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CASE REPORT

Gorham-Stout case report: a multi-omic 
analysis reveals recurrent fusions as new 
potential drivers of the disease
Marcos Yébenes Mayordomo1*, Sofian Al Shboul3, Maria Gómez‑Herranz1,2, Asim Azfer2, Alison Meynert4, 
Donald Salter2, Larry Hayward2, Anca Oniscu5, James T. Patton6, Ted Hupp2, Mark J. Arends2 and 
Javier Antonio Alfaro1*   

Abstract 

Background: Gorham‑Stout disease is a rare condition characterized by vascular proliferation and the massive 
destruction of bone tissue. With less than 400 cases in the literature of Gorham‑Stout syndrome, we performed a 
unique study combining whole‑genome sequencing and RNA‑Seq to probe the genomic features and differentially 
expressed pathways of a presented case, revealing new possible drivers and biomarkers of the disease.

Case presentation: We present a case report of a white 45‑year‑old female patient with marked bone loss of the left 
humerus associated with vascular proliferation, diagnosed with Gorham‑Stout disease. The analysis of whole‑genome 
sequencing showed a dominance of large structural DNA rearrangements. Particularly, rearrangements in chromo‑
somes seven, twelve, and twenty could contribute to the development of the disease, especially a gene fusion involv‑
ing ATG101 that could affect macroautophagy. The study of RNA‑sequencing data from the patient uncovered the 
PI3K/AKT/mTOR pathway as the most affected signaling cascade in the Gorham‑Stout lesional tissue. Furthermore, M2 
macrophage infiltration was detected using immunohistochemical staining and confirmed by deconvolution of the 
RNA‑seq expression data.

Conclusions: The way that DNA and RNA aberrations lead to Gorham‑Stout disease is poorly understood due to 
the limited number of studies focusing on this rare disease. Our study provides the first glimpse into this facet of the 
disease, exposing new possible therapeutic targets and facilitating the clinicopathological diagnosis of Gorham‑Stout 
disease.
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Background
Gorham-Stout disease (GSD) (OMIM #123880) or van-
ishing bone disease is an extremely rare illness that 
causes a proliferation of lymphatic vascular channels 

inducing massive osteolysis and bone loss. Less than 
400 cases have been reported since the disease was first 
described in 1955 [1], leading to challenges in diagnos-
ing and treating the disease. Although it can affect any 
part of the skeleton, the shoulders and pelvis are the most 
commonly affected areas [2].

The disorder can be diagnosed at any age but is gener-
ally present in patients between 13 and 30  years of age 
with no sex or ethnic predisposition [3]. The alterations 
in bone resorption may be one of the reasons why young 
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adult patients are the main group affected by the disease 
[4], as resorption is part of normal bone growth. Main 
therapies consist of surgical excision and reconstruc-
tion of bone tissue, radiotherapy, and sirolimus (rapamy-
cin) treatment. Rapamycin treatment represents a novel 
approach whose safety and efficacy remain unclear [5].

Recent research investigated mutations in this disor-
der, focusing on 50 cancer-related genes and revealing a 
somatic activating mutation in KRAS causing a gain of 
function [6]. This variant has been previously reported 
in other cancer studies [7, 8]. It is known to promote 
cell growth by activating the RAS/MAPK and PI3K/AKT 
signaling pathways relevant to lymphatic vascular growth 
and angiogenesis [9]. Concurrent with this study, Nas-
sim Homayun-Sepehr et al [10] presented a model where 
a different mutation affecting KRAS also activates the 
development of lymphatic vessels in bone through the 
same signaling cascade.

The aim of our study is to provide new insights into the 
genomics and transcriptomics characteristics of the Gor-
ham-Stout disease by performing the first multi-omics 
exploration of whole-genome sequencing data and RNA-
sequencing data in a Gorham-Stout patient.

Case presentation
The 45-year-old white female patient presented with left 
arm vascular proliferative disease within and around 
the humerus bone resulting in a pathological fracture. A 
clinical diagnosis of Gorham-Stout disease was made fol-
lowing pathological and radiological investigations of the 
lesion at this site (Additional file 1: Fig. S1). Macroscopic 
examination showed an abnormality of the upper arm 
muscles which appeared vascular and spongiotic, soft in 
some areas and fibrotic in others. The cortical bone of the 
humerus was thin around the fracture site and the bone 
marrow appeared, similar to the soft tissue, vascular with 
some large cysts and hemorrhage noted. Tissue blocks of 
all the abnormal areas from the soft tissue and humeral 
bone were sampled for histological examination and fur-
ther investigations.

Histological sections of the affected regions confirmed 
indeed an abnormal vascular proliferation dissecting 
through fibroadipose connective tissue, skeletal muscle, 
and bone. Despite its dissecting nature, the vascular pro-
liferation was composed of thin-walled vascular spaces 
and papillary projections lined by cytologically bland 
endothelial cells. The site of the fracture showed repara-
tive fibrotic changes, with extensive granulation tissue 
and fibrosis. The dissecting vascular proliferation also 
affected the bone and was associated with cystic changes 
within the bone. The bone marrow showed vascular and 
fibrotic changes with some granulation tissue. Occa-
sional discrete granulomas were scattered throughout the 

lesion. These changes are all consistent with the clinical 
diagnosis of Gorham-Stout disease or vanishing bone dis-
ease. Past medical history includes a previous diagnosis 
1–2  years earlier of a benign vascular proliferation/vas-
cular malformation involving both bone and soft tissue of 
the left humerus compatible with Gorham-Stout disease. 
The expert pathological review from the Department of 
Musculoskeletal Pathology, Royal Orthopaedic Hospital 
NHS Foundation Trust, Stanmore, was in agreement.

Genomic exploration of Gorham‑Stout (GS) lesional tissue
Small DNA variants were called using whole-genome 
sequencing data of GS vascular proliferation tissue and 
surrounding normal tissue extracted from the same 
patient (Additional file 2: Methods). Although the clinical 
characteristics of GS can be similar to those manifested 
in Ewing’s sarcoma [11], the genomic profile differs from 
most cancer-like diseases, as it doesn’t seem to be muta-
tion-driven. A total of 643 mutations in 233 genes were 
found in GS lesional tissue when compared to the adja-
cent normal. Of those mutated genes, neither TP53, RB1, 
CDKN2A nor any of the known sarcoma biomarkers [12] 
were reported to contain any small mutations.

The classification of variants (Fig.  1a) showed that, 
although most of the variants code for missense muta-
tions, a considerable number of insertions and deletions 
were found. Among the top mutated genes (Fig. 1b), most 
of the genes reported contained insertions, deletions, or 
splice site changes. Some known cancer-related genes 
like the mucin family (MUC3A and MUC12) in colo-
rectal cancer, or ZNF703 in breast cancer, seemed to be 
mutated. Other genes like CST5 and UNC5B, related by 
previous studies to the P53 pathway [13, 14], were also 
involved in other signaling pathways that are manifested 
in GS, like endochondral ossification and autophagy 
respectively. Other relevant gene families affected are 
those from TNFRSF10A and ANKRD36 genes, previously 
identified as mutated in a scapular lesion affected with 
Gorham-Stout disease [3].

Structural variants and gene fusions
We noticed a high proportion of genes with insertions 
and deletions displayed in the top 20 mutated genes. 
This motivated an analysis of larger indels and struc-
tural variants to explore the possibility that those alter-
ations might have been caused by major chromosomal 
events. (Fig.  1c). Matching our previous discoveries, 
a high number of structural variants were identified, 
especially in chromosomes seven, twelve, and twenty. 
Around 1000 structural variants were found, showing 
duplications, deletions, and tandem repetitions. The 
most frequent structural events detected were chro-
mosome translocations, suggesting that gene fusion 
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variants could be a major event for GS disease. To fur-
ther explore these rearrangements, we combined DNA 
and RNA gene fusion calls for the case (Fig.  2a). The 
fusions were categorized in different tiers depending 
on the evidence of the mutation at both the DNA and 
RNA level based on the genes surrounding the fusion 
or reads containing the translocation (Additional file 3: 
Table S1). Although most of the fusions reported were 
intrachromosomal events, chromosomes twelve, seven, 

and twenty shared a relevant number of interchromo-
somal mutations.

Based on the evidence of the gene fusions and their 
biological relevance, seven gene fusions were selected for 
RT-PCR validation (Additional file 4: Fig. S2). The fusion 
of ATG101 and SLC4A8 in chromosome 12 (Fig.  2b) 
involves the autophagy-related protein part of the mac-
roautophagy signaling pathway [15]. The other validated 
fusion (Fig. 2b) involves sarcoglycan delta (SGCD), a gene 
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known to cause muscular dystrophy in mammals when 
deleted or mutated [16–19], an event that could lead to 
vascular malformations as reported in the GS lesions.

Gene expression in Gorham‑Stout disease
The differential expression analysis of the technical rep-
licates from Gorham-Stout lesional tissue and attached 
normal revealed that a high proportion of genes (36.6% 
out of the 58,884 total) were either up-regulated or 
down-regulated (Fig.  3a). Gene set enrichment analy-
sis showed statistically significant differences in path-
ways like lymphangiogenesis (Additional file 5: Table S2) 
and osteolysis (Additional file  5: Table  S3), suspected 
of being drivers of the pathological characteristics and 
potential targets of drug treatments for the disease [20] 
(Fig. 3b). Inside these pathways, gene families like VEGF 
or NOTCH were detected to change drastically in expres-
sion from normal to Gorham-Stout lesional tissue (Addi-
tional file 7: Fig. S3).

One of the main pathways affected by changes in 
expression is the phosphatidylinositol 3-kinase (PI3K), 
involved in the proliferation, growth, and regulatory 
processes of the cell. In our study, we detected that the 
expression of PI3K is considerably downregulated in 
GS lesions when compared to normal tissue, therefore 
the phosphorylation of PIP2 to PIP3 by this gene will 
be decreased in the disease. This event is confirmed by 
the up-regulation of PTEN which regulates PI3K by the 
dephosphorylation of the PIP3 product [21].

The changes in expression of the PI3K and PTEN path-
way (Fig. 4a–b) are reminiscent of other cancers, where 
the pathway is deactivated or mutated affecting regula-
tion of mTOR [22]. The expression of PI3K, AKT, and 
mTOR in the Gorham-Stout lesion was decreased, while 
PTEN expression was higher when compared to the 
attached normal. The alterations suggest the promotion 
of irregular endothelial cell growth and angiogenesis 
through VEGFA and VEGFB via the VEGFR1-PI3K-AKT 
signaling pathway [23, 24].

Another expression event that may be related to cancer 
is the activation of the NF-kB signaling pathway, which 
is down-regulated in Gorham-Stout lesional tissue when 
compared to matched normal. The levels of expression of 
NF-kB and IKK in the normal adjacent tissue could con-
tribute to inflammation and macrophage activation [25, 
26].

Although the expression changes previously mentioned 
are occurring in normal adjacent tissue, there are events 
in GS tissue that share similarities with cancer. One of 
them is the high expression of MDM2, a p53-specific E3 
ubiquitin ligase, which leads to the degradation of the p53 
tumor suppressor protein [27]. All the events linked to 
the PI3K signaling pathway paint a picture of the possible 

inner mechanisms in Gorham-Stout and surrounding tis-
sue providing unique insights into the disease that could 
lead to the development of new therapeutic strategies 
targeting the mentioned pathways.

Immune infiltrates in Gorham‑Stout lesional tissue
  Immunohistochemical and H&E staining was carried 
out using formalin-fixed, paraffin-embedded (FFPE) sec-
tions to investigate the immune system response of a sin-
gle case. Evaluation of the immune cell infiltration was 
assessed by immunohistochemistry with five immune 
cell markers:  CD3+ T cells,  CD4+ T cells,  CD8+ T cells, 
 CD20+ B cells, and  CD163+ M2 macrophages (Fig. 5A–
F). Stained Gorham-Stout disease slides were scanned 
using a Hamamatsu NanoZoomer XR slide scanner 
at × 40 magnification. Digital images were analyzed using 
QuPath (version 0.2.0-m7) to quantify the positive stain-
ing, validated by manual counting in selected areas that 
showed a highly significant correlation (Table 1).

The Gorham-Stout disease specimen showed signifi-
cantly higher  CD163+ M2 macrophage infiltration, com-
pared with other examined immune cell markers (Fig. 5E 
and Table 1). This was consistent with the RNA data that 
revealed increased infiltration of M2 macrophages in 
Gorham-Stout disease compared with normal samples 
(Fig. 5G). In contrast,  CD4+ T cell staining was particu-
larly low with only 0.06% positive staining (Fig.  5B and 
Table  1). Moderate staining was found for the other 4 
lymphocytic cell markers:  CD3+ T cells (8.22%),  CD8+ T 
cells (5.93%), and  CD20+ B cells (4.86%).

Discussion and conclusions
Large chromosomal events were detected in chromo-
somes seven, twelve, and twenty, where gene fusions 
were the dominant event. The gene fusion of ATG101 
and SLC4A8 (Additional file 8: Fig. S4) involved a binding 
protein (ATG101) essential for macroautophagy [15, 28], 
which could affect the macrophag e signaling pathway. 
This event has to be confirmed in other Gorham-Stout 
patients, as the study of the structural variants and gene 
fusions is a novel insight in this field. Evidence for this 
fusion to be pathological was strengthened upon further 
investigation by ensuring adherence to the ACMG stand-
ards and guidelines for the interpretation of sequence 
variants [29] (Additional file 2: Methods).

The small mutations found in this case did not match 
any of the previously mutated genes found in the lit-
erature, although genes were belonging to the same 
families and/or affected the same pathways previously 
found in neoplasms. The tumor necrosis factor receptor 
TNFRSF10A was detected in our study among the top 
five mutated genes showing multiple deletions, inser-
tions, and point mutations. TNFRSF11A, a member of 
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the same family of genes, was reported in a previous 
case report of a Gorham-Stout patient [3] and linked 
to muscular dystrophy and osteolysis [30, 31]. Another 
example of mutated gene families affecting the same 
pathway is the missense mutation found in PIK3AP1 
(c.1139A > T), which belongs to the PTEN/PI3K/AKT 
signaling cascade. Genes belonging to this family, like 
PIK3CA, are known to cause lymphatic and vascular 
overgrowth disorders [32] while others like PTEN have 

been reported as mutated in Gorham-Stout disease 
patients [33].

The alterations of the PTEN/PI3K/AKT signaling cas-
cade were not only observed by mutations of some of 
the members of the pathway but also reported as gene 
expression changes in the RNA sequencing data. We 
observed that most of the genes involved in the signal-
ing cascade were either up-regulated or down-regu-
lated when compared to normal adjacent tissue. The 
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Fig. 5 Representative IHC stained images showing the distribution of CD3, CD4, CD8, CD20, and CD163 cell markers. The representative images 
exhibit the immunohistochemical features of infiltrating immune cells: a  CD3+ T cells, b  CD4+ T cells, c  CD8+ T cells, d  CD20+ B cells, e  CD163+ M2 
macrophages, and f H&E staining. Scale bars show 50 μm. g RNA comparison of a variety of immune cell types between Gorham‑Stout disease and 
normal specimens. The analysis was conducted with 4 technical replicates
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modifications of the PI3K pathway are known to cause 
lymphatic malformations [9, 34] and during recent years 
have become the main target for inhibitor therapies 
designed to decrease VEGF secretion and angiogenesis 
[35–38]. Although the PI3K pathway was already known 
to be affected in Gorham-Stout disease, as well as other 
lymphatic malformations, our study is the first to profile 
Gorham-Stout lesions by RNA-Seq analysis and this has 
demonstrated new possible candidates for therapy like 
the targeting of MDM2-p53 already developed for cancer 
therapy [39, 40].

Besides angiogenesis and osteolysis, another charac-
teristic of GS disease is osteoclast formation. Previous 
studies have suggested this event is stimulated by mac-
rophage secretion of TNFα and IL-6 [41] and linked it to 
the clinical characteristics of the disease [42]. Our study 
has shown that M2 macrophages tend to infiltrate the 
Gorham-Stout vascular proliferation tissue, while other 
immune cells appear to be less frequent. The results 
match previous findings in the literature where CD163 
staining was also performed [6], as well as the mostly 
negative staining for other immune cells [43].

We have presented a detailed molecular investiga-
tion of a single patient with Gorham-Stout disease. 
Whole-genome sequencing data of the Gorham-Stout 
vascular proliferation lesion revealed that the main 
driver of the genomic events appears to be large struc-
tural alterations, though single nucleotide variants and 
small mutations were also present. The transcriptom-
ics showed changes in expression between the normal 
and the Gorham-Stout tissue, involving the osteolysis 
and angiogenesis pathways. The alteration of the PI3K/
AKT/mTOR pathway along with the macrophage infil-
tration in the Gorham-Stout tissue are congruent with 
emerging trends in this disease. As with any rare dis-
ease, the inclusion of further GSD patients into the 

future with a combined genomic and transcriptomic 
profile could confirm the insights we have revealed on 
the mechanisms of the disease.
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