14 research outputs found

    Construction of a map-based reference genome sequence for barley, Hordeum vulgare L.

    Get PDF
    Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. `Morex' was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX).Peer reviewe

    A chromosome conformation capture ordered sequence of the barley genome

    Get PDF
    201

    Acetylcholinesterase 1 in populations of organophosphate-resistant North American strains of the cattle tick, Rhipicephalus microplus (Acari: Ixodidae)

    No full text
    Rhipicephalus microplus, the cattle fever tick, is a global economic problem to the cattle industry due to direct infestation of cattle and pathogens transmitted during feeding. Cattle fever tick outbreaks continue to occur along the Mexico-US border even though the tick has been eradicated from the USA. The organophosphate (OP) coumaphos targets acetylcholinesterase (AChE) and is the approved acaricide for eradicating cattle fever tick outbreaks. There is evidence for coumaphos resistance developing in cattle ticks in Mexico, and OP-resistant R. microplus ticks were discovered in outbreak populations of Texas in 2005. The molecular basis of coumaphos resistance is not known, and our study was established to gather further information on whether AChE1 is involved in the resistance mechanism. We also sought information on allele diversity in tick populations with different levels of coumaphos resistance. The overarching project goal was to define OP resistance-associated gene mutations such that a DNA-based diagnostic assay could be developed to assist the management of resistance. Three different AChE transcripts have been reported in R. microplus, and supporting genomic and transcriptomic data are available at CattleTickBase. Here, we report the complete R. microplus AChE1 gene ascertained by sequencing a bacterial artificial chromosome clone containing the entire coding region and the flanking 5' and 3' regions. We also report AChE1 sequences of larval ticks from R. microplus strains having different sensitivities to OP. To accomplish this, we sequenced a 669-bp region of the AChE1 gene corresponding to a 223 amino acid region of exon 2 to assess alleles in seven strains of R. microplus with varying OP resistance phenotypes. We identified 72 AChE1 sequence variants, 2 of which are strongly associated with OP-resistant phenotypes. Esterase-like sequences from the R. microplus transcriptome RmiTr Version 1.0 were compared to the available sequence databases to identify other transcripts with similarity to AChE1

    Immunohistochemical assessment of cyclic guanosine monophosphate (cGMP) and soluble guanylate cyclas (sGC) within the rostral ventrolateral medulla

    Get PDF
    Functional evidence suggests that nitric oxide (NO) signalling in the rostral ventrolateral medulla (RVLM) is cGMP-dependent and that this pathway is impaired in hypertension. We examined cGMP expression as a marker of active NO signalling in the C1 region of the RVLM, comparing adult (>18 weeks) Wistar–Kyoto (WKY, n = 4) and spontaneously hypertensive rats (SHR, n = 4). Double label immunohistochemistry for cGMPimmunoreactivity (IR) and C1 neurons [as identified by phenylethanolamine N-methyltransferase (PNMT-IR) or tyrosine hydroxylase TH-IR)], or neuronal NO synthase (nNOS) neurones, failed to reveal cGMP-IR neurons in the RVLM of either strain, despite consistent detection of cGMP-IR in the nucleus ambiguus (NA). This was unchanged in the presence of isobutylmethylxanthine (IBMX; 0.5 mM, WKY, n = 4, SHR n = 2) and in young animals (WKY, 10-weeks, n = 3). Incubation of RVLMslices (WKY, 10-weeks, n = 9) in DETA-NO (100 μm; 10 min) or NMDA (10 μM; 2 min) did not uncover cGMPIR. In all studies, cGMP was prominent within the vasculature. Soluble guanylate cyclase (sGC)-IR was found throughout neurones of the RVLM, but did not co-localise with PNMT, TH or nNOS-IR neurons (WKY, 10-weeks, n = 6). Results indicate that within the RVLM, cGMP is not detectable using immunohistochemistry in the basal state and cannot be elicited by phosphodiesterase inhibition, NMDA receptor stimulation or NO donor application.12 page(s

    Gene-enriched draft genome of the cattle tick Rhipicephalus microplus: Assembly by the hybrid Pacific Biosciences/Illumina approach enabled analysis of the highly repetitive genome

    Get PDF
    The genome of the cattle tick Rhipicephalus microplus, an ectoparasite with global distribution, is estimated to be 7.1. Gbp in length and consists of approximately 70% repetitive DNA. We report the draft assembly of a tick genome that utilized a hybrid sequencing and assembly approach to capture the repetitive fractions of the genome. Our hybrid approach produced an assembly consisting of 2.0. Gbp represented in 195,170 scaffolds with a N50 of 60,284. bp. The Rmi v2.0 assembly is 51.46% repetitive with a large fraction of unclassified repeats, short interspersed elements, long interspersed elements and long terminal repeats. We identified 38,827 putative R. microplus gene loci, of which 24,758 were protein coding genes (=100 amino acids). OrthoMCL comparative analysis against 11 selected species including insects and vertebrates identified 10,835 and 3,423 protein coding gene loci that are unique to R. microplus or common to both R. microplus and Ixodes scapularis ticks, respectively. We identified 191 microRNA loci, of which 168 have similarity to known miRNAs and 23 represent novel miRNA families. We identified the genomic loci of several highly divergent R. microplus esterases with sequence similarity to acetylcholinesterase. Additionally we report the finding of a novel cytochrome P450 CYP41 homolog that shows similar protein folding structures to known CYP41 proteins known to be involved in acaricide resistance
    corecore