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Immunohistochemical assessment of cyclic guanosine monophosphate
(cGMP) and soluble guanylate cyclase (sGC) within the rostral
ventrolateral medulla

Abstract
Functional evidence suggests that nitric oxide (NO) signalling in the rostral ventrolateral medulla (RVLM) is
cGMP-dependent and that this pathway is impaired in hypertension. We examined cGMP expression as a
marker of active NO signalling in the C1 region of the RVLM, comparing adult (>18 weeks) Wistar-Kyoto
(WKY, n = 4) and spontaneously hypertensive rats (SHR, n = 4). Double label immunohistochemistry for
cGMP-immunoreactivity (IR) and C1 neurons [as identified by phenylethanolamine N-methyltransferase
(PNMT-IR) or tyrosine hydroxylase TH-IR)], or neuronal NO synthase (nNOS) neurones, failed to reveal
cGMP-IR neurons in the RVLM of either strain, despite consistent detection of cGMP-IR in the nucleus
ambiguus (NA). This was unchanged in the presence of isobutylmethylxanthine (IBMX; 0.5 mM, WKY, n =
4, SHR n = 2) and in young animals (WKY, 10-weeks, n = 3). Incubation of RVLM-slices (WKY, 10-weeks, n
= 9) in DETA-NO (100 μm; 10 min) or NMDA (10 μM; 2 min) did not uncover cGMP-IR. In all studies,
cGMP was prominent within the vasculature. Soluble guanylate cyclase (sGC)-IR was found throughout
neurones of the RVLM, but did not co-localise with PNMT, TH or nNOS-IR neurons (WKY, 10-weeks, n =
6). Results indicate that within the RVLM, cGMP is not detectable using immunohistochemistry in the basal
state and cannot be elicited by phosphodiesterase inhibition, NMDA receptor stimulation or NO donor
application.
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Abstract Functional evidence suggests that nitric oxide

(NO) signalling in the rostral ventrolateral medulla

(RVLM) is cGMP-dependent and that this pathway is

impaired in hypertension. We examined cGMP expression

as a marker of active NO signalling in the C1 region of the

RVLM, comparing adult ([18 weeks) Wistar–Kyoto

(WKY, n = 4) and spontaneously hypertensive rats (SHR,

n = 4). Double label immunohistochemistry for cGMP-

immunoreactivity (IR) and C1 neurons [as identified by

phenylethanolamine N-methyltransferase (PNMT-IR) or

tyrosine hydroxylase TH-IR)], or neuronal NO synthase

(nNOS) neurones, failed to reveal cGMP-IR neurons in the

RVLM of either strain, despite consistent detection of

cGMP-IR in the nucleus ambiguus (NA). This was

unchanged in the presence of isobutylmethylxanthine

(IBMX; 0.5 mM, WKY, n = 4, SHR n = 2) and in young

animals (WKY, 10-weeks, n = 3). Incubation of RVLM-

slices (WKY, 10-weeks, n = 9) in DETA-NO (100 lm;

10 min) or NMDA (10 lM; 2 min) did not uncover cGMP-

IR. In all studies, cGMP was prominent within the vascu-

lature. Soluble guanylate cyclase (sGC)-IR was found

throughout neurones of the RVLM, but did not co-localise

with PNMT, TH or nNOS-IR neurons (WKY, 10-weeks,

n = 6). Results indicate that within the RVLM, cGMP is

not detectable using immunohistochemistry in the basal

state and cannot be elicited by phosphodiesterase inhibition,

NMDA receptor stimulation or NO donor application.

Keywords RVLM � Immunohistochemistry �
Slice preparation � Nitric oxide � NMDA � C1 cell group

Introduction

The rostral ventrolateral medulla (RVLM) contributes sig-

nificant excitatory drive to sympathetic preganglionic

neurons and therefore also to vascular tone via two well

characterised subpopulations of bulbospinal neurons: the

C1 (adrenergic) and non-C1 cell groups [1–3]. Glutamate is

the major neurotransmitter driving the activity of these

neurons [3, 4], but the gaseous neurotransmitter nitric oxide

(NO) is thought to play a key role in regulating glutamate

induced pressor responses, and therefore modulating

homeostatic blood pressure mechanisms [5–7]. Altered NO

signalling in the RVLM is associated with increased sym-

pathetic outflow in animal models of hypertension [8],

however the mechanism of action is unclear, with a range of

effects consistent with NO-mediated pressor, depressor or

neutral effects being reported [9–11].

One of the most widely studied and best-understood NO

second messenger systems is the activation of soluble

guanylate cyclase (sGC) and the subsequent generation of

intracellular 30,50-cyclic guanosine monophosphate

(cGMP) [12, 13]. Soluble GC is a heme-containing
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heterodimer of a and b subunits, with the b1 subunit being

the major subunit, as there is no catalytic activity in its’

absence [14, 15]. Activation of NMDA receptors can drive

this pathway, with increased intracellular Ca2+ stimulating

the Ca2+/calmodulin NO system, promoting conversion of

L-Arginine to NO. Intracellular cGMP levels can also be

regulated by membrane bound, or particulate guanylyl

cyclases, incorporating the receptors for atrial (ANP), brain

(BNP) and C-type (CNP) natriuretic peptides [13]. As a

second messenger, cGMP can target various protein kina-

ses and ion channels, and its activity is limited through

degradation by phosphodiesterases (PDE) [13].

Nitric oxide has alternative neuromodulatory mecha-

nisms. This includes the S-nitrosylation of proteins and in

particular that of NMDA receptors [12], and interactions

with superoxide, with the resultant peroxynitrite having

potent oxidising properties that convey a variety of phys-

iological and pathophysiological effects [16].

Within the RVLM, all three NO synthase (NOS) iso-

forms are present [17] and we have shown recently that

neuronal (n)NOS is increased in the RVLM of spontane-

ously hypertensive rats (SHR) [18]. Work by Chan et al.

[19] suggests that the relative balance of functional nNOS

versus inducible (i)NOS activity determines RVLM output,

and further, that the different NOS isoforms activate dif-

ferent downstream signals, with nNOS driving sGC/cGMP-

dependent sympathoexcitatory responses, and NO pro-

duced by iNOS driving peroxynitrite formation and

sympathoinhibitory responses [20]. Glutamate-induced

pressor responses in the RVLM are in general proposed to

be modulated by NO-sGC/cGMP [5, 6, 21] and this is

supported by electrophysiological studies showing cGMP-

dependent potentiation of glutamate currents in RVLM

slice preparations [7].

To date, no studies have described the immunohisto-

chemical localisation of neurons capable of expressing

cGMP within the C1 region [22]. Given the strong evi-

dence that NO signalling plays a functional role in the

RVLM, we sought to identify the cellular targets for NO in

the RVLM, visualising cGMP and its neuroanatomical

relationship with the C1 cell group, as identified by the

presence of tyrosine hydroxylase (TH) or phenylethanola-

mine N-methyltransferase (PNMT), and the more medially

located nNOS expressing cell population [18, 23]. Given

that studies in SHR show augmented pressor responses to

microinjection of glutamate in the RVLM [24, 25], we

considered the hypothesis that the NO downstream sig-

nalling sGC/cGMP pathway may be altered. We therefore

also sought to examine if altered cGMP expression, as

determined using fluorescence immunohistochemistry, was

demonstrable in the RVLM of the SHR when compared its

genetic control, the Wistar Kyoto (WKY). An inability to

detect cGMP-immunoreactivity (-IR) in the RVLM of

either strain led to additional studies that sought to increase

synthesis of cGMP in fresh RVLM brain slices, and

examine sGC-IR throughout the region.

Materials and methods

Animals

Animals were obtained from the Animal Resources Centre,

Murdoch, Western Australia and all procedures conformed

to the guidelines approved by the Murdoch University

Animal Ethics Committee. Rats were housed on a 12 h

light-dark cycle with access to standard rat chow and water

ad libitum. Male rats were used in all experiments. Wistar–

Kyoto (n = 26 in total) and SHR (n = 8 total) animals

were used in the different age groups as detailed in each

experimental protocol.

Animal tissue preparation for immunohistochemistry

Rats were anaesthetised with sodium pentobarbitone

(Thiobarb, Jurox, Rutherford, Australia; 100 mg/kg)

administered intraperitoneally. A pre-fixation solution of

ice-cold heparinised saline (30 ml, 0.9% NaCl containing

2,000 I.U. of heparin [Jurox, Rutherford, Australia]) was

perfused via the ascending aorta (6 ml per minute), fol-

lowed by 180 ml of ice-cold 3.7% formalin diluted in 0.9%

saline at the same rate. In one set of experiments, the

phosphodiesterase inhibitor isobutylmethylxanthine

(IBMX; 0.5 mM Sigma, St. Louis, MO) was added to the

pre-fixation saline solution. Brains were removed and post

fixed in 4% formalin for 4 h at 4�C. Tissue was washed in

0.1 M phosphate buffered saline (PBS, pH 7.4)

(3 9 10 min) and coronal hindbrain sections (50 lm)

sections were cut using a vibrating microtome (Vibratome,

St. Louis, MO). Sections were split into two alternate

series, with each section therefore 100 lm apart. Sections

were then incubated in 50% ethanol for 30 min and then

washed in 0.01 M PBS containing 10 mM Tris (TPBS;

2 9 15 min).

Animal tissue preparation for brainstem slice in-vitro

incubation

Animals were anaesthetised and perfused as for the immu-

nohistochemical experiments. Perfusate consisted of ice-cold

sucrose based cutting solution (2 mM KCl, 2 mM MgSO4,

1.25 mM NaH2PO4, 1 mM MgCl2, 26 mM NaHCO3,

0.1 mM CaCl2, 10 mM D-glucose, 248 mM sucrose, 95% O2/

5% CO2, pH 7.4 [26] containing IBMX (0.5 mM) and heparin

1,000 U/ml (Jurox). The brains were removed immediately

and coronal RVLM sections (400 lm) were cut on a vibrating
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microtome while immersed in the same ice-cold sucrose

cutting solution.

After cutting, brain slices were warmed to 37�C over

20 min in an artificial cerebrospinal fluid (aCSF) solution

(124 mM NaCl, 2 mM KCl, 2 mM MgSO4 � 7H2O,

1.25 mM NaH2PO4, 26 mM NaHCO3, 2 mM CaCl2,

10 mM D-glucose, 0.5 mM IBMX, 95% O2/5% CO2, pH

7.4) [26]. Once at 37�C, slices were incubated for a further

30 min, prior to incubation in either 100 lM NMDA

(Sigma) plus 10 lM glycine for 1 9 5 min [27] or 100 lM

DETA-NO (Sigma) for 1 9 15 min [28] in aCSF solution.

Twenty minutes prior to use, DETA-NO was prepared in

aCSF buffer and warmed to 37�C to stabilise NO release.

Submerging the slices in ice-cold 3.7% formalin terminated

the reaction. Control slices were incubated in aCSF solu-

tion only. Slices were post-fixed for 2 h in 3.7% formalin at

4�C, followed by washing in 0.1 M PBS (1 9 30 min).

Slices were then cryoprotected in 30% sucrose in 0.1 M

PBS and sodium azide (NaN3, 0.1%; overnight) prior to

cutting 50 lm sections on a cryostat (Leica CM1510; Leica

Microsystems GmbH, Wetzlar, Germany) at -17�C for

subsequent immunohistochemistry using alternate sections

as described above.

Immunohistochemistry

Sections were pre-treated for one hour at room temperature

in blocking solution containing 10% donkey serum

(Chemicon, Temecula, CA), diluted in TPBS with 0.3%

Triton-X (Tx) and 0.1% NaN3. They were then incubated

free floating in different combinations of primary antibody

[cGMP/nNOS, cGMP/PNMT or TH, sGC/nNOS, sGC/

PNMT, sGC/Protein Gene Product (PGP9.5) or sGC/glial

fibrillary acidic protein (GFAP)] at pre-optimised concen-

trations (Table 1) for 24 h at room temperature, then 72–

96 h at 4�C. From each animal, the RVLM was split into

two series of alternating sections, allowing two different

antibody combinations per animal. Antibodies were diluted

in blocking solution. Sections were then washed

(3 9 30 min TPBS) and incubated with species specific

secondary antibodies (Table 1) for 12–14 h at 4�C, diluted

in TPBS with 0.3% Tx, 0.1% NaN3 and 1% donkey serum.

Finally, sections were washed (3 9 30 min TPBS),

mounted on slides and cover slipped with ProLong Antif-

ade (Molecular Probes, Eugene, OR USA).

The RVLM region examined was defined as that area

extending caudally 600–800 lm from the caudal pole of

the facial nucleus. This corresponds to -12.5 to -11.7 mm

from Bregma [29] bounded laterally by the spinal trigem-

inal tract, medially by the inferior olive and pyramids, and

dorsally by the compact formation of the NA. Sections

were arranged in a rostro-caudal orientation prior to

mounting and all sections were examined bilaterally for

immunostaining. The NA from each series of sections was

used as an internal control for cGMP-IR as it consistently

demonstrated neuronal expression.

Control experiments

For negative controls, RVLM tissue sections were incu-

bated in blocking solution alone (no antibody controls) and

run in parallel to each of the experimental protocols.

Positive control experiments for the cGMP, sGC and

PGP9.5 antibodies were performed using additional sec-

tions from animals used in the experiments described

above. For sGC, sections of cerebellum were processed in

parallel to RVLM sections. A TH/PGP9.5 double label

combination was used as a positive control for the PGP9.5

antibody. To confirm that the cGMP antibody was detect-

ing both neuronal and vascular elements, a cGMP/mouse

anti alpha-smooth muscle actin (alpha-SMA) double label

combination was used (Table 1).

Previous studies and manufacturers product information

have documented the specificity of antibody reactions and/

or characteristic staining patterns for the cGMP [30, 31],

nNOS [32], sGC [33], PNMT [34], TH [35], PGP-9.5 [36,

37], GFAP [38] and SMA [39] antibodies.

Imaging and analysis

A BioRad MRC-1024 confocal laser-scanning microscope

(Carl Zeiss Pty. Ltd. North Ryde, NSW, Australia) was

used to examine immunofluorescence with filter settings

for identification of secondary antibody fluorophores

(fluorescein isothiocyanate [FITC], cyanine [CY2] and in-

docarbocyanine [CY3]). Each fluorochrome was viewed

separately in single channel mode and no ‘‘bleed through’’

was observed. To excite FITC labelled and CY2 secondary

antibodies, excitation was set at 488 nm, while 568 nm

excitation was used for CY3. Images were captured by

taking 4–6 optical ‘‘slices’’ through the sections as a ‘‘z’’

series imaging 10–30 microns of tissue, and then recon-

structed as a single two-dimensional image using Confocal

Assistant Software (BioRad). Figures were assembled and

labelled using Photo Shop software (version 6, Adobe

Systems, Mountain View, CA). Overall colour balance and

contrast were adjusted, but no other modifications were

made.

Results

Detection of cGMP-IR in the RVLM

Cells expressing either the adrenergic markers PNMT/TH,

or nNOS, were used to delineate the neuronal populations

J Biomed Sci (2008) 15:801–812 803
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of interest within the RVLM. PNMT/TH neurons defined

the rostro-caudal axis of the C1 adrenergic cell group while

nNOS cell bodies bounded the medial RVLM region [29].

In the first series of experiments, sections from mature

WKY (n = 4) and SHR (n = 4) ([18 weeks) were

examined for double labelling for cGMP/PNMT-IR and

cGMP/nNOS-IR. Results showed very few cGMP immu-

noreactive neurons in the RVLM in association with either

the C1 adrenergic or the nNOS cells groups in either strain

of mature animal and no cells were double labelled for

either cGMP:PNMT or cGMP:nNOS (Fig. 1a–f). There

was strong cGMP-IR in the NA (Fig. 1b, f) and in these

cells, staining was punctate in appearance, and localised to

the cytoplasm and extending neurites. Cyclic GMP-IR was

visible in the vasculature throughout the sections.

To control for rapid degradation of cGMP, in the second

series of experiments, additional adult WKY (n = 4) and

SHR (n = 2) were assessed after perfusion with IBMX

(0.5 mM) in the pre-perfusate solution. Double labelling

was performed for cGMP and either PNMT/TH or nNOS.

The presence of IBMX did not reveal any increase in the

number of cGMP-IR neurons in the RVLM and did not

alter the PNMT, TH or nNOS-IR (data not shown). There

was a visible increase in the intensity of staining for cGMP

in cells of the NA and within blood vessels of the RVLM

region in both the WKY and SHR (Fig. 2). To assess the

influence of animal age, in the third series of experiments,

immunohistochemistry for cGMP/PNMT was performed in

young male WKY animals (10 weeks; n = 3). The pattern

of immunoreactivity was the same as that seen in the adult

WKY, with very few cells outside of the NA showing

cGMP-IR above the level of background in the RVLM

region (data not shown).

Detection of cGMP-IR in brainstem slices after

incubation in-vitro

In the fourth series of experiments, cGMP-IR in the RVLM

was examined in brainstem slices that were treated in-vitro

using experimental paradigms designed to increase cGMP

synthesis. Due to the extended time frame of the experi-

mental protocol, all experiments were performed in the

presence of IBMX (0.5 mM). Sections were examined after

incubation of brainstem slices in-vitro in aCSF (control),

with 100 lM NMDA or the NO donor DETA-NO

(100 lM; n = 3 for each experiment, total n = 9 WKY

10 week-old animals). In the aCSF control experiments,

the location of neuronal cGMP staining was comparable

with that from the fixation perfused experiments (Fig. 3a,

b). However, tissue integrity and overall fluorescence was

reduced in this series of experiments due to the incubation

protocol and the requirement for cryoprotection prior to

sectioning. In those brainstem slice preparations incubated

with NMDA (Fig. 3c, d) or DETA-NO (Fig. 3e, f), the

cGMP staining in the vasculature and NA was brighter

when compared to control (aCSF) preparations (inset

panels b0, d0 and f0), but no additional neuronal staining in

RVLM neurons was uncovered (Fig. 3).

Table 1 Primary and secondary antibodies: dilutions and source

Antigen and host species Dilution Product code and source

Primary detection antibodies

Anti cGMP: Rabbit polyclonal 1:500 AB303: Chemicon (Temecula CA, USA)

Anti nNOS: Mouse monoclonal 1:400 N2280: Sigma (St. Louis, MO, USA)

Anti PNMT: Sheep polyclonal 1:500 AB146: Chemicon

Anti TH: Mouse monoclonal 1:300 22941: Clone LNC1, Immunostar (Hudson, Wisconsin, USA)

Anti sGC (b1-subunit): Rabbit polyclonal 1:500 160897: Cayman Chemicals (Ann Arbour, MI USA)

Anti PGP9.5: Guinea pig polyclonal 1:750 AB5898: Chemicon

Anti GFAP: Mouse monoclonal 1:750 G3893, clone G-A 5: Sigma

Anti alpha-SMA: Mouse monoclonal 1:500 A5228, clone 1A4: Sigma

Secondary detection antibodies

FITC: Donkey anti-mouse IgG 1:500 Jackson (West Grove, PA)

CY2: Donkey anti-sheep IgG 1:500 Jackson

CY3: Donkey anti-rabbit IgG 1:500 Jackson

CY3: Donkey anti-guinea pig IgG 1:750 Jackson

CY3: Donkey anti-mouse IgG 1:750 Jackson

Cyclic guanosine monophosphate (cGMP); neuronal nitric oxide synthase (nNOS), phenylethanolamine N-methyltransferase (PNMT), tyrosine

hydroxylase (TH), soluble guanylate cyclase (sGC), Protein Gene Product-9.5 (PGP9.5), Glial fibrillary acidic protein (GFAP), alpha-Smooth

Muscle Actin (alpha-SMA), fluorescein isothiocyanate (FITC), cyanine (CY2), indocarbocyanine (CY3)

804 J Biomed Sci (2008) 15:801–812
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Detection of sGC-IR in the RVLM

In the fifth series of experiments, sections from WKY

animals (10 weeks, n = 3) were examined for sGC/PNMT

and sGC/nNOS-IR. Within the RVLM region, sGC-IR was

widely distributed and unlike the PNMT and nNOS-IR

neuronal populations, sGC cells did not localise to a dis-

tinct group or nuclei. Cells immunoreactive for sGC were

often in close proximity to PNMT (Fig. 4a) or nNOS

immunoreactive cells (data not shown) but there was no co-

localisation.

The sixth and final series of experiments were under-

taken in order to confirm the neuronal expression of sGC.

Sections from WKY animals (10 weeks, n = 3) were

double labelled for sGC and PGP-9.5 (neuronal specific

marker). Parallel control experiments double labelling for

Fig. 1 Confocal images

depicting double labelling for

PNMT/cGMP (a, b) and nNOS/

cGMP (c, d) in the RVLM of

adult WKY in the absence of

IBMX, and PNMT/cGMP (e, f)
in the RVLM of an adult SHR in

the absence of IBMX. PNMT-

immunoreactivity (a, e)

indicates the location of the C1

adrenergic cell group. Panel (c)

illustrates nNOS

immunoreactive cells, located

adjacent to the inferior olive

(IO) in the ventromedial region

of the RVLM. cGMP-IR in the

neurons of the NA and in blood

vessels (arrows) is evident

(panels b, d, f) however there is

no labelling of neurons with

cGMP in association with either

the PNMT or nNOS cell groups.

A single cGMP-IR neuron is

visible (arrow head, panel f) in

the C1 region of the SHR

animal. Scale bar in Panel

(b) = 200 lm for panels (a, b).

Scale bars in panels (d) and (f)
equal 100 lm for panels (c, d)

and (e, f), respectively

J Biomed Sci (2008) 15:801–812 805
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sGC and a non-neuronal cell (astroglia: marker GFAP)

were also performed. The cellular staining pattern for

GFAP was consistent with the morphology and distribution

of astroglia [40], and showed no colocalisation or pattern

similarity to the sGC staining (Fig. 4b). In contrast, all cells

showing sGC-IR were consistently double labelled with

PGP9.5, confirming that sGC was expressed in neurones in

the RVLM (Fig. 4c). Additional experiments in adult SHR

(n = 2) showed the same expression pattern of sGC in

PGP9.5-IR cells (data not shown).

Control experiments

Sections processed in the absence of primary antibody did

not show any staining (Fig. 5a). Control experiments for

sGC in the cerebellum showed the typical sGC-IR staining

(Fig. 5b) as previously described by Ding et al [41].

Positive controls for PGP9.5 using a TH double label

showed that all TH-IR neurons from the RVLM region also

expressed PGP9.5-IR, in addition to adjacent neurons that

expressed PGP9.5 only (Fig. 5c). Double labelling with

alpha-SMA, which labels smooth muscle cells of precap-

illary arterioles in the brain [42], showed co-localisation

with cGMP (Fig. 5d). Furthermore, our overall pattern of

vascular/microvascular cGMP staining in the brain is as

described by [31].

Discussion

It is well documented that the premotor sympathetic neu-

rons in the RVLM are critical to the maintenance and

control of blood pressure [43] and that endogenous NO is

an important mediator in this regulatory process [9, 10, 21].

Functional studies provide strong evidence that NO acts

through the sGC-cGMP signalling pathway in the RVLM

to drive sympathoexcitatory responses [6, 20, 44, 45],

however, we were unable to detect cGMP in the RVLM of

either the SHR or WKY rat strains. This was despite the

use of PDE inhibitors of the use of specific stimulators of

cGMP synthesis in slice preparations. We were able to

demonstrate abundant sGC-IR in neurones throughout the

RVLM region.

Cyclic GMP in the RVLM

An inability to detect cGMP in the RVLM may have been

associated with methodological issues, for example the

adequacy of antigen recognition/penetration, or sensitivity

of the technique. These concerns are alleviated somewhat

by our detection of cGMP in the adjacent brainstem region

of the NA. Alternative methodologies such as radioim-

munoassay may have been more sensitive, however the

ability to define specific neuronal populations is lost and in

a study examining hippocampal slices, analysis of cGMP

radioimmunoassay versus cGMP immunofluorescence

intensity showed comparable sensitivities [46]. The lack of

detectable cGMP expression in neurons of the RVLM is in

accord with a detailed study by De Vente et al. [22], who

similarly observed cGMP in the NA and nucleus tractus

solitarii (NTS) in the brain stem region, but do not com-

ment on its expression in the RVLM, despite the use of in-

vitro stimulation paradigms as applied in this study. In the

work by De Vente et al., the importance of IBMX to reveal

Fig. 2 Confocal images illustrating cGMP in RVLM sections taken

from adult WKY (a) and SHR (b) animals treated with IBMX in the

pre-perfusate solution. Midline is located to the left and ventral

surface of the medulla towards the base. Figures show the marked

increase in detection of cGMP in the vasculature (arrows) and cells of

the NA when compared to Fig. 1, however very few neurons

expressing cGMP were detected in the RVLM region. Individual

neurons showing cGMP-IR above the level of background staining

are shown (arrow heads). Scale bar in (a) equals 200 lm, scale bar in

panel (b) equals 100 lm
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otherwise non-detectable cGMP populations was stressed

[22, 47] and this has also been noted by other authors [48].

For this reason, IBMX was used in a subset of studies in

perfusion fixed rats and for the brainstem slice in-vitro

incubation experiments. However, while we found that

IBMX did increase the levels of cGMP in already visible

cell populations and in the vasculature of the brainstem, it

did not uncover cGMP-IR neurons in the RVLM,

suggesting IBMX-sensitive PDE activity did not limit

detection. This concurs with our previous work examining

cGMP levels in the spinal cord, where we were able to

show that cGMP expressing sympathetic preganglionic

neurons could be readily detected in the absence of IBMX

[30]. The effects of anaesthetic on cGMP levels also

require consideration. For this project, anaesthetic was an

ethical requirement. Results from studies investigating the

Fig. 3 Confocal images

depicting cGMP (b, d, e) and

either PNMT (a, c) or nNOS-IR

(e) in RVLM sections from

WKY rats after treatment in-

vitro to increase cGMP

synthesis. Panels (a) and (b)

show the PNMT/cGMP-IR,

respectively under control

incubation conditions. Panels

(c) and (d) illustrate PNMT/

cGMP-IR respectively after in-

vitro incubation in NMDA

(100 lm 2 min). Panels (e and

f) show nNOS/cGMP-IR,

respectively after incubation in

DETA-NO (100 lm 15 min).

Insets b0, d0 and f0 illustrate

cGMP expression in the NA

under control, NMDA and

DETA-NO experimental

conditions, respectively. All

experiments were performed in

the presence of 0.5 mM IBMX.

Despite cGMP-IR in blood

vessels (arrows) and NA being

enhanced by the in-vitro

treatments, they failed to reveal

the presence of additional

cGMP-IR neurons in the RVLM

regions in association with

either the PNMT or nNOS cell

groups. Scale bar in (f) equals

100 lm for panels (a–f). Scale

bar in f0 equals 100 lm for

panels (b0, d0 and f0)

J Biomed Sci (2008) 15:801–812 807

123



effect of anaesthetic on cGMP in the central nervous sys-

tem are conflicting, with some reports describing the

effects of anaesthetics as inhibitory, while others suggest

no effect or indeed an increase in cGMP levels [49]. Thi-

opentone was chosen for this study on the rationale that

intravenous agents are less likely to depress cGMP levels

than inhalation anaesthetics [50], and that pentobarbital

drugs specifically do not depress cGMP levels in the

brainstem [51]. Given the time period available for

anaesthetic washout and the demonstration of an increase

of detectable cGMP in surrounding tissues, it is likely the

effects of anaesthetic were minimal in this study.

The use of NMDA and NO donors to increase detectable

cGMP in brain slice in-vitro preparations has been dem-

onstrated previously in various tissues including the

paraventricular nucleus [52] cerebellum [22, 47] and hip-

pocampus and thalamus [46]. The choice of DETA-NO as a

donor was based on its ability to spontaneously liberate NO

in aqueous solutions in a stable, time-controlled fashion

[53]. It has been proposed that the type of NO donor can

make a significant difference to the way in which cGMP is

stimulated [54], however a recent study comparing the

effects of NONOates to the classical NO donor sodium

nitroprusside found limited difference in their ability to

stimulate sGC or influence cGMP staining patterns in brain

slice preparations [46]. The NO donor nitroglycerin has also

been shown to increase cGMP-IR in both neuronal and

vascular elements of the brain, but in agreement with our

study, did not uncover any additional or previously unde-

tected cGMP immunoreactive neuronal cell groups [31].

Soluble guanylate cyclase expression within the RVLM

The widespread detection of sGC within neurones of the

RVLM is in accord with previous studies that have dem-

onstrated both mRNA and protein for sGC within the

medulla [55, 56]. It is likely to be a functional form of sGC,

as the antibody we used was specific for the b1 subunit,

which is the obligatory subunit for functional sGC [15],

Fig. 4 Confocal images illustrating double labelling for PNMT/sGC

(a), GFAP/sGC (b) and PGP9.5/sGC (c) immunoreactivity in the

RVLM from a WKY animal (male, 10-weeks-old). Panel (a) shows

PNMT (red—CY3 secondary antibody) and sGC (green—FITC

secondary antibody) double labelling and illustrates numerous cells

IR for sGC (arrows) but lack of co localisation with PNMT (#). Panel

(b) shows GFAP (red—CY3 secondary antibody) and sGC (green—

FITC secondary antibody) and serves to demonstrate that the cells

immunoreactive for sGC (arrows) show none of the characteristic

morphological features of astrocytes (*) and that there is no double

labelling for the two markers. Panel (c) shows PGP9.5 (red—CY3

secondary antibody) and sGC (green—FITC secondary antibody) and

illustrates double labelling for all sGC cells (arrows; yellow), with

adjacent neurons immunoreactive for PGP9.5 only (*). Scale bar in

(a) equal 100 lm, scale bar in panels (b) and (c) equals 50 lm

c
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and has been shown to co-localise extensively with the a
subunit throughout the CNS of the adult rat brain [41].

While we did not demonstrate co-localisation of sGC

with the nNOS cell population, they were often in close

association. This pattern of expression is consistent with

other brain regions, where NO responsive and NO pro-

ducing structures are not found within the same neuronal

profile [22, 41, 57]. An exception is the NTS, where nNOS

and sGC have been shown to co-localise [58]. Similarly,

we saw sGC in close association but not co-localised with

the C1 cell group. Additional studies aimed at determining

the cell population which expresses sGC should include

retrograde labelling as a means of identification of the non-

C1 bulbospinal group [2], and double labelling for markers

such as neuropeptide Y to identify neurons which project to

the hypothalamus [59], or markers to enable identification

of glutamatergic and gabaergic neurons [3]. This would

then allow potential functional relevance to be attributed to

sGC expression in the region.

Conclusion

A number of physiological studies indicate that NO can

modulate pressor and reflex responses in the RVLM via an

sGC/cGMP dependent mechanism [6, 7, 44, 45]. While we

Fig. 5 Control experimental results. Panel (a) shows a negative

control for PGP9.5 (red—CY3 secondary antibody) and sGC

(green—FITC secondary antibody). Double labelling on a control

RVLM section from a 10-week-old WKY shows no immunoreactivity

for either series of labelling reactions. Panel (b) shows intense

labelling for sGC (red—CY3 secondary antibody) in the cerebellum

from a 10 week old WKY. Panel (c) shows positive control

experiments for PGP9.5 from an adult SHR animal. All TH positive

cells (green—FITC secondary antibody) were double labelled for

PGP9.5 (red—CY3 secondary antibody) resulting in a yellow colour

on the overlaid images (arrows). Immediately adjacent to the double-

labelled cells are PGP9.5 only labelled neurons (*). Panel (d) shows

control experiments assessing the vascular expression of cGMP in a

10 week old WKY. Sections were double labelled for alpha-smooth

muscle actin (alpha-SMA; green—FITC secondary antibody) and

cGMP (red—CY3 antibody). All alpha-SMA-IR structures showed

clear co-localisation with cGMP as illustrated. The cGMP expression

can be seen to extend from the larger precapillary arteriole (arrows) to

the microvasculature, where it is expressed in pericytes (the

contractile elements of the brain microvasculature) that do not label

for alpha-SMA [64, 65]. Scale bar in (a) equal 50 lm, scale bar in

panels (b) and (c) equal 100 lm, scale bar in panel (d) equals 20 lm

J Biomed Sci (2008) 15:801–812 809

123



were unable to detect cGMP-IR in the neurons of the C1

region, either in the resting state, when stimulated by

NMDA or NO donor, or after PDE inhibition, our sGC-IR

results certainly indicate the capacity for cGMP synthesis.

In an in-vivo study of the cat, nNOS-sGC co-localisation

was present in the RVLM only after activation by brady-

cardia (as identified by the presence of c-fos) [60]. This

raises the hypothesis that functional network inputs, such

as the sympathetic baroreflex pathway [45] are required to

drive a sGC/cGMP cascade in the RVLM. This may be the

mechanism by which functional differences in the SHR and

WKY are delineated and future studies investigating this

possibility are warranted.

Basal cGMP levels in neurons are the result of a

dynamic equilibrium between synthesis, driven by NO-

sGC, and the rate of degradation by PDEs, [61]. The rate of

synthesis can change with time due to desensitisation of

sGC, and cGMP kinetics can vary between not only dif-

ferent cell types but also different regions of the brain [62].

The expression of IBMX-insensitive PDEs, such as PDE9,

which is specific for cGMP [46, 63], may be another

important factor limiting detection of cGMP accumulation

in regions such as the RVLM. Of note is a recent study that

has shown under similar conditions to ours, that the use of

an NO donor in the presence of IBMX was not sufficient to

maximise cGMP detection in the hippocampus, but instead

required the further addition of the NO-independent acti-

vators of sGC: YC-1 or BAY 41-2272 [46]. This stimulated

cGMP synthesis in cells not normally known to express

cGMP and the authors suggest the presence of an endog-

enous sGC inhibitor as a possible explanation [46].

Examination of the role of functional stimulatory inputs,

NO-independent activation of sGC and the activity of

specific PDEs is therefore required before the definitive

role of cGMP as a contributor to altered sympathetic tone

in the SHR can be ascertained.
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