9,611 research outputs found

    AGT relations for abelian quiver gauge theories on ALE spaces

    Get PDF
    We construct level one dominant representations of the affine Kac-Moody algebra gl^k\widehat{\mathfrak{gl}}_k on the equivariant cohomology groups of moduli spaces of rank one framed sheaves on the orbifold compactification of the minimal resolution XkX_k of the Ak−1A_{k-1} toric singularity C2/Zk\mathbb{C}^2/\mathbb{Z}_k. We show that the direct sum of the fundamental classes of these moduli spaces is a Whittaker vector for gl^k\widehat{\mathfrak{gl}}_k, which proves the AGT correspondence for pure N=2\mathcal{N}=2 U(1)U(1) gauge theory on XkX_k. We consider Carlsson-Okounkov type Ext-bundles over products of the moduli spaces and use their Euler classes to define vertex operators. Under the decomposition gl^k≃h⊕sl^k\widehat{\mathfrak{gl}}_k\simeq \mathfrak{h}\oplus \widehat{\mathfrak{sl}}_k, these vertex operators decompose as products of bosonic exponentials associated to the Heisenberg algebra h\mathfrak{h} and primary fields of sl^k\widehat{\mathfrak{sl}}_k. We use these operators to prove the AGT correspondence for N=2\mathcal{N}=2 superconformal abelian quiver gauge theories on XkX_k.Comment: 58 pages; v2: typos corrected, reference added; v3: Introduction expanded, minor corrections and clarifying remarks added throughout, references added and updated; Final version published in Journal of Geometry and Physic

    Gamma-Rays from Dark Matter Mini-Spikes in M31

    Full text link
    The existence of a population of wandering Intermediate Mass Black Holes (IMBHs) is a generic prediction of scenarios that seek to explain the formation of Supermassive Black Holes in terms of growth from massive seeds. The growth of IMBHs may lead to the formation of DM overdensities called "mini-spikes", recently proposed as ideal targets for indirect DM searches. Current ground-based gamma-ray experiments, however, cannot search for these objects due to their limited field of view, and it might be challenging to discriminate mini-spikes in the Milky Way from the many astrophysical sources that GLAST is expected to observe. We show here that gamma-ray experiments can effectively search for IMBHs in the nearby Andromeda galaxy (also known as M31), where mini-spikes would appear as a distribution of point-sources, isotropically distributed in a \thickapprox 3^{\circ} circle around the galactic center. For a neutralino-like DM candidate with a mass m_{\chi}=150 GeV, up to 20 sources would be detected with GLAST (at 5\sigma, in 2 months). With Air Cherenkov Telescopes such as MAGIC and VERITAS, up to 10 sources might be detected, provided that the mass of neutralino is in the TeV range or above.Comment: 9 pages, 5 figure

    Efficient ConvNets for Analog Arrays

    Full text link
    Analog arrays are a promising upcoming hardware technology with the potential to drastically speed up deep learning. Their main advantage is that they compute matrix-vector products in constant time, irrespective of the size of the matrix. However, early convolution layers in ConvNets map very unfavorably onto analog arrays, because kernel matrices are typically small and the constant time operation needs to be sequentially iterated a large number of times, reducing the speed up advantage for ConvNets. Here, we propose to replicate the kernel matrix of a convolution layer on distinct analog arrays, and randomly divide parts of the compute among them, so that multiple kernel matrices are trained in parallel. With this modification, analog arrays execute ConvNets with an acceleration factor that is proportional to the number of kernel matrices used per layer (here tested 16-128). Despite having more free parameters, we show analytically and in numerical experiments that this convolution architecture is self-regularizing and implicitly learns similar filters across arrays. We also report superior performance on a number of datasets and increased robustness to adversarial attacks. Our investigation suggests to revise the notion that mixed analog-digital hardware is not suitable for ConvNets

    BCI-assisted training for upper limb motor rehabilitation: estimation of effects on individual brain connectivity and motor functions

    Get PDF
    The aim of the study is to quantify individual changes in scalp connectivity patterns associated to the affected hand movement in stroke patients after a 1-month training based on BCIsupported motor imagery to improve upper limb motor recovery. To perform the statistical evaluation between pre- and post-training conditions at the single subject level, a resampling approach was applied to EEG datasets acquired from 12 stroke patients during the execution of a motor task with the stroke affected hand before and after the rehabilitative intervention. Significant patterns of the network reinforced after the training were extracted and a significant correlation was found between indices related to the reinforced pattern and the clinical outcome indicated by clinical scales

    Grey-box Modelling of a Household Refrigeration Unit Using Time Series Data in Application to Demand Side Management

    Get PDF
    This paper describes the application of stochastic grey-box modeling to identify electrical power consumption-to-temperature models of a domestic freezer using experimental measurements. The models are formulated using stochastic differential equations (SDEs), estimated by maximum likelihood estimation (MLE), validated through the model residuals analysis and cross-validated to detect model over-fitting. A nonlinear model based on the reversed Carnot cycle is also presented and included in the modeling performance analysis. As an application of the models, we apply model predictive control (MPC) to shift the electricity consumption of a freezer in demand response experiments, thereby addressing the model selection problem also from the application point of view and showing in an experimental context the ability of MPC to exploit the freezer as a demand side resource (DSR).Comment: Submitted to Sustainable Energy Grids and Networks (SEGAN). Accepted for publicatio

    Electronic dummy for acoustical testing

    Get PDF
    Electronic Dummy /ED/ used for acoustical testing represents the average male torso from the Xiphoid process upward and includes an acoustic replica of the human head. This head simulates natural flesh, and has an artificial voice and artificial ears that measure sound pressures at the eardrum or the entrance to the ear canal

    Real-time detection of tsunami ionospheric disturbances with a stand-alone GNSS receiver. A preliminary feasibility demonstration

    Get PDF
    It is well known that tsunamis can produce gravity waves that propagate up to the ionosphere generating disturbed electron densities in the E and F regions. These ionospheric disturbances can be studied in detail using ionospheric total electron content (TEC) measurements collected by continuously operating ground-based receivers from the Global Navigation Satellite Systems (GNSS). Here, we present results using a new approach, named VARION (Variometric Approach for Real-Time Ionosphere Observation), and estimate slant TEC (sTEC) variations in a real-time scenario. Using the VARION algorithm we compute TEC variations at 56 GPS receivers in Hawaii as induced by the 2012 Haida Gwaii tsunami event. We observe TEC perturbations with amplitudes of up to 0.25 TEC units and traveling ionospheric perturbations (TIDs) moving away from the earthquake epicenter at an approximate speed of 316 m/s. We perform a wavelet analysis to analyze localized variations of power in the TEC time series and we find perturbation periods consistent with a tsunami typical deep ocean period. Finally, we present comparisons with the real-time tsunami MOST (Method of Splitting Tsunami) model produced by the NOAA Center for Tsunami Research and we observe variations in TEC that correlate in time and space with the tsunami waves

    Discrete-time moment closure models for epidemic spreading in populations of interacting individuals

    Get PDF
    AbstractUnderstanding the dynamics of spread of infectious diseases between individuals is essential for forecasting the evolution of an epidemic outbreak or for defining intervention policies. The problem is addressed by many approaches including stochastic and deterministic models formulated at diverse scales (individuals, populations) and different levels of detail. Here we consider discrete-time SIR (susceptible–infectious–removed) dynamics propagated on contact networks. We derive a novel set of ‘discrete-time moment equations’ for the probability of the system states at the level of individual nodes and pairs of nodes. These equations form a set which we close by introducing appropriate approximations of the joint probabilities appearing in them. For the example case of SIR processes, we formulate two types of model, one assuming statistical independence at the level of individuals and one at the level of pairs. From the pair-based model we then derive a model at the level of the population which captures the behavior of epidemics on homogeneous random networks. With respect to their continuous-time counterparts, the models include a larger number of possible transitions from one state to another and joint probabilities with a larger number of individuals. The approach is validated through numerical simulation over different network topologies
    • …
    corecore