237 research outputs found

    Gorham-Stout case report: a multi-omic analysis reveals recurrent fusions as new potential drivers of the disease

    Get PDF
    BACKGROUND: Gorham-Stout disease is a rare condition characterized by vascular proliferation and the massive destruction of bone tissue. With less than 400 cases in the literature of Gorham-Stout syndrome, we performed a unique study combining whole-genome sequencing and RNA-Seq to probe the genomic features and differentially expressed pathways of a presented case, revealing new possible drivers and biomarkers of the disease. CASE PRESENTATION: We present a case report of a white 45-year-old female patient with marked bone loss of the left humerus associated with vascular proliferation, diagnosed with Gorham-Stout disease. The analysis of whole-genome sequencing showed a dominance of large structural DNA rearrangements. Particularly, rearrangements in chromosomes seven, twelve, and twenty could contribute to the development of the disease, especially a gene fusion involving ATG101 that could affect macroautophagy. The study of RNA-sequencing data from the patient uncovered the PI3K/AKT/mTOR pathway as the most affected signaling cascade in the Gorham-Stout lesional tissue. Furthermore, M2 macrophage infiltration was detected using immunohistochemical staining and confirmed by deconvolution of the RNA-seq expression data. CONCLUSIONS: The way that DNA and RNA aberrations lead to Gorham-Stout disease is poorly understood due to the limited number of studies focusing on this rare disease. Our study provides the first glimpse into this facet of the disease, exposing new possible therapeutic targets and facilitating the clinicopathological diagnosis of Gorham-Stout disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12920-022-01277-x

    Integrated molecular characterisation of endometrioid ovarian carcinoma identifies opportunities for stratification

    Get PDF
    Endometrioid ovarian carcinoma (EnOC) is an under-investigated ovarian cancer type. Recent studies have described disease subtypes defined by genomics and hormone receptor expression patterns; here, we determine the relationship between these subtyping layers to define the molecular landscape of EnOC with high granularity and identify therapeutic vulnerabilities in high-risk cases. Whole exome sequencing data were integrated with progesterone and oestrogen receptor (PR and ER) expression-defined subtypes in 90 EnOC cases following robust pathological assessment, revealing dominant clinical and molecular features in the resulting integrated subtypes. We demonstrate significant correlation between subtyping approaches: PR-high (PR + /ER + , PR + /ER−) cases were predominantly CTNNB1-mutant (73.2% vs 18.4%, P < 0.001), while PR-low (PR−/ER + , PR−/ER−) cases displayed higher TP53 mutation frequency (38.8% vs 7.3%, P = 0.001), greater genomic complexity (P = 0.007) and more frequent copy number alterations (P = 0.001). PR-high EnOC patients experience favourable disease-specific survival independent of clinicopathological and genomic features (HR = 0.16, 95% CI 0.04–0.71). TP53 mutation further delineates the outcome of patients with PR-low tumours (HR = 2.56, 95% CI 1.14–5.75). A simple, routinely applicable, classification algorithm utilising immunohistochemistry for PR and p53 recapitulated these subtypes and their survival profiles. The genomic profile of high-risk EnOC subtypes suggests that inhibitors of the MAPK and PI3K-AKT pathways, alongside PARP inhibitors, represent promising candidate agents for improving patient survival. Patients with PR-low TP53-mutant EnOC have the greatest unmet clinical need, while PR-high tumours—which are typically CTNNB1-mutant and TP53 wild-type—experience excellent survival and may represent candidates for trials investigating de-escalation of adjuvant chemotherapy to agents such as endocrine therapy

    Robust genetic analysis of the X-linked anophthalmic (Ie) mouse

    Get PDF
    Anophthalmia (missing eye) describes a failure of early embryonic ocular development. Mutations in a relatively small set of genes account for 75% of bilateral anophthalmia cases, yet 25% of families currently are left without a molecular diagnosis. Here, we report our experimental work that aimed to uncover the developmental and genetic basis of the anophthalmia characterising the X-linked Ie (eye-ear reduction) X-ray-induced allele in mouse that was first identified in 1947. Histological analysis of the embryonic phenotype showed failure of normal eye development after the optic vesicle stage with particularly severe malformation of the ventral retina. Linkage analysis mapped this mutation to a ~6 Mb region on the X chromosome. Short- and long-read whole-genome sequencing (WGS) of affected and unaffected male littermates confirmed the Ie linkage but identified no plausible causative variants or structural rearrangements. These analyses did reduce the critical candidate interval and revealed evidence of multiple variants within the ancestral DNA, although none were found that altered coding sequences or that were unique to Ie. To investigate early embryonic events at a genetic level, we then generated mouse ES cells derived from male Ie embryos and wild type littermates. RNA-seq and accessible chromatin sequencing (ATAC-seq) data generated from cultured optic vesicle organoids did not reveal any large differences in gene expression or accessibility of putative cis-regulatory elements between Ie and wild type. However, an unbiased TF-footprinting analysis of accessible chromatin regions did provide evidence of a genome-wide reduction in binding of transcription factors associated with ventral eye development in Ie, and evidence of an increase in binding of the Zic-family of transcription factors, including Zic3, which is located within the Ie-refined critical interval. We conclude that the refined Ie critical region at chrX: 56,145,000&ndash;58,385,000 contains multiple genetic variants that may be linked to altered cis regulation but does not contain a convincing causative mutation. Changes in the binding of key transcription factors to chromatin causing altered gene expression during development, possibly through a subtle mis-regulation of Zic3, presents a plausible cause for the anophthalmia phenotype observed in Ie, but further work is required to determine the precise causative allele and its genetic mechanism

    Quantifying single nucleotide variant detection sensitivity in exome sequencing

    Get PDF
    BACKGROUND: The targeted capture and sequencing of genomic regions has rapidly demonstrated its utility in genetic studies. Inherent in this technology is considerable heterogeneity of target coverage and this is expected to systematically impact our sensitivity to detect genuine polymorphisms. To fully interpret the polymorphisms identified in a genetic study it is often essential to both detect polymorphisms and to understand where and with what probability real polymorphisms may have been missed. RESULTS: Using down-sampling of 30 deeply sequenced exomes and a set of gold-standard single nucleotide variant (SNV) genotype calls for each sample, we developed an empirical model relating the read depth at a polymorphic site to the probability of calling the correct genotype at that site. We find that measured sensitivity in SNV detection is substantially worse than that predicted from the naive expectation of sampling from a binomial. This calibrated model allows us to produce single nucleotide resolution SNV sensitivity estimates which can be merged to give summary sensitivity measures for any arbitrary partition of the target sequences (nucleotide, exon, gene, pathway, exome). These metrics are directly comparable between platforms and can be combined between samples to give “power estimates” for an entire study. We estimate a local read depth of 13X is required to detect the alleles and genotype of a heterozygous SNV 95% of the time, but only 3X for a homozygous SNV. At a mean on-target read depth of 20X, commonly used for rare disease exome sequencing studies, we predict 5–15% of heterozygous and 1–4% of homozygous SNVs in the targeted regions will be missed. CONCLUSIONS: Non-reference alleles in the heterozygote state have a high chance of being missed when commonly applied read coverage thresholds are used despite the widely held assumption that there is good polymorphism detection at these coverage levels. Such alleles are likely to be of functional importance in population based studies of rare diseases, somatic mutations in cancer and explaining the “missing heritability” of quantitative traits

    Increased ultra-rare variant load in an isolated Scottish population impacts exonic and regulatory regions

    Get PDF
    Human population isolates provide a snapshot of the impact of historical demographic processes on population genetics. Such data facilitate studies of the functional impact of rare sequence variants on biomedical phenotypes, as strong genetic drift can result in higher frequencies of variants that are otherwise rare. We present the first whole genome sequencing (WGS) study of the VIKING cohort, a representative collection of samples from the isolated Shetland population in northern Scotland, and explore how its genetic characteristics compare to a mainland Scottish population. Our analyses reveal the strong contributions played by the founder effect and genetic drift in shaping genomic variation in the VIKING cohort. About one tenth of all high-quality variants discovered are unique to the VIKING cohort or are seen at frequencies at least ten fold higher than in more cosmopolitan control populations. Multiple lines of evidence also suggest relaxation of purifying selection during the evolutionary history of the Shetland isolate. We demonstrate enrichment of ultra-rare VIKING variants in exonic regions and for the first time we also show that ultra-rare variants are enriched within regulatory regions, particularly promoters, suggesting that gene expression patterns may diverge relatively rapidly in human isolates

    In vivo modeling of patient genetic heterogeneity identifies new ways to target cholangiocarcinoma.

    Get PDF
    L. Boulter was funded by The Wellcome Trust (207793/Z/17/Z), AMMF (2016/108, 2017/115), and Cancer Research UK (C52499/A27948). L. Boulter is also supported by an MRC university grant to the MRC Human Genetics Unit

    New insights into the classification and nomenclature of cortical GABAergic interneurons.

    Get PDF
    A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus

    Loss of ALDH18A1 function is associated with a cellular lipid droplet phenotype suggesting a link between autosomal recessive cutis laxa type 3A and Warburg Micro syndrome

    Get PDF
    Autosomal recessive cutis laxa type 3A is caused by mutations in ALDH18A1, a gene encoding the mitochondrial enzyme Δ(1)-pyrroline-5-carboxylate synthase (P5CS). It is a rare disorder with only six pathogenic mutations and 10 affected individuals from five families previously described in the literature. Here we report the identification of novel compound heterozygous missense mutations in two affected siblings from a Lebanese family by whole-exome sequencing. The mutations alter a conserved C-terminal domain of the encoded protein and reduce protein stability as determined through Western blot analysis of patient fibroblasts. Patient fibroblasts exhibit a lipid droplet phenotype similar to that recently reported in Warburg Micro syndrome, a disorder with similar features but hitherto unrelated cellular etiology
    corecore