
Ramos‑Ramos et al. Gut Pathog           (2020) 12:15  
https://doi.org/10.1186/s13099‑020‑00354‑9

RESEARCH

Proof‑of‑concept trial of the combination 
of lactitol with Bifidobacterium bifidum 
and Lactobacillus acidophilus for the eradication 
of intestinal OXA‑48‑producing 
Enterobacteriaceae
Juan Carlos Ramos‑Ramos1, Fernando Lázaro‑Perona2, José Ramón Arribas1, Julio García‑Rodríguez2, 
Jesús Mingorance2* , Guillermo Ruiz‑Carrascoso2, Alberto M. Borobia3, José Ramón Paño‑Pardo1,6,7, 
Rafael Herruzo4 and Francisco Arnalich5

Abstract 

Background: The major reservoir of carbapenemase‑producing Enterobacteriaceae (CPE) is the gastrointestinal tract 
of colonized patients. Colonization is silent and may last for months, but the risk of infection by CPE in colonized 
patients is significant.

Methods: Eight long‑term intestinal carriers of OXA‑48‑producing Enterobacteriaceae (OXA‑PE) were treated during 
3 weeks with daily oral lactitol  (Emportal®), Bifidobacterium bifidum and Lactobacillus acidophilus  (Infloran®). Weekly 
stool samples were collected during the treatment period and 6 weeks later. The presence of OXA‑PE was investi‑
gated by microbiological cultures and qPCR.

Results: At the end of treatment (EoT, secondary endpoint 1), four of the subjects had negative OXA‑PE cultures. 
Three weeks later (secondary endpoint 2), six subjects were negative. Six weeks after the EoT (primary endpoint), three 
subjects had negative OXA‑PE cultures. The relative intestinal load of OXA‑PE decreased in all the patients during 
treatment.

Conclusions: The combination of prebiotics and probiotics was well tolerated. A rapid reduction on the OXA‑PE 
intestinal loads was observed. At the EoT, decolonization was achieved in three patients.

Clinical Trials Registration: NCT02307383. EudraCT Number: 2014‑000449‑65.
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Introduction
OXA-48-producing Enterobacteriaceae (OXA-PE) are 
part of the global epidemic of carbapenemase-producing 
Enterobacteriaceae (CPE), a problem that has spread to 
many hospitals around the world. In December 2010, an 
outbreak of OXA-48-producing Klebsiella pneumoniae 
was identified in our hospital, and since then we have 
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faced an endemic situation that has involved hundreds of 
patients [1].

The major reservoir of CPE is the gastrointestinal tract 
of the colonized patients. This might complicate the con-
trol of outbreaks since colonization may be silent and 
may last for months [2, 3]. The identification and isola-
tion of colonized patients is one of the key strategies for 
the control of the CPE transmission.

One supportive measure for the control of coloniza-
tion is selective intestinal decontamination of CPE by 
oral non-absorbable antibiotics active against aerobic 
gram-negative rods (generally colistin and aminoglyco-
sides). This measure is used as a prophylaxis to prevent 
intestinal translocations in neutropenic patients, and also 
for prevention of pneumonia associated with mechanical 
ventilation in intensive care units. Using these antibiot-
ics might be accompanied by a certain risk of promoting 
antibiotic resistance, but several studies have found it to 
be non-significant [4, 5].

Another strategy recently proposed for the control of 
colonization by CPE is the use of probiotics to displace 
them. Probiotics are live microorganisms (Lactobacillus 
acidophilus, Bifidobacterium bifidum) that may induce 
beneficial changes in the gut microbiome and modulate 
the immunologic status of the patient [6]. Probiotics may 
be co-administered with prebiotics, non-absorbable com-
pounds (such as lactulose and lactitol) that are metabo-
lized by the gut microbiota and selectively favor the 
proliferation of microorganisms such as Bifidobacterium 
spp. and Lactobacillus spp. Lactitol acts through decreas-
ing the intestinal pH to favor the growth of acidophilic 
microbiota while inhibiting the growth of Enterobacte-
riaceae [7].

Some studies have reported beneficial effects of using 
probiotics for the eradication of pathogenic bacteria 
[8], though others found no significant effects [9–11]. 
No studies exist regarding the use of probiotics for the 
decolonization of CPE in chronic and long-term carriers. 

Therefore, the objective of this work was to evaluate the 
safety and efficacy of the co-administration of prebiotics 
(lactitol) and probiotics (Lactobacillus acidophilus and 
Bifidobacterium bifidum) in reducing the intestinal colo-
nization of OXA-PE in long-term carriers with normal 
nutritional and immunological statuses.

Results
Study design
We designed a single arm, open label, pilot clinical trial 
with long-term carriers of OXA-PE to evaluate the effi-
cacy of the oral administration of probiotics  (Infloran®, 
Bifidobacterium bifidum and Lactobacillus acidophilus, 
2 × 109  CFU tid–po) and prebiotics  (Emportal®, lactitol 
10  g tid) during 3  weeks, in order to evaluate intestinal 
decolonization. The trial was registered with EudraCT 
(Number: 2014-000449-65) and ClinicalTrials.gov (Iden-
tifier: NCT02307383). Inclusion criteria were subjects 
between 18 and 75 years old that had been colonized by 
OXA-PE during a previous hospitalization, continued 
being colonized for more than 6 months and had a posi-
tive screening of OXA-PE upon recruitment (exclusion 
criteria are detailed in section “Methods”).

The hospital records for 918 patients that had been 
colonized by OXA-48-producing K. pneumoniae in the 
period between 2010 and 2014 were reviewed and 22 
subjects were found to meet all the inclusion and exclu-
sion criteria. Eight of them had a positive initial screen-
ing and agreed to participate in the study.

The subjects were given the treatment for 3 weeks, and 
monitoring was performed through weekly visits during 
the treatment period, and continued for another 6 weeks 
afterwards (Fig. 1). During these visits, side effects were 
monitored and the stool samples analyzed in this study 
were taken. No adverse events were reported, including 
hepatic, renal, blood count and electrolytic disturbances. 
The tolerability of the treatment was good, and the only 
side effects related with the use of lactitol were flatulency 

Fig. 1 Timeline of treatment and sample collection during the study. The numbers represent weeks since the baseline visit (week 0). EoT: End of 
treatment. Primary endpoint: sustained gastrointestinal eradication of OXA‑PE at week 6 after the EoT. Secondary endpoints: decolonization of 
OXA‑PE at the EoT and 3 weeks after the EoT
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in 4/8 (50%) of the subjects and mild diarrhea that dis-
appeared spontaneously without stopping lactitol in 1/8 
(12.5%) of the subjects. All side effect symptoms disap-
peared after the withdrawal of lactitol.

Treatment outcomes
Six weeks after the EoT (week 9, primary endpoint) three 
subjects (37.5%) had negative cultures of OXA-PE, with 
two of them having had negative cultures in the last three 
visits of the study (weeks 5, 6 and 9). Regarding the sec-
ondary end points, four of the subjects (50%) had nega-
tive cultures for OXA-PE at the EoT (week 3), and that 
number increased to six (75%) 3  weeks after the EoT 
(week 6).

Overall, six of the subjects presented intermittent 
negative cultures during the whole study. In one of the 
subjects the cultures for OXA-PE were positive in all the 
samples, and in another subject no OXA-PE was recov-
ered throughout the study.

Monitoring of the relative load of OXA‑PE during treatment
The relative abundance of OXA-PE could be determined 
in six subjects. The remaining two had negative qPCR 
for blaOXA-48 in all the samples, despite having positive 
cultures. In the six subjects with positive qPCR results, 
the baseline logarithm of the fraction of OXA-PE relative 
to the total fecal bacteria ranged from − 1.21 to − 4.47, 
which is 6.15% and 0.003% of the total bacterial popula-
tion, respectively (Fig. 2). After 2 weeks of oral treatment, 
the OXA-PE fraction showed a reduction of more than 
one logarithm in all cases. The relative loads for the three 
subjects that had a baseline load of OXA-PE below − 3 
reached undetectable levels, while the reduction ranged 
between 1.13 and 2.55 logarithms in the other three sub-
jects. In all of these subjects, the samples obtained after 
the end of treatment showed transitory increases of the 
relative OXA-PE loads, but the relative loads at the end 
of the study were varied: in two subjects, OXA-PE was no 
longer detectable by qPCR, one subject had a reduction 
of three logarithms, two subjects almost recovered the 
baseline levels, and the last subject had an increase in the 
relative abundance of OXA-PE (Fig. 2).

Discussion
In this study, we have tested the efficacy of 3 weeks of 
oral treatment with a combination of lactitol and probi-
otics (Bifidobacterium bifidum and Lactobacillus acido-
philus) for intestinal decolonization of OXA-PE in eight 
healthy volunteers that were long-term carriers. The 
period of treatment was set for 3 weeks based on pre-
vious experience that suggested a minimum of 1 week 
of treatment in order to be able to evaluate its efficacy. 
Safety and tolerance throughout the study’s period were 

good and treatment costs were moderate (on the order 
of 50€). Apparent decolonization of OXA-PE six weeks 
after the EoT (week 9, primary endpoint) was achieved 
in three subjects (37.5%). The relative intestinal load of 
OXA-PE consistently decreased in all six tested sub-
jects during treatment, in three of them below detect-
able levels. The fact that in all of them increased again 
after the EoT shows that colonization may persist with 
loads below the limits of detection and suggests that 
longer treatments might be needed to effectively reach 
decolonization. Six weeks after the EoT, the OXA-PE 
loads in five out of the six subjects were reduced with 
respect to their initial values. The decolonization rate 
obtained in our study, without using antibiotics, was 
similar to the values reported at 1 or 3 months of treat-
ment in several studies with non-absorbable antibiotic 
decolonization regimes (25%) [12]. Similar results have 
been obtained with fecal microbiome transplantation 
(FMT) without antibiotics [13–15], though the FMT 
protocols need further testing and standardization for 
CPE eradication [16, 17].

It has been shown that CPE are spontaneously cleared 
from the intestine after some time [18], and indeed, 14 
out of the 22 candidates that met the inclusion and exclu-
sion criteria of our study had already become negative 
before the onset of the study. The time since discharge 
was longer in these 14 subjects than in the 8 positive sub-
jects [3], suggesting that spontaneous clearance would 
eventually occur in these subjects as well. In the positive 
subjects, the original hospital-acquired strains have been 
lost, and the OXA-48 plasmid was maintained in endog-
enous, non-multi-resistant strains of K. pneumoniae, 
Klebsiella oxytoca or Escherichia coli [3]. The selection of 
long-term carriers was intended to reduce the probabil-
ity of spontaneous decolonization during the treatment 
period. Therefore, the drastic reduction of the OXA-PE 
load in all of the subjects during the first 2 weeks of treat-
ment suggests that it was an effect of the treatment. Nev-
ertheless, a placebo control could not be included in this 
study due to the small sample size of the subjects.

The importance of our results lies in the fact that 
higher loads of CPE are associated with increased con-
tamination of the environment surrounding the colo-
nized patients [19] and a higher risk of spread to other 
wards and patients. Therefore, decreasing the intestinal 
loads of OXA-PE might be an effective way to reduce the 
risk of cross-transmission in wards harboring colonized 
patients. Moreover, the decrease of the OXA-PE loads 
below the detection limits can also reduce the risk of 
developing an infections during hospitalization [20–22]. 
This could be useful in  situations where programmed 
surgical procedures are to be performed and for manag-
ing critically ill patients, especially since the decrease of 
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the OXA-PE loads after the onset of treatment was fast 
and maintained throughout the treatment.

One of the weaknesses of our study is the small size of 
the study group that is not representative of the entire 
population of OXA-PE carriers. This was the result of 
the strict exclusion criteria that were put in place in 
order to avoid biases related to concurrent treatments 

or morbidities. Nevertheless, our results show that the 
combined use of probiotics and prebiotics has a rapid 
impact on the intestinal load of OXA-PE with minimal 
side effects. In line with recently published EUCAST 
guidelines [23], this strategy should be further explored 
among selected hospitalized patient groups who might 
benefit from a decrease in the intestinal OXA-PE load.

Fig. 2 Evolution of the relative intestinal load of OXA‑PE during the study. The horizontal axis shows weeks since the beginning of treatment, 
starting at the baseline visit. The darkened area highlights the treatment period. The discontinuous line represents the lapse of time between the 
samples obtained at the third and sixth weeks after EoT
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Conclusions
The combination of prebiotics and probiotics was well 
tolerated and a rapid reduction on the OXA-PE intesti-
nal loads was observed during the treatment. At the EoT 
apparent decolonization was achieved in three out of 
eight patients.

Methods
Subject recruitment
Eligible subjects were adults between 18 and 75 years of 
age, of both genders, that had been colonized by OXA-
PE during hospitalization, maintained the colonization 
for more than 6 months and had a positive screening of 
OXA-PE upon recruitment. They were recruited by a 
phone call and a personal interview. The exclusion cri-
teria were: hospitalization due to acute pathologies, sys-
temic antibiotic or glucocorticoid treatments during 
the previous month, diarrhea 1  month before initiating 
the treatment, allergy or intolerance to lactitol, lactu-
lose or probiotics, electrolytic alterations  (K+< 3 mEq/L, 
 Mg++< 1.8  mEq/L,  Ca++< 8  mg/dL), neutropenia 
(< 100 × 103/µL), chemotherapy or immunosuppres-
sive treatment, liver dysfunction (ASAT/ALAT > 5 times 
the upper limit, AP > 3 times the upper limit, or bilirru-
bin > 2  mg/dl), chronic renal failure (GFR < 30  ml/min), 
poorly controlled diabetes (HbA1c > 8 mmol/mol), endo-
vascular prosthesis and severe valvulopathy [3].

The study was conducted in accordance with the Dec-
laration of Helsinki. It was approved by the Ethics Com-
mittee of Hospital Universitario La Paz on May 8th, 2014, 
with code number: 4131 and EudraCT number: 2014-
000449-65, and by the Spanish Drugs Agency, AEMPS, 
on July 7th, 2014. All subjects received written and spo-
ken information about the study during their interviews 
and were informed of the opportunity to participate in 
the study and ability to withdraw at any time without 
penalties. Signed informed consent was obtained from all 
the study’s subjects.

Primary and secondary endpoints
The primary endpoint was the sustained gastrointesti-
nal (GI) eradication of OXA-PE 6 weeks after the end of 
treatment (EoT). The secondary endpoints were the GI 
decolonization of OXA-PE at the EoT and 3 weeks after 
the EoT.

Study procedures
Visits were performed once a week during the first 
6 weeks (3 weeks of intervention and 3 weeks of follow-
up period), and a final visit was performed at week 9 
(6  weeks after the end of the treatment). A rectal swab 
was taken for the initial screening during the first visit, 

and stool samples were obtained throughout the follow-
ing visits. If the initial screening was positive for OXA-
PE, the subject was included in the study and a second 
visit was planned where the treatment begun. Blood tests 
were performed at the initial screening and the EoT to 
analyze hepatic and renal functions, blood counts and 
electrolytic disturbances. Safety and tolerability were 
evaluated every week since the initiation of treatment 
through a medical visit and physical examination.

The efficacy of the intervention was primarily evaluated 
6 weeks after the EoT (sustained response) and second-
arily at the EoT and 3 weeks after the EoT. The effect of 
the treatment on intestinal colonization by OXA-PE was 
monitored during the treatment period and the three 
following weeks using the stool samples received during 
every visit.

OXA‑PE identification
Rectal swabs were inoculated on OXA-PE selective agar 
media (chromID™ OXA-48, bioMérieux), and tryptic 
soy broth containing an ertapenem disk (1  µg/ml), and 
incubated for 18 h at 37  °C. After incubation, the broth 
was plated on the same agar selective medium and incu-
bated another 18  h at 37  °C. Stool samples were pro-
cessed in the same way, with the exception that before 
plating, a small portion of stool samples (around 0.1  g) 
was suspended in 0.5  ml of 0.9% saline that was used 
to inoculate the media. Isolates were identified using 
MALDI  Biotyper® (Bruker Daltonics) and real time PCR 
(OXVIKP, Progenie  Molecular®) was used to confirm the 
presence of the blaOXA-48 gene.

Molecular methods
For DNA extraction, rectal swabs or 0.1 g of stool sam-
ples were suspended in 1  ml of saline solution (0.9% 
Sodium Chloride solution, Fresenius Kabi) and lysed 
by heating at 95  °C during 20  min. Samples were then 
centrifuged 1 min at 12,000 rpm to eliminate solid resi-
dues and DNA in the supernatant was extracted using 
the automated  MagPurix® system (Zinexts Life Science 
Corp.). For characterization of qPCR parameters, 1  ml 
of a 0.5 McFarland suspension of an OXA-48-producing 
K. pneumoniae isolate was extracted using the method 
described above. Primers and TaqMan probes targeting 
the blaOXA-48 gene [24] and the 16SrRNA gene [25] were 
used as previously described. Both probes were designed 
with the FAM reporter dye.

qPCRs were carried out in two parallel assays targeting 
the blaOXA-48 gene and the 16SrRNA gene. Each reaction 
tube contained 0.1 µM of the specific probe, 1 µM of each 
forward and reverse primers, 10  µl of Premix Ex Taq™ 
(Takara Bio Inc.), 2.8 µl of molecular biology-grade water 
and 5 µl of template DNA. Reactions were carried out on 
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the CFX96 Touch™ Real-Time PCR Detection System 
(Bio-Rad Laboratories) with the following cycling condi-
tions: One holding period of 10 min at 95℃ followed by 
45 two-step cycles consisting of 30 s at 95℃ and 1 min at 
60℃. The Threshold cycles  (Ct) were automatically calcu-
lated by the PCR system.

The linear ranges and the limits of detection of qPCRs 
targeting both 16SrRNA and blaOXA-48 were determined 
using tenfold serial dilutions of DNA extracted from 
1 ml of a 0.5 McFarland suspension of an OXA-48-pro-
ducing K. pneumoniae. For both qPCRs, we established 
the linear range over 1000,000-fold range dilutions and 
created a standard curve. Efficiency (Ef ) was calculated 
based on the standard curve slope (Ef = 10(−1/slope)-1). 
Individual qPCR parameters were analyzed with Lin-
RegPCR 11 [26]. The linear range of the  qPCR16S was 
maintained for five logarithmic dilutions (8-4 log CFU/
ml,  R2 = 0.992), and the linear range of  qPCROXA-48 for 
seven logarithmic dilutions (8-2 log CFU/ml,  R2 = 0.997). 
Efficiencies for  qPCR16S and  qPCROXA-48 were 1.847 and 
1.850, respectively. The limit of detection was set below 
100  CFU/ml for both 16SrRNA and blaOXA-48 (Fig.  3a). 
The effect of DNA dilution on the ΔCt was calculated in 
the OXA-48-producing K. pneumoniae strain, and three 
rectal swabs obtained from colonized patients. Variation 
of the ΔCt with respect to template dilution was consid-
ered insignificant when the slope of the log CFU/ml–ΔCt 
curve is close to 0 (Fig. 3b, c). The efficiency of the qPCR 
was found to be independent from the sample or the 
DNA dilution. All reactions were carried out by duplicate 
for stool samples or triplicate for the standard curves and 
qPCR testing.

DNA from stool samples was diluted tenfold in order to 
avoid PCR inhibition. When no detection of the blaOXA-48 
gene was possible, non-diluted DNA was used, and 100-
fold dilutions were used in case of PCR inhibition or 
when the  Ct values were out of the linearity range. Intes-
tinal loads were calculated from the difference between 
the  Ct of the qPCR targeting the blaOXA-48 and the  Ct of 
the reference gene, the 16SrRNA, using the  2−ΔCt method 
[27, 28]. In order to use the method, several requirements 
had to be met. Mainly, the efficiencies of the two qPCRs 
had to be similar and > 80%, and the dilution of the DNA 
template should not influence the ΔCt results. These con-
ditions were met in our validation experiments described 
above. Moreover, the ΔCt method assumes a one-to-one 
ratio of blaOXA-48 to 16SrRNA genes per cell. We detected 
an average of three copies per cell of the blaOXA-48 gene 
in K. pneumoniae, and have calculated that an average 
of four copies of the 16SrRNA per cell across the organ-
isms that typically populate the intestinal microbiome 
(median value) using the rrnDB database (https ://rrndb 
.umms.med.umich .edu/).
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