200 research outputs found

    Use of Lagrangian simulations to hindcast the geographical position of propagule release zones in a Mediterranean coastal fish

    Get PDF
    The study of organism dispersal is fundamental for elucidating patterns of connectivity between populations, thus crucial for the design of effective protection and management strategies. This is especially challenging in the case of coastal fish, for which information on egg release zones (i.e. spawning grounds) is often lacking. Here we assessed the putative location of egg release zones of the saddled sea bream (Oblada melanura) along the south-eastern coast of Spain in 2013. To this aim, we hindcasted propagule (egg and larva) dispersal using Lagrangian simulations, fed with species-specific information on early life history traits (ELTs), with two approaches: 1) back-tracking and 2) comparing settler distribution obtained from simulations to the analogous distribution resulting from otolith chemical analysis. Simulations were also used to assess which factors contributed the most to dispersal distances. Back-tracking simulations indicated that both the northern sector of the Murcia region and some traits of the North-African coast were hydrodynamically suitable to generate and drive the supply of larvae recorded along the coast of Murcia in 2013. With the second approach, based on the correlation between simulation outputs and field results (otolith chemical analysis), we found that the oceanographic characteristics of the study area could have determined the pattern of settler distribution recorded with otolith analysis in 2013 and inferred the geographical position of main O. melanura spawning grounds along the coast. Dispersal distance was found to be significantly affected by the geographical position of propagule release zones. The combination of methods used was the first attempt to assess the geographical position of propagule release zones in the Mediterranean Sea for O. melanura, and can represent a valuable approach for elucidating dispersal and connectivity patterns in other coastal species

    Dense CTD survey versus glider fleet sampling: comparing data assimilation performance in a regional ocean model west of Sardinia

    Get PDF
    The REP14-MED sea trial carried out off the west coast of Sardinia in June 2014 provided a rich set of observations from both ship-based conductivity–temperature–depth (CTD) probes and a fleet of underwater gliders. We present the results of several simulations assimilating data either from CTDs or from different subsets of glider data, including up to eight vehicles, in addition to satellite sea level anomalies, surface temperature and Argo profiles. The Western Mediterranean OPerational forcasting system (WMOP) regional ocean model is used with a local multi-model ensemble optimal interpolation scheme to recursively ingest both lower-resolution large-scale and dense local observations over the whole sea trial duration. Results show the capacity of the system to ingest both types of data, leading to improvements in the representation of all assimilated variables. These improvements persist during the 3-day periods separating two analyses. At the same time, the system presents some limitations in properly representing the smaller-scale structures, which are smoothed out by the model error covariances provided by the ensemble. An evaluation of the forecasts using independent measurements from shipborne CTDs and a towed ScanFish deployed at the end of the sea trial shows that the simulations assimilating initial CTD data reduce the error by 39&thinsp;% on average with respect to the simulation without data assimilation. In the glider-data-assimilative experiments, the forecast error is reduced as the number of vehicles increases. The simulation assimilating CTDs outperforms the simulations assimilating data from one to four gliders. A fleet of eight gliders provides similar performance to the 10&thinsp;km spaced CTD initialization survey in these experiments, with an overall 40&thinsp;% model error reduction capacity with respect to the simulation without data assimilation when comparing against independent campaign observations.</p

    Magnetic transport in a straight parabolic channel

    Full text link
    We study a charged two-dimensional particle confined to a straight parabolic-potential channel and exposed to a homogeneous magnetic field under influence of a potential perturbation WW. If WW is bounded and periodic along the channel, a perturbative argument yields the absolute continuity of the bottom of the spectrum. We show it can have any finite number of open gaps provided the confining potential is sufficiently strong. However, if WW depends on the periodic variable only, we prove by Thomas argument that the whole spectrum is absolutely continuous, irrespectively of the size of the perturbation. On the other hand, if WW is small and satisfies a weak localization condition in the the longitudinal direction, we prove by Mourre method that a part of the absolutely continuous spectrum persists

    Time delay for one-dimensional quantum systems with steplike potentials

    Full text link
    This paper concerns time-dependent scattering theory and in particular the concept of time delay for a class of one-dimensional anisotropic quantum systems. These systems are described by a Schr\"{o}dinger Hamiltonian H=−Δ+VH = -\Delta + V with a potential V(x)V(x) converging to different limits VℓV_{\ell} and VrV_{r} as x→−∞x \to -\infty and x→+∞x \to +\infty respectively. Due to the anisotropy they exhibit a two-channel structure. We first establish the existence and properties of the channel wave and scattering operators by using the modern Mourre approach. We then use scattering theory to show the identity of two apparently different representations of time delay. The first one is defined in terms of sojourn times while the second one is given by the Eisenbud-Wigner operator. The identity of these representations is well known for systems where V(x)V(x) vanishes as ∣x∣→∞|x| \to \infty (Vℓ=VrV_\ell = V_r). We show that it remains true in the anisotropic case Vℓ=ÌžVrV_\ell \not = V_r, i.e. we prove the existence of the time-dependent representation of time delay and its equality with the time-independent Eisenbud-Wigner representation. Finally we use this identity to give a time-dependent interpretation of the Eisenbud-Wigner expression which is commonly used for time delay in the literature.Comment: 48 pages, 1 figur

    Genotyping of the G1138A mutation of the FGFR3 gene in patients with achondroplasia using high-resolution melting analysis

    Get PDF
    [[abstract]]Objectives: The fibroblast growth factor receptor 3 gene (FGFR3) plays a critical role in cartilage growth-plate differentiation and bony development. It has been shown that 97% of patients with achondroplasia have a G to A transition mutation at position 1138 (c.1138 G>A) of codon 380 of the FGFR3 gene. Design and methods: Exon 8 of the FGFR3 gene was analyzed in 40 patients with achondroplasia, as well as in 50 control individuals for the presence of the c.1138G>A variant using melting curve analysis with a high-resolution melting instrument (HR-1). Results: The high-resolution melting curve analysis successfully genotyped the c.1138G>A mutation in exon 8 of the FGFR3 gene in all 40 patients with achondroplasia without the need of further assays. The technique had a sensitivity and specificity of 100%. Conclusion: High-resolution melting analysis is a simple, rapid, and sensitive one tube assay for genotyping the FGFR3 gene. The technique is a low cost high-throughput FGFR3 screening assay. (c) 2007 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved

    High-resolution observations in the western Mediterranean Sea: the REP14-MED experiment

    Get PDF
    The observational part of the REP14-MED experiment was conducted in June 2014 in the Sardo-Balearic Basin west of Sardinia (western Mediterranean Sea). Two research vessels collected high-resolution oceanographic data by means of hydrographic casts, towed systems, and underway measurements. In addition, a vast amount of data was provided by a fleet of 11 ocean gliders, time series were available from moored instruments, and information on Lagrangian flow patterns was obtained from surface drifters and one profiling float. The spatial resolution of the observations encompasses a spectrum over 4 orders of magnitude from (10<sup>1</sup> m) to (10<sup>5</sup> m), and the time series from the moored instruments cover a spectral range of 5 orders from (10<sup>1</sup> s) to (10<sup>6</sup> s). The objective of this article is to provide an overview of the huge data set which has been utilised by various studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads for gliders

    Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa

    Get PDF
    There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6.Social Science and Humanities Research Council of Canada; NORAM; American-Scandinavian Foundation; Fundacao para a Ciencia e Tecnologia [SFRH/BPD/73598/2010]; IGERT [DGE 0801634]; Hyde Family Foundations; Institute of Human Origins; National Science Foundation [BCS-9912465, BCS-0130713, BCS-0524087, BCS-1138073]; John Templeton Foundation to the Institute of Human Origins at Arizona State Universit

    Tracking a mass mortality outbreak of pen shell Pinna nobilis populations: A collaborative effort of scientists and citizens

    Get PDF
    A mass mortality event is devastating the populations of the endemic bivalve Pinna nobilis in the Mediterranean Sea from early autumn 2016. A newly described Haplosporidian endoparasite (Haplosporidium pinnae) is the most probable cause of this ecological catastrophe placing one of the largest bivalves of the world on the brink of extinction. As a pivotal step towards Pinna nobilis conservation, this contribution combines scientists and citizens' data to address the fast- and vast-dispersion and prevalence outbreaks of the pathogen. Therefore, the potential role of currents on parasite expansion was addressed by means of drift simulations of virtual particles in a high-resolution regional currents model. A generalized additive model was implemented to test if environmental factors could modulate the infection of Pinna nobilis populations. The results strongly suggest that the parasite has probably dispersed regionally by surface currents, and that the disease expression seems to be closely related to temperatures above 13.5 degrees C and to a salinity range between 36.5-39.7 psu. The most likely spread of the disease along the Mediterranean basin associated with scattered survival spots and very few survivors (potentially resistant individuals), point to a challenging scenario for conservation of the emblematic Pinna nobilis, which will require fast and strategic management measures and should make use of the essential role citizen science projects can play

    Coastal high-frequency radars in the Mediterranean - Part 1: Status of operations and a framework for future development

    Get PDF
    Due to the semi-enclosed nature of the Mediterranean Sea, natural disasters and anthropogenic activities impose stronger pressures on its coastal ecosystems than in any other sea of the world. With the aim of responding adequately to science priorities and societal challenges, littoral waters must be effectively monitored with high-frequency radar (HFR) systems. This land-based remote sensing technology can provide, in near-real time, fine-resolution maps of the surface circulation over broad coastal areas, along with reliable directional wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network and the future roadmap for orchestrated actions. Ongoing collaborative efforts and recent progress of this regional alliance are not only described but also connected with other European initiatives and global frameworks, highlighting the advantages of this cost-effective instrument for the multi-parameter monitoring of the sea state. Coordinated endeavors between HFR operators from different multi-disciplinary institutions are mandatory to reach a mature stage at both national and regional levels, striving to do the following: (i) harmonize deployment and maintenance practices; (ii) standardize data, metadata, and quality control procedures; (iii) centralize data management, visualization, and access platforms; and (iv) develop practical applications of societal benefit that can be used for strategic planning and informed decision-making in the Mediterranean marine environment. Such fit-for-purpose applications can serve for search and rescue operations, safe vessel navigation, tracking of marine pollutants, the monitoring of extreme events, the investigation of transport processes, and the connectivity between offshore waters and coastal ecosystems. Finally, future prospects within the Mediterranean framework are discussed along with a wealth of socioeconomic, technical, and scientific challenges to be faced during the implementation of this integrated HFR regional network

    Active Singularities for Multivehicle Motion Planning in an N-Vortex System

    Full text link
    Abstract. This paper presents a path-planning paradigm for distributed control of multiple sensor platforms in a geophysical flow well-approximated by a point-vortex model. We utilize Hamiltonian dynamics to generate control vector fields for vehicle motion in N-vortex flows using the con-cept of an active singularity whose strength is a tunable control input. We introduce active singularities that are virtual point vortices possibly collocated with virtual point sources or sinks. We provide a principled method to stabilize relative equilibria of these virtual vortices in the presence of the actual point vortices, which represent the underlying geo-physical flow. We illustrate how these relative equilibria may be useful for vehicle path planning and sampling in a geophysical flow. Preliminary results presented here are based on an adaptive control design
    • 

    corecore