainty due to driving pattern, weather con-
ditions, fuel quality, and vehicle characteristics, we also feel
that our estimate provides a good middle ground, given the
existing study results.

2.2.3 Brick kiln emissions

We identified the kiln types in the Kathmandu Valley by com-
paring the specific images of brick kiln types with Google
Earth images dated April 2015. The monthly emissions of
compound i (Ei,j , g month−1) for a certain type of brick j

were calculated as the product of the amount of fuel con-
sumed (BKj , kg-fuel) and the corresponding emissions fac-
tor (EFi,j , g kg-fuel−1):

Ei,j = BKj ×EFi,j . (1)

The calculated emissions were mapped based on the location
of each kiln.

The amount of fuel burned for each brick kiln BKj is esti-
mated using the following formula:

BKj = Pj ×Wbrick×Ebrick/Ufuel, (2)

where Pj is the production of brick kiln j (number of bricks
produced per month per kiln), Wbrick is the average weight
of a brick (kg brick−1), Ebrick is the specific energy con-
sumption of a brick (MJ kg−1), and Ufuel is the specific en-
ergy density of fuel (MJ kg-fuel−1). Since the production of
each brick kiln was not available, we estimated the monthly
mean production using one-sixth of the annual average pro-
duction, as brick kilns in the Kathmandu Valley usually op-
erate 6 months a year. The annual mean production was ob-
tained from a report submitted to the government of Nepal
(SMS Environment and Engineering Pvt. Ltd, 2017). Most
brick kilns in the Kathmandu Valley are fueled by high-sulfur
coal (70 %), which is supplemented with sawdust (24 %), and
wood and other fuels (6 %) (Joshi and Dudani, 2008). Con-
sidering that the dominant fuel for brick firing is coal and that
the EFs used here correspond to emissions from coal-fueled
brick kilns, we used the specific energy density of coal to es-
timate emissions. Values and references for each variable in
Eq. (2) are presented in the Supplement (Table S2).

EF values measured from a zigzag kiln during the NA-
MaSTE field campaign are applied in Eq. (1) to calculate
emissions estimates of various trace gases and PM. Table S1b
lists the species, associated EF, and references that we esti-
mated the emissions for. We used EFs of a zigzag kiln rather
than a clamp kiln for all types of kilns in the valley because
zigzag is the most common kiln type identified in the val-
ley. We will provide more accurate emissions estimates in
our emissions inventory when EFs of different types of kilns
become available.

2.2.4 Other emissions

Anthropogenic emissions of other gaseous pollutants (CO,
NOx , NH3, SO2, and NMVOCs) and PM (EC, OC, PM2.5,
and PM10) from major sectors are taken from HTAP_v2.2
for 2010. HTAP_v2.2 is the most recent global emissions in-
ventory that includes emissions from various sectors such as

www.atmos-chem-phys.net/19/8209/2019/ Atmos. Chem. Phys., 19, 8209–8228, 2019
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energy, industry, agriculture, residential (including both heat-
ing and cooking), aircraft, and shipping and has the highest
spatial resolution. However, as mentioned earlier, HTAP does
not currently include brick kiln emissions in their estimates
and it also excludes large-scale biomass burning and crop
residue burning. For nonresidential “open” biomass burning
emissions, we therefore used emissions from the Fire IN-
ventory from NCAR (FINN) inventory for the year 2015
(Wiedinmyer et al., 2011). For biogenic emissions, we used
the Model of Emissions of Gases and Aerosols from Na-
ture (MEGAN) version 2.1 (Guenther et al., 2012). Dust
emissions are calculated online, using the AFWA emissions
scheme, as described above.

2.3 Observations and statistical methods for
comparisons

We compared our simulations with the surface observations
of air temperature, relative humidity, and wind speed at two
sites in the Kathmandu Valley. The meteorological data at
the Bode site at a height of 23 m were collected during the
NAMaSTE field campaign and the data at the Tribhuvan In-
ternational Airport site at standard meteorological monitor-
ing heights (2 m for air temperature and relative humidity,
and 10 m for wind speed and direction) were provided by the
Department of Hydrology and Meteorology of the Ministry
of Population and Environment of the government of Nepal.
The Bode site is located in the eastern part of the Kathmandu
Valley at a latitude of 27.689◦ N and longitude of 85.395◦ E.
The altitude is about 1337 m. The airport is approximately
4 km west of Bode (Fig. 2), at approximately the same alti-
tude.

The daily ground-based AOD values at 550 nm were ob-
tained from the AErosol RObotic NETwork (AERONET).
We used Level 2.0 for the QOMS_CAS site in China and
the Level 1.5 for the Jomsom site in Nepal. In addition, we
also compared the space-based AOD values retrieved from
the MODerate Resolution Imaging Spectrometer (MODIS)
instrument aboard the Terra satellite with the simulated AOD
from WRF-Chem. MODIS provides AOD retrievals at a res-
olution of 10 km×10 km. In this study, we used Level 2 and
Collection 6 aerosol optical thickness at 550 nm. Concentra-
tions of EC and SO2 at Bode, Kathmandu, were sampled at a
height of 20 m during the NAMaSTE field campaign on 12–
24 April 2015. We also compared simulated and observed
surface SO2 concentrations at several other sites in the val-
ley (Kiros et al., 2016). The observed surface SO2 is 8-week
mean concentrations between 23 March and 18 May 2013
from Kiros et al. (2016). They were measured at 15 sites
in the valley, including five urban sites (Bode, Indrachowk,
Maharajgunj, Mangal Bazaar, Suryabinayak), four suburban
sites (Bhaisepati, Budhanilkantha, Kirtipur, Lubhu), and six
rural sites (Bhimdhunga, Nagarkot, Naikhandi, Nala Pass,
Sankhu, Tinpiple) (Kiros et al., 2016).

The overall performance of WRF-Chem in simulating me-
teorological data and air pollutants against observations was
evaluated using the correlation coefficient (r), the normal-
ized mean bias (NMB), the mean fractional bias (MFB), the
mean fractional error (MFE), and the root-mean-square error
(RMSE). The evaluation is based on 2-week statistics using
the daily mean values weighted for the day and night sam-
pling times at each site.

3 Emissions comparison

3.1 Vehicle emissions

The numbers, mileage, and starts for different vehicle types
in the Kathmandu Valley, based on the vehicle registration in-
formation, are summarized in Table 2. Using the IVE model,
we estimated monthly vehicle emissions for CO, SO2, NOx ,
NMVOCs, EC, OC, and PM2.5 (Table 3). Relative to the ve-
hicle emissions estimates for 2010 by Shrestha et al. (2013),
our estimates are about 2 to 4 times higher due to (1) the in-
creases in numbers of vehicles between 2010 and 2015, and
(2) the inclusion of diesel trucks that were not considered in
the earlier study. The total number of vehicles in this study
is about 70 % higher than that of Shrestha et al. (2013). In
addition, the estimated running EFs for trucks are the highest
among seven categories of vehicles for all air pollutants, with
values 4 to 5 times higher than those for buses, which ranked
the second highest (Tables S0 and S1). Although trucks ac-
count for only 2.3 % of the total numbers of vehicles, they are
the major contributor to pollutant emissions due to their sub-
stantially higher EFs. Trucks account for more than 80 % of
monthly total emissions for both PM2.5 and NOx , and 50 %
or more for the other pollutants.

Comparison of these new emissions estimates with those
from the ground transport sector in the HTAP_v2.2 emissions
inventory reveals that CO, NOx , NMVOCs, EC, OC, and
PM2.5 are significantly underestimated in HTAP (Table 3).
For example, the emissions estimates of PM2.5, OC, and EC
calculated using the IVE model were factors of 186, 100,
and 375, respectively, greater than those in HTAP. In con-
trast, SO2 emissions estimates agreed well and only differed
by 17 %. Our revised emissions of PM2.5, EC, CO, and NOx

from vehicles drive the substantially greater total emissions
of these species in the Bagmati Zone relative to those based
on the HTAP (Fig. 3).

3.2 Brick kiln emissions

We found 112 brick kilns in the Kathmandu Valley, con-
sistent with a previously reported total of 110 (SMS Envi-
ronment and Engineering Pvt. Ltd, 2017). Figure 2 shows
the spatial distribution of these brick kilns. Approximately
40 % of brick kilns are located in the southern portion of
the valley, 35 % in the eastern portion, and the rest are in
the western portion. We identified four types of brick kilns,
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Figure 2. Spatial distribution of brick kilns in Nepal (a) and Kathmandu Valley (b). Red, orange, blue, and green dots denote the fixed-
chimney Bull’s trench kiln (FCBTK), Hoffmann kiln, vertical shaft brick kiln (VSBK), and zigzag kiln, respectively.
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Figure 3. The monthly mean surface emissions of five pollutants, PM2.5, EC, CO, NOx , and SO2, from all sources in April 2015 used in
WRF-Chem for the three simulations. The star indicates the location of the Bode site.
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Table 3. Total emissions from vehicles, brick kilns in the Kathmandu Valley during April 2015 estimated by this study versus corresponding
emissions from vehicles, and all sources considered in HTAP emissions inventory.

Unit (t month−1) CO SO2 NOx NMVOCs EC OC PM2.5

Total vehicle emissions, this study 6551 41 6152 1413 827 234 1852
Total brick kilns emissions, this study 98 123 13 13 1.08 10 135
Total emissions from all sectors, this study 18 668 308 6565 3978 976 839 2796
Total transport sector emissions in HTAP, 2010 188 35 80 98 2.2 2.3 10
Total emissions from all sectors in HTAP, 2010 12 207 179 479 2651 150 598 819

including FCBTK, Hoffmann kiln, vertical shaft brick kiln
(VSBK), and zigzag kiln. Out of the 112 kilns, the domi-
nant types were zigzag (63) and FCBTK (46), while there
were only three Hoffmann kilns and VSBK kilns combined.
Based on Eq. (2), the average fuel consumption of these kilns
was about 9700 t month−1 or 58 200 t yr−1, which is close to
65 100 t yr−1 estimated in a previous report (SMS Environ-
ment and Engineering Pvt. Ltd, 2017).

Table 3 summarizes the estimated monthly total emis-
sions of major air pollutants from brick kilns in the Kath-
mandu Valley. Of these species, those with the greatest
mass emitted were PM2.5 (135 t month−1), followed by SO2
(123 t month−1) and CO (98 t month−1), while emissions for
other pollutants were less than 20 t month−1. Table 3 also
compares emissions from brick kilns and those from all other
sectors in the HTAP_v2.2 emissions inventory. Our brick kiln
SO2 and PM2.5 emissions estimates are each equivalent to
68 % and 16 %, respectively, of the total emissions in the
HTAP estimates. The increase in PM2.5 and SO2 emissions
due to adding the brick kiln emissions can be seen clearly
in Fig. 3. For EC, OC, CO, NOx , and NMVOCs, the brick
kiln sector contribution is less than 3 % of our updated total
emissions.

4 Model results and evaluation

4.1 Meteorology

The different emissions scenarios did not impact simulated
meteorological conditions. Therefore, we only present the
statistical analysis of our HTAP_vehicle_brick simulation,
using the HTAP inventory with updated emissions for both
vehicles and brick kilns. Model-simulated 2 m temperature
and relative humidity, as well as 10 m wind speed, are com-
pared to observations at two sites in the Kathmandu Val-
ley: Bode and the Tribhuvan International Airport. Figure 4
shows the comparisons of predicted daily-averaged quanti-
ties with observations and Table 4 presents the statistical in-
dices of comparisons for each site. The temperature at Bode
is simulated with a correlation of 0.8 and a small negative
NMB of 4.7 %. At the airport, the correlation of 0.7 is close
to that at Bode, but a larger bias is observed, with NMB
of 15.8 %. The model systematically underestimates relative

humidity with a correlation of 0.5–0.6 and NMB of−40.8 %
to −34.0 %, due to an underestimation of both minima and
maxima. In a previous WRF-Chem study in the Kathmandu
Valley (Mues et al., 2018), an underestimation of relative hu-
midity was also clearly observed near the ground. The tem-
poral correlation coefficient of daily 10 m wind speed is 0.7
at the airport and 0.8 at Bode. Although the model reproduces
the daily variability well, it overestimates the wind speed at
both sites. The model performs better at Bode (NMB= 67 %)
than at the airport site (NMB= 176 %) in simulating wind
speed. The modeled mean wind speed at the airport site is
about 1.68 m s−1 higher than the observation, with a RMSE
of 1.74 m s−1. WRF-Chem usually has difficulty simulating
wind speed over complex mountain terrains; a larger bias
over mountain regions was also found in previous studies
(Mar et al., 2016; Mues et al., 2018). Zhang et al. (2013)
explained that the overestimation in wind speeds is likely
caused by poor representation of surface drag exerted by un-
resolved topographical features in WRF-Chem. A closer look
at the wind observational data reveals the presence of a lo-
cal, thermally driven diurnal wind circulation that controls
the airflow regime in the Kathmandu Valley during weak
gradient synoptic-scale flow and arguably significantly im-
pacts the air quality in the valley (Fig. 5). During the day,
the winds at both Bode and the airport are predominantly
from the SW quadrant along the axis of the nearby river, with
hourly-averaged magnitudes of up to 5 m s−1. In contrast, the
katabatic winds during the night are much weaker, gener-
ally under 1 m s−1 and with a prevailing easterly component.
Note that winds at Bode are consistently stronger than those
at the airport. One of the most likely reasons for that is the
differing measurement height at both sites: 23 m above sur-
face at Bode and 10 m at the airport.

The model generally reproduces the wind direction shift at
both sites quite well (Figs. 6 and 7); however, the wind speed
magnitude is substantially overpredicted. The overestimation
is not that large during the day but it is severe during the
nighttime hours, suggesting serious differences in the struc-
ture of simulated and observed nighttime boundary layers.
We should note here that the model does not directly predict
the wind field at 10 m height; instead it is extrapolated from
the first model level using Monin–Obukhov similarity theory

www.atmos-chem-phys.net/19/8209/2019/ Atmos. Chem. Phys., 19, 8209–8228, 2019



8218 M. Zhong et al.: Vehicle and brick kiln emissions in Nepal

Table 4. Statistical performance of model simulation for daily surface temperature, 10 m wind speed, and surface relative humidity at the
Tribhuvan International Airport (Airport) and Bode.

Statistical metrics
Surface temperature (◦C) 10 m wind speed (m s−1) Surface RH (%)

Airport Bode Airport Bode Airport Bode

Mean
Observation 18.6 18.7 1.0 1.7 73.3 76.9
Modeled 21.5 19.6 2.6 2.8 43.5 50.7

Min–max
Observation 14.5/21.9 15.0/21.5 0.5/1.2 1.0/2.4 53.0/92.1 59.0/90.5
Modeled 18.6/23.9 17.0/21.6 1.7/3.6 1.7/3.7 23.2/63.5 30.6/71.5

Mean bias 2.9 0.9 1.7 1.1 −29.9 −26.2
NMB (%) 15.8 4.7 176.0 61.2 −40.8 −34.0

RMSE 3.2 1.3 1.7 1.1 32.0 28.2
Correlation 0.7 0.8 0.7 0.8 0.5 0.6

Figure 4. Comparisons of observed (blue dots) and modeled (red lines) daily mean 2 m temperature, 10 m wind speed, and 2 m relative
humidity at two sites (Airport and Bode) in the Kathmandu Valley.

(Jimenez et al., 2012), and therefore is highly influenced by
the PBL scheme used in the simulations.

4.2 AOD

AOD is a column-integrated measurement and, thus, not di-
rectly correlated with concentrations of near-surface PM.
However, in the context of model validation, AOD is use-
ful as a general indicator of near-surface air quality. Fig-
ure 8 depicts the spatial pattern of the 2-week mean AOD

observed by MODIS and the modeled AOD at the 550 nm
wavelength. In general, the simulated AOD values are higher
in the southern part of the domain than those in the north-
ern part. MODIS AOD also shows a similar spatial distribu-
tion in the southern part but most data in the northern part
are missing due to cloud coverage. It is clear from the figure
that adding brick kiln emissions has little impact on AOD
in the Kathmandu Valley, while modifying vehicle emissions
leads to a significant increase in modeled AOD. The average
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Figure 5. Hourly-averaged observed U- and V-wind components during the period of 11–24 April at the (a) Bode site and (b) Tribhuvan
International Airport. Daytime winds are shown with red closed triangles and the open blue circles denote winds during the night. Note that
the winds at the Bode site and the airport are measured at a height of 17 and 10 m above the surface, respectively.

Figure 6. Hourly-averaged simulated U- and V-wind components during the period of 11–24 April: (a) at 10 m height above surface and
(b) at the first model level (28 m height) at the model grid point closest to the Bode site. Daytime winds are shown with red closed triangles
and the open blue circles denote winds during the night.

difference in AOD between the simulations with and with-
out the revised vehicle emissions is 18 % in the Kathmandu
Valley. As discussed in Sect. 3.2, diesel engines emit a large
amount of EC. These aerosols strongly absorb sunlight at all
UV–vis wavelengths and, consequently, contribute to higher
AOD values.

The time series of simulated versus observed daily mean
AOD at the two AERONET sites within the model domain
(Jomsom, Nepal and QOMS_CAS, China) and the corre-
sponding performance statistics are presented in Fig. 9. The
model tends to overestimate the lower observed values at
the QOMS_CAS site, with an MFB of 56 %. At Jomsom,
the model predicts the lower measured AOD values reason-
ably well during 15–24 April. However, the model misses the

peak on 14 April, when the observed AOD is near 1.0, an in-
dication of severe air pollution. Instead, our model predicts a
somewhat lower peak on the preceding day. This high AOD
value was driven by emissions from a wildfire located south-
east of Jomsom. It can be seen clearly from the model simu-
lation (Fig. S1) that the fire caused high surface PM and CO
concentrations near the burning area on 12 April. Since the
prevailing wind direction on 13 April in the simulation was
from the southeast and with the overestimated wind speed,
the smoke was transported to the northwest and increased
the simulated AOD value at the Jomsom site earlier than ob-
served.
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Figure 7. Same as Fig. 6 but for the model grid point closest to the Tribhuvan International Airport.

4.3 EC

Figure 10 shows the spatial pattern of simulated EC, aver-
aged during the simulation period. The average simulated EC
concentration in the Kathmandu Valley during the 2-week
simulation period was approximately 6.2 µg m−3, higher than
concentrations in the surrounding regions. Vehicles (primar-
ily diesel trucks and buses) contribute approximate 85 % of
total EC emissions, whereas brick kilns account for only
about 0.11 %. Consequently, the simulation that includes
brick kiln emissions (HTAP_vehicle_brick) does not im-
prove the model performance in predicting EC at Bode rela-
tive to that with updated vehicle emissions (HTAP_vehicle).

Figure 11 depicts the time series of observed and sim-
ulated surface EC concentrations. The average EC con-
centration observed at Bode during the campaign was
5.6 µg m−3 during daytime, 10.82 µg m−3 during nighttime,
and 8.32 µg m−3 for the 24 h average. Two factors con-
tributed to the nighttime increase in surface concentrations:
(1) the diminishing mixing-layer depth and (2) the air flow
circulation shift in response to surface cooling. As the night
progresses, the turbulent mixing in the developing nocturnal
boundary layer is suppressed and air pollutants are confined
in a shallow layer close to surface. The shift in the wind
direction is also conducive to increased surface concentra-
tions as the Bode site is located downwind with respect to
the major cluster of brick kilns in the area (Figs. 2 and 5).
In contrast, during daytime the mixing-layer depth increases
in response to solar heating and promotes the vertical mixing
throughout the depth of the whole boundary layer, leading to
a notable decrease in surface concentrations. The Bode site
during the day is also upwind from the brick kiln cluster,
which leads to further reduced concentrations. This idealized
scenario holds true for most of the simulation period with
the exception of the days between 13 and 16 April, when the
local air flow circulation is disrupted by a large-scale dis-

turbance. During that period, the wind speeds are generally
below 2 m s−1 even during the day, suggesting that the peak
in the surface concentrations (Fig. 11) could be related to
suppressed boundary-layer mixing.

Observed EC concentrations are strongly underestimated
with poor correlation when the original HTAP emissions are
used as model input (MFB=−125 %, r = 0.19 for 24 h aver-
aged EC, Table 5). This is similar to Mues et al. (2018), who
reported an underestimation of EC concentrations by a factor
of 5 when using HTAP emissions in their simulations. The
simulation with updated vehicle emissions (HTAP_vehicle)
shows reduced bias and better correlation (MFB=−73 %,
r = 0.61 for 24 h average), although the model still underes-
timates EC concentrations.

The model captures the daytime low concentrations very
well during 18–21 April, but it fails to predict the observed
peak on 15–16 April. Such high EC concentration episodes
can be caused by either stagnant meteorological conditions
or enhanced emissions. We examined the precipitation and
wind speed at Bode during the high and low episode peri-
ods (Table S2). On 16 (high EC) and 19 April (low EC), no
rainfall was observed. The daytime wind speed on 16 April
(2.4 m s−1) was slightly lower than that on 19 April (2.7 m−1)
but the EC concentration on 16 April was 6 times higher. This
suggests that a sporadic emissions source (e.g., garbage or
biomass burning) that was not accounted for in our model
could be responsible for the observed high concentration
episode.

The nighttime surface concentrations are significantly un-
derestimated by the model throughout the entire period.
One possible cause for this underestimation is illustrated in
Fig. S2, showing the diurnal evolution of the modeled mixing
layer height. During the night, the simulated boundary layer
remains well mixed up to a height of 500 m, which facilitates
the vertical transport of pollutants, and consequently, leads
to lower surface concentrations.
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Figure 8. The 2-week average AOD: (a) retrieved from the MODIS Terra satellite, (b) simulated using WRF-Chem with original HTAP
emissions, (c) simulated using WRF-Chem with HTAP with updated vehicle emissions, and (d) simulated using WRF-Chem with HTAP
emissions plus updated vehicles and brick kiln emissions. The star indicates the location of the Bode site.
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Figure 9. Comparisons of observed (blue dots) and modeled (red lines) daily mean AOD at two AERONET sites (QOMS_CAS and Jomsom).

Figure 10. The 2-week average surface EC (a, b, c) and SO2 (d, e, f) concentrations obtained from three simulations: HTAP, HTAP_vehicle,
and HTAP_vehicle_brick. The star indicates the location of the Bode site.
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Figure 11. Comparisons of observed (blue dots) and modeled EC concentrations in the daytime and nighttime and daily mean for the three
scenarios at Bode. Observed values are taken during the NAMaSTE campaign (Jayarathne et al., 2018)

Table 5. Statistical measures calculated for three model simulations with different emissions inputs for EC. Obs (µg m−3) and model
(µg m−3) are 2-week mean daily average values of observed and modeled EC, respectively. r is correlation coefficient between observa-
tion and model simulations; NMB (%) is the normalized mean bias between observations and model simulations; MFB (%) and MFE (%)
are the mean fractional bias and mean fractional error; RMSE is the root-mean-square error between observations and the model (µg m−3).

Emissions Day/night Obs Model r MB NMB MFB MFE RMSE

HTAP
Day 5.60 1.34 −0.21 −4.27 −76.15 −107.71 107.71 5.49
Night 10.82 1.61 0.12 −9.20 −85.08 −142.45 142.45 10.25
24 h 8.32 1.48 0.19 −6.83 −82.19 −125.77 125.77 8.31

HTAP_vehicle
Day 5.60 2.56 0.28 −3.04 −54.32 −58.74 60.62 4.47
Night 10.82 3.77 0.48 −7.05 −65.17 −90.56 90.56 8.20
24 h 8.32 3.19 0.61 −5.13 −61.66 −75.29 76.19 6.67

HTAP_vehicle_brick
Day 5.60 2.62 0.25 −2.99 −53.31 −56.68 58.52 4.44
Night 10.82 3.85 0.47 −6.97 −64.45 −88.69 88.69 8.13
24 h 8.32 3.26 0.61 −5.06 −60.85 −73.33 74.21 6.62

It is also possible that we might have underestimated the
EC emissions from the brick kilns near Bode. In our emis-
sions inventory we use an average kiln productivity to esti-
mate the emissions; thus if the productivities of these kilns
are higher than the average, or if their efficiency is lower,
their emissions could have been underestimated in the in-
ventory. Another possibility is that additional sources are
still missing, for example, garbage burning, biomass burn-
ing, and/or diesel generators. Stockwell et al. (2016) found
that garbage burning in the Kathmandu Valley may produce
significantly more EC emissions than previously thought.
Due to power outages, especially in the dry season, the use
of generators was still prevalent in the valley in 2015. A
study conducted by the World Bank (2014) found that nearly
200 000 small power generators, powered by diesel, were
used for pervasive power shortages in Nepal. Nevertheless,
these comparisons suggest that there is still a need for fur-
ther improvement of constructing local emissions inventories
in the Kathmandu Valley.

4.4 SO2

Figure 10 presents the 2-week average SO2 concentra-
tions for the three simulations. The average SO2 concentra-
tion in the HTAP_vehicle_brick simulation is approximately
3.6 µg m−3 in the Kathmandu Valley, higher than the sur-
rounding areas in Nepal. Revised vehicle emissions have lit-
tle impact on SO2 concentration in the valley, but brick kiln
emissions contribute 50 % of simulated SO2 concentrations.
The 2-week mean SO2 concentration measured at the Bode
site was 39.7 µg m−3. The model largely underestimates the
observation, with the modeled mean SO2 concentration of
5.3 µg m−3. SO2 is mainly a primary pollutant, directly emit-
ted from sources. SO2 concentrations are highly related to
its emissions. The large discrepancy between the model sim-
ulation and observation at this site is probably because our
model resolution is not able to capture spatially concentrated
high emissions of SO2 near Bode. Kiros et al. (2016) mea-
sured SO2 concentrations at 15 sites in 8 weeks from March
to May 2013 in the Kathmandu Valley and observed high
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Figure 12. Comparisons of modeled and observed SO2 concentrations at 14 sites in the Kathmandu Valley. The modeled SO2 is the 2-week
mean daily SO2 concentrations averaged from 12 to 24 April 2015. The observed SO2 is the 8-week mean SO2 concentrations between
23 March and 18 May 2013 reported in the study of Kiros et al. (2016).

SO2 concentrations close to brick kilns. In particular, the av-
erage SO2 concentration measured at Bode was the highest
(39.2 µg m−3) and 2–6 times higher than those at the other 14
sites (4.7–15.8 µg m−3) in the Kathmandu Valley. They ex-
plained that the elevated surface SO2 concentration at Bode
is mainly caused by nearby brick kilns, which are fueled by
coal. We found that there are 12 brick kilns located within
the 4 km distance from the Bode site. Although we have in-
cluded emissions of these brick kilns in our model inputs, we
may still have overestimated dilution and/or underestimated
emissions from these brick kilns by using monthly average
productivity and average emissions factors of zigzag brick
kilns. We hope to improve our emissions inventory of brick

kilns when more information on individual brick kilns be-
comes available.

Figure 12 compares modeled 2-week mean SO2 concen-
trations with observed 8-week mean SO2 measured between
23 March and 18 May 2013, reported in the study of Kiros
et al. (2016). None of these sites exceeded the Nepal na-
tional air quality standard of 70 µg m−3 for the 24 h mean,
but SO2 concentrations at the Bode site were almost twice as
high as the WHO standard of 20 µg m−3. Since our own NA-
MaSTE campaign only collected SO2 at the Bode site, we
also included the study of Kiros et al. (2016) to illustrate the
magnitude difference in observational data at different loca-
tions within the Kathmandu Valley. The 2-week mean SO2
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concentration from NAMaSTE in 2015 was 39.7 µg m−3 at
Bode, while the 8-week mean in 2013 by Kiros et al. (2016)
was 39.2 µg m−3, showing similarities, giving us confidence
that comparing the magnitude difference among sites was
possible, despite the difference in observed years. We used
these 2013 measurements to represent the ambient SO2 con-
centrations during our simulation period. Including brick kiln
emissions improves model prediction of SO2 concentrations
at all sites. The simulated SO2 concentrations with brick kiln
emissions are closer to observations compared with those
without them, although the model still underestimates SO2.
This underestimation is probably due to brick kiln SO2 emis-
sions. We applied an emissions factor of 12.7 g kg−1 of fuel
measured from zigzag kilns (Stockwell et al., 2016) to all
types of brick kilns. These were the only available observa-
tional data in Nepal at the time of this study. A more recent
study by Nepal et al. (2019) reported that the mean value of
the SO2 emissions factor from zigzag kilns is 24± 22 g kg−1

of fuel, which is almost twice as high as that used in our
study. If we doubled our SO2 emissions for brick kilns,
the modeled SO2 concentrations would be much closer to
the observations. Assuming the linear relationship in SO2,
the average difference between the observed and modeled
SO2 concentrations would drop from 4.4 to 2.8 µg m−3. We
plan to revisit our brick kiln emissions inventory as more
emissions factors become available. Our study highlights
the importance of improving the emissions factor of SO2
for brick kilns in Nepal. The difference between observa-
tion and model simulation ranges from 0.8 to 10 µg m−3 for
all sites except Bode where the difference is 34.4 µg m−3.
This result suggests that surface SO2 concentrations in the
Kathmandu Valley are highly variable and are influenced
by nearby sources. Future simulations with a higher spatial
model resolution and emissions inputs may help to resolve
the strong spatial gradients in SO2 concentrations.

5 Summary and future work

In this paper, we modified the HTAP emissions inventory
for Kathmandu’s road transport sector. We also developed
a point source emissions inventory for brick kilns in the
Kathmandu Valley, and examined the impacts of emissions
from on-road vehicles and brick kilns on local air quality for
April 2015. Emissions from vehicles were updated using the
IVE model to reflect the most recent vehicle registration in-
formation and the local vehicle technology and driving con-
ditions in the Kathmandu Valley. We found that PM emis-
sions from the road transport sector in the HTAP_v2.2 inven-
tory are largely underestimated. The IVE-estimated EC emis-
sions are 375 times higher than those estimated in HTAP.
Our brick kiln emissions estimates were created to account
for one of the most important missing sources in the existing
emissions inventories. We found that emissions from brick

kilns contribute 68 % of the total SO2 emissions in the Kath-
mandu Valley in the HTAP_v2.2 inventory.

Using the original HTAP emissions results in large under-
estimations of both surface EC and SO2 in the Kathmandu
Valley. Our revised vehicle emissions significantly reduced
model bias and improved model–observation correlation for
surface EC concentrations. We found that surface EC con-
centrations increased by 50 % on average due to our revised
on-road vehicle emissions estimates. Conversely, brick kiln
emissions contributed approximately 50 % of the modeled
surface SO2 concentrations in the Kathmandu Valley. Al-
though model performance has been enhanced considerably,
by using revised vehicle emissions and by adding newly cre-
ated brick kiln emissions, the model still underestimates the
observed EC by 73 % and SO2 by 87 % at the Bode site dur-
ing the simulation period. The large underestimation at Bode
could be a result of the site’s proximity to large point sources
or assuming average EFs for these point sources, but addi-
tional sources not included in our inventory could also be
important for improving the model performance. More infor-
mation on the production rates of individual brick kilns and
emissions factors for each major type of brick kiln could sig-
nificantly improve the inventory and comparisons. It is im-
portant that the complex topography and meteorology with
limited observational data limit the degree of model evalu-
ation currently possible in the Kathmandu Valley. The con-
centrations of pollutants are highly dependent on the mea-
surement locations and topography of their surroundings and
more observational data at a finer scale within the valley are
essential to better evaluate the local chemical transport mod-
els. Despite the uncertainties, the results here suggest that
emissions from brick kilns are substantial and current esti-
mates of emissions underestimate total emissions by omitting
this source.

Our main objective was to improve the emissions invento-
ries for on-road vehicles and brick kilns and assess the im-
pacts of revised emissions on local air quality. Our results
demonstrate that the existing emissions inventories need sig-
nificant modification for the road transportation sector. Miss-
ing sources in the Kathmandu Valley such as brick kilns are
also important in predicting local air quality. We suggest that
more efforts are needed to improve local emissions infor-
mation by updating emissions estimates from major sources
and developing an emissions inventory including underrep-
resented sources, such as crop residue and garbage burning.
A more comprehensive and accurate emissions inventory al-
lows the local government to identify and define key emis-
sions sources in the Kathmandu Valley. The improved emis-
sions inventory is urgently needed to robustly evaluate the
effectiveness of various future policies on emissions mitiga-
tion in this region.

Code availability. The WRF-Chem model is an open-source, pub-
licly available, and continually improved software. Version 3.5 used
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wrf/users/download/get_source.html (last access: 15 June 2019).
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Data availability. The NCEP GFS data used for this study are
from the Research Data Archive (RDA), which is maintained by
the Computational and Information Systems Laboratory (CISL)
at the National Center for Atmospheric Research (NCAR). The
data are available at https://doi.org/10.5065/D6FB50XD (Na-
tional Centers for Environmental Prediction/National Weather Ser-
vice/NOAA/U.S. Department of Commerce, 1997). The gridded
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