217 research outputs found

    Automatic Positional Accuracy Assessment of Imagery Segmentation Processes: A Case Study

    Get PDF
    There are many studies related to Imagery Segmentation (IS) in the field of Geographic Information (GI). However, none of them address the assessment of IS results from a positional perspective. In a field in which the positional aspect is critical, it seems reasonable to think that the quality associated with this aspect must be controlled. This paper presents an automatic positional accuracy assessment (PAA) method for assessing this quality component of the regions obtained by means of the application of a textural segmentation algorithm to a Very High Resolution (VHR) aerial image. This method is based on the comparison between the ideal segmentation and the computed segmentation by counting their differences. Therefore, it has the same conceptual principles as the automatic procedures used in the evaluation of the GI's positional accuracy. As in any PAA method, there are two key aspects related to the sample that were addressed: (i) its size-specifically, its influence on the uncertainty of the estimated accuracy values-and (ii) its categorization. Although the results obtained must be taken with caution, they made it clear that automatic PAA procedures, which are mainly applied to carry out the positional quality assessment of cartography, are valid for assessing the positional accuracy reached using other types of processes. Such is the case of the IS process presented in this study

    Meropenem heteroresistance in clinical isolates of OXA-48–producing Klebsiella pneumoniae

    Get PDF
    OXA-48–producing Klebsiella pneumoniae isolates often show growth of colonies within inhibition zones in carbapenem diffusion assays. The nature of these colonies was investigated in a series of clinical isolates of OXA-48–producing K. pneumoniae obtained in the context of a hospital outbreak, and they were found to be persistent colonies that reproduced again the same phenotype when they were collected and tested in diffusion assays again. The frequency of mutations conferring resistance to meropenem (8 µg/mL) was determined for the same isolates. The average mutation frequency was 5.47·10-6 (range: 2.59·10-8–5.87·10-5), and the analysis of several resistant mutants showed that all of them had mutations in the ompK36 porin gene. Heteroresistance was investigated using population analysis profiling. The profiles were compatible with mutation frequency assays, and all the colonies analyzed were resistant mutants. In OXA-48–producing K. pneumoniae, the growth of persisters seems to be specific of diffusion assays

    Proof-of-concept trial of the combination of lactitol with Bifidobacterium bifidum and Lactobacillus acidophilus for the eradication of intestinal OXA-48-producing Enterobacteriaceae

    Get PDF
    Background: The major reservoir of carbapenemase-producing Enterobacteriaceae (CPE) is the gastrointestinal tract of colonized patients. Colonization is silent and may last for months, but the risk of infection by CPE in colonized patients is significant. Methods: Eight long-Term intestinal carriers of OXA-48-producing Enterobacteriaceae (OXA-PE) were treated during 3 weeks with daily oral lactitol (Emportal®), Bifidobacterium bifidum and Lactobacillus acidophilus (Infloran®). Weekly stool samples were collected during the treatment period and 6 weeks later. The presence of OXA-PE was investigated by microbiological cultures and qPCR. Results: At the end of treatment (EoT, secondary endpoint 1), four of the subjects had negative OXA-PE cultures. Three weeks later (secondary endpoint 2), six subjects were negative. Six weeks after the EoT (primary endpoint), three subjects had negative OXA-PE cultures. The relative intestinal load of OXA-PE decreased in all the patients during treatment. Conclusions: The combination of prebiotics and probiotics was well tolerated. A rapid reduction on the OXA-PE intestinal loads was observed. At the EoT, decolonization was achieved in three patients

    Specific interaction of methionine adenosyltransferase with free radicals

    Get PDF
    Although free radicals have been traditionally implicated in cell injury, and associated to pathophysiological processes, recent data implicate them in cell signaling events. Free radicals are naturally occurring oxygen-,nitrogen-and sulfur-derived species with an unpaired electron, such as superoxide, hydroxyl radical or nitric oxide. In order to assess the role of free radicals in cell signaling, we have studies the modulator effect of oxygen and nitrogen active species on liver methionine adenosyltransferase (MAT), a key metabolic enzyme. The presence of 10 cysteine residues per subunit, makes liver MAT a sensitive target for oxidation/nitrosylation. Here we show that purified MAT from rat liver is nitrosylated and oxidized in vitro. Incubation with H202 or the NO donor S-nitrosylated GSH (GSNO), diminish MAT activity in a dose-and time-dependent manner. Furthermore, the inactivation derived from both oxidation and nitrosylation, was reverted by GSH. MAT inactivation originates on the specific and covalent modification of the sulphydryl group of cysteine residue 121. We also studied how free radicals modulate MAT activity in vivo. It was previously shown that MAT activity is strongly dependent on cellular GSH levels. Generation of oxygen and nitrogen active species in rats by injection of LPS, induced a decrease of liver MAT activity. This effect might derive from nitrosylation and/or oxidation of the enzyme. Modulation of liver MAT by NO is further supported by the inactivation of this enzyme observed in experimental models in which NO is produced; such as the administration of NO donors to rats and in hepatocytes cultured in hypoxia, a condition that induces the expression of the inducible nitric oxide synthase (iNOS). Oxidation also controls liver MAT activity in a cell environment as shown in CHO cells stably transfected with rat liver MAT cDNA upon addition of H2O2 to the culture medium. This effect depends upon the generation of the hydroxyl radical. On the basis of the metabolic implications of liver MAT, together with the structural features accounting for the sensitivity of this enzyme to active oxygen and nitrogen species, we propose that modulation of MAT by these agents could be a mechanism to regulate the consumption of ATP in the liver, and thus preserve cellular viability under different stress conditions

    mcr-Colistin resistance genes mobilized by IncX4, IncHI2, and IncI2 plasmids in Escherichia coli of pigs and white stork in Spain

    Get PDF
    Colistin has become the last-line antimicrobial for the treatment of multidrug resistant (MDR) Enterobacterales in human medicine. To date, several colistin resistance genes have been described. Of them mcr-1 is disseminated worldwide in Escherichia coli of human and animal origin. The aim of this study was to characterize mcr-mediated resistance plasmids from E. coli of animal origin in Spain. From our strain collection, 70 E. coli of pig origin collected between 2005 and 2014 (10 per year, except for years 2009-2010-2013) were randomly selected and screened for the presence of mcr-genes. Additionally, 20 E. coli isolated in 2011 from white storks (Ciconia ciconia) from the same urban household waste landfill associated colony were also included. Whole genome sequencing of mcr-positive isolates was carried out on a MiSeq (Illumina). Hybrid whole genome sequencing strategy combining nanopore and Illumina technologies were performed in a selection of isolates to close the genomes and plasmids and identify the presence of antimicrobial resistance genes. Minimum inhibitory concentration (MIC) was used to assess the susceptibility to colistin. Mating experiments were carried out to evaluate transferability of the mcr-genes. A total of 19 mcr-1 and one mcr-4 positive isolates were detected, 15 from pigs distributed during the study period, and five from storks collected in 2011. No other mcr-variants were found. The MICs for colistin ranged between 4 and >4 mg/L. High diversity of STs were detected among the mcr-1 positive E. coli isolates, with only ST-10 shared between pigs and white storks. Except for one isolate, all were genotypic and phenotypically MDR, and five of them also harbored cephalosporin resistance genes (bla CTX-M- 14, bla SHV- 12, and three bla CMY- 2). mcr-1 genes were mobilizable by conjugation, associated with IncX4, IncHI2, and IncI2 plasmids. In our study, mcr-1 genes have been circulating in pig farms since 2005 harbored by a variety of E. coli clones. Its persistence may be driven by co-selection since plasmids containing mcr-1 also exhibit resistance to multiple drugs used in veterinary medicine. Furthermore, this is the first report of the presence of mcr-1 gene in isolates from white storks in Spain. This finding highlights the potential importance of wildlife that forage at urban household waste landfills in the transmission and spread of colistin resistance genes.info:eu-repo/semantics/publishedVersio

    mcr -Colistin Resistance Genes Mobilized by IncX4, IncHI2, and IncI2 Plasmids in Escherichia coli of Pigs and White Stork in Spain

    Get PDF
    Colistin has become the last-line antimicrobial for the treatment of multidrug resistant (MDR) Enterobacterales in human medicine. To date, several colistin resistance genes have been described. Of them mcr -1 is disseminated worldwide in Escherichia coli of human and animal origin. The aim of this study was to characterize mcr -mediated resistance plasmids from E. coli of animal origin in Spain. From our strain collection, 70 E. coli of pig origin collected between 2005 and 2014 (10 per year, except for years 2009-2010-2013) were randomly selected and screened for the presence of mcr -genes. Additionally, 20 E. coli isolated in 2011 from white storks (Ciconia ciconia) from the same urban household waste landfill associated colony were also included. Whole genome sequencing of mcr -positive isolates was carried out on a MiSeq (Illumina). Hybrid whole genome sequencing strategy combining nanopore and Illumina technologies were performed in a selection of isolates to close the genomes and plasmids and identify the presence of antimicrobial resistance genes. Minimum inhibitory concentration (MIC) was used to assess the susceptibility to colistin. Mating experiments were carried out to evaluate transferability of the mcr -genes. A total of 19 mcr -1 and one mcr -4 positive isolates were detected, 15 from pigs distributed during the study period, and five from storks collected in 2011. No other mcr -variants were found. The MICs for colistin ranged between 4 and >4 mg/L. High diversity of STs were detected among the mcr-1 positive E. coli isolates, with only ST-10 shared between pigs and white storks. Except for one isolate, all were genotypic and phenotypically MDR, and five of them also harbored cephalosporin resistance genes (bla , bla , and three bla ). mcr -1 genes were mobilizable by conjugation, associated with IncX4, IncHI2, and IncI2 plasmids. In our study, mcr -1 genes have been circulating in pig farms since 2005 harbored by a variety of E. coli clones. Its persistence may be driven by co-selection since plasmids containing mcr -1 also exhibit resistance to multiple drugs used in veterinary medicine. Furthermore, this is the first report of the presence of mcr -1 gene in isolates from white storks in Spain. This finding highlights the potential importance of wildlife that forage at urban household waste landfills in the transmission and spread of colistin resistance genes

    A cohort of patients with COVID-19 in a major teaching hospital in Europe

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMArtículo escrito en nombre del COVID@HULP Working GroupSince the confirmation of the first patient infected with SARS-CoV-2 in Spain in January 2020, the epidemic has grown rapidly, with the greatest impact on the region of Madrid. This article describes the first 2226 adult patients with COVID-19, consecutively admitted to La Paz University Hospital in Madrid. Methods: Our cohort included all patients consecutively hospitalized who had a final outcome (death or discharge) in a 1286-bed hospital of Madrid (Spain) from 25 February (first case admitted) to 19 April 2020. The data were manually entered into an electronic case report form, which was monitored prior to the analysis. Results: We consecutively included 2226 adult patients admitted to the hospital who either died (460) or were discharged (1766). The patients’ median age was 61 years, and 51.8% were women. The most common comorbidity was arterial hypertension (41.3%), and the most common symptom on admission was fever (71.2%). The median time from disease onset to hospital admission was 6 days. The overall mortality was 20.7% and was higher in men (26.6% vs. 15.1%). Seventy-five patients with a final outcome were transferred to the intensive care unit (ICU) (3.4%). Most patients admitted to the ICU were men, and the median age was 64 years. Baseline laboratory values on admission were consistent with an impaired immune-inflammatory profile. Conclusions: We provide a description of the first large cohort of hospitalized patients with COVID-19 in Europe. Advanced age, male sex, the presence of comorbidities and abnormal laboratory values were more common among the patients with fatal outcome

    Kinetic Modeling of the Assembly, Dynamic Steady State, and Contraction of the FtsZ Ring in Prokaryotic Cytokinesis

    Get PDF
    Cytokinesis in prokaryotes involves the assembly of a polymeric ring composed of FtsZ protein monomeric units. The Z ring forms at the division plane and is attached to the membrane. After assembly, it maintains a stable yet dynamic steady state. Once induced, the ring contracts and the membrane constricts. In this work, we present a computational deterministic biochemical model exhibiting this behavior. The model is based on biochemical features of FtsZ known from in vitro studies, and it quantitatively reproduces relevant in vitro data. An essential part of the model is a consideration of interfacial reactions involving the cytosol volume, where monomeric FtsZ is dispersed, and the membrane surface in the cell's mid-zone where the ring is assembled. This approach allows the same chemical model to simulate either in vitro or in vivo conditions by adjusting only two geometrical parameters. The model includes minimal reactions, components, and assumptions, yet is able to reproduce sought-after in vivo behavior, including the rapid assembly of the ring via FtsZ-polymerization, the formation of a dynamic steady state in which GTP hydrolysis leads to the exchange of monomeric subunits between cytoplasm and the ring, and finally the induced contraction of the ring. The model gives a quantitative estimate for coupling between the rate of GTP hydrolysis and of FtsZ subunit turnover between the assembled ring and the cytoplasmic pool as observed. Membrane constriction is chemically driven by the strong tendency of GTP-bound FtsZ to self-assembly. The model suggests a possible mechanism of membrane contraction without a motor protein. The portion of the free energy of GTP hydrolysis released in cyclization is indirectly used in this energetically unfavorable process. The model provides a limit to the mechanistic complexity required to mimic ring behavior, and it highlights the importance of parallel in vitro and in vivo modeling

    Isolation, Characterization and Lipid-Binding Properties of the Recalcitrant FtsA Division Protein from Escherichia coli

    Get PDF
    We have obtained milligram amounts of highly pure Escherichia coli division protein FtsA from inclusion bodies with an optimized purification method that, by overcoming the reluctance of FtsA to be purified, surmounts a bottleneck for the analysis of the molecular basis of FtsA function. Purified FtsA is folded, mostly monomeric and interacts with lipids. The apparent affinity of FtsA binding to the inner membrane is ten-fold higher than to phospholipids, suggesting that inner membrane proteins could modulate FtsA-membrane interactions. Binding of FtsA to lipids and membranes is insensitive to ionic strength, indicating that a net contribution of hydrophobic interactions is involved in the association of FtsA to lipid/membrane structures

    Epilepsy and neuropsychiatric comorbidities in mice carrying a recurrent Dravet syndrome SCN1A missense mutation

    Get PDF
    Dravet Syndrome (DS) is an encephalopathy with epilepsy associated with multiple neuropsychiatric comorbidities. In up to 90% of cases, it is caused by functional happloinsufficiency of the SCN1A gene, which encodes the alpha subunit of a voltage-dependent sodium channel (Nav1.1). Preclinical development of new targeted therapies requires accessible animal models which recapitulate the disease at the genetic and clinical levels. Here we describe that a C57BL/6 J knock-in mouse strain carrying a heterozygous, clinically relevant SCN1A mutation (A1783V) presents a full spectrum of DS manifestations. This includes 70% mortality rate during the first 8 weeks of age, reduced threshold for heat-induced seizures (4.7 °C lower compared with control littermates), cognitive impairment, motor disturbances, anxiety, hyperactive behavior and defects in the interaction with the environment. In contrast, sociability was relatively preserved. Electrophysiological studies showed spontaneous interictal epileptiform discharges, which increased in a temperature-dependent manner. Seizures were multifocal, with different origins within and across individuals. They showed intra/inter-hemispheric propagation and often resulted in generalized tonic-clonic seizures. 18F-labelled flourodeoxyglucose positron emission tomography (FDG-PET) revealed a global increase in glucose uptake in the brain of Scn1aWT/A1783V mice. We conclude that the Scn1aWT/A1783V model is a robust research platform for the evaluation of new therapies against DS
    • …
    corecore