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ABSTRACT. We construct level one dominant representations of the affine Kac-Moody algebra
ĝlk on the equivariant cohomology groups of moduli spaces of rank one framed sheaves on the
orbifold compactification of the minimal resolution Xk of the Ak−1 toric singularity C2/Zk. We
show that the direct sum of the fundamental classes of these moduli spaces is a Whittaker vector
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consider Carlsson-Okounkov type Ext-bundles over products of the moduli spaces and use their
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1 Introduction and summary

1.1 AGT relations and ALE spaces

In this paper we study a new occurrence of the deep relations between the moduli theory of sheaves
and the representation theory of affine/vertex algebras.

We are particularly interested in the kind of relations which come from gauge theory considera-
tions. An important example of these relations is the AGT correspondence for gauge theories on R4:
in [3] Alday, Gaiotto and Tachikawa conjectured a relation between the instanton partition functions
of N = 2 supersymmetric quiver gauge theories on R4 and the conformal blocks of two-dimensional
Ar−1 Toda conformal field theories (see also [62, 4]); this conjecture has been explicitly confirmed in
some special cases, see e.g. [41, 2, 59, 1]. From a mathematical perspective, this correspondence im-
plies: (1) the existence of a representation of the W-algebra W(glr) on the equivariant cohomology of
the moduli spaces M(r, n) of framed sheaves on the projective plane P2 of rank r and second Chern
class n such that the latter is isomorphic to a Verma module ofW(glr); (2) the fundamental classes of
M(r, n) give a Whittaker vector of W(glr) (pure gauge theory); (3) the Ext vertex operator is related
to a certain “intertwiner” of W(glr) under the isomorphism stated in (1) (quiver gauge theory). The
instances (1) and (2) were proved by Schiffmann and Vasserot [56], and independently by Maulik and
Okounkov [40]. For r = 1, the moduli space M(1, n) is isomorphic to the Hilbert scheme of n points
on C2 and W(gl1) is the W-algebra associated with an infinite-dimensional Heisenberg algebra; the
AGT correspondence for pure U(1) gauge theory reduces to the famous result of Nakajima [46, 47]
in the equivariant case [60, 36, 44]. Presently, (3) has been proved only in the rank one case [18] and
in the rank two case [17, 49].

In this paper we are interested in the AGT correspondence for N = 2 quiver gauge theories
on ALE spaces associated with the Dynkin diagram of type Ak−1 for k ≥ 2. The corresponding
instanton partition functions are defined in terms of equivariant cohomology classes over Nakajima
quiver varieties of type the affine Dynkin diagram Âk−1. These quiver varieties depend on a real
stability parameter ξR, which lives in an open subset of Rk having a “chambers” decomposition:
if two real stability parameters belong to the same chamber, the corresponding quiver varieties are
(equivariantly) isomorphic; otherwise, the corresponding quiver varieties are only C∗-diffeomorphic.
Therefore, the pure gauge theories partition functions should be all nontrivially equivalent, while the
partition functions for quiver gauge theories should satisfy “wall-crossing” formulas (cf. [7, 31]).

By looking at instanton partition functions of pure gauge theories associated with moduli spaces
of Zk-equivariant framed sheaves on P2 (which are quiver varieties depending on a so-called “level
zero chamber”), the authors of [9, 53, 6] conjectured an extension of the AGT correspondence in
the A-type ALE case as a relation between instanton partition functions of N = 2 quiver gauge
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theories and conformal blocks of Toda-like conformal field theories with Zk parafermionic symmetry.
In particular, the pertinent algebra to consider in this case is the coset

A(r, k) :=
ĝlN

ĝlN−k

acting at level r, where N is related to the equivariant parameters. For r = 1 the algebra A(1, k) is
simply ĝlk acting at level one. In general, A(r, k) is isomorphic to the direct sum of the affine Lie
algebra ĝlk acting at level r and the Zk-parafermionic W(glr)-algebra. Checks of the conjecture has
been done [61, 30] by using partition functions of pure gauge theories associated with moduli spaces
of Zk-equivariant framed sheaves on P2. In [10, 11] the authors studied in details N = 2 quiver gauge
theories on the minimal resolution X2 of the Kleinian singularity C2/Z2 and provided evidences for
the conjecture: in this case, the quiver variety depends on a so-called “level infinity chamber” and
corresponds to moduli spaces of framed sheaves on a suitable stacky compactification of X2. In the
k = 2 case, a comparison of these approaches using different stability chambers is done in [5]; further
speculations in the arbitrary k case are in [12].

Mathematically, this correspondence should imply: (1) the existence of a representation of the
coset A(r, k) on the equivariant cohomology of Nakajima quiver varieties associated with the affine
A-type Dynkin diagram such that the latter is isomorphic to a Verma module of A(r, k); (2) the fun-
damental classes of the quiver varieties give a Whittaker vector of A(r, k) (pure gauge theory); (3)
the Ext vertex operator is related to a certain “intertwiner” of A(r, k) under the isomorphism stated in
(1) (quiver gauge theory). As pointed out in [5], different chambers should provide different realiza-
tions of the action conjectured in (1). On the other hand, the conjectural wall-crossing behavior of the
instanton partition functions for quiver gauge theories [31] should be related by a similar behavior of
the Ext vertex operators by varying of the stability chambers.

The ALE space we consider in this paper is the minimal resolution Xk of the simple Kleinian
singularity C2/Zk. In [14] an orbifold compactification Xk of Xk is constructed by adding a smooth
divisor D∞, which lays the foundations for a new sheaf theory approach to the study of U(r) instan-
tons on Xk (cf. [23]). Moduli spaces of sheaves on Xk framed along D∞ are also constructed in [14];
by using these moduli spaces we have a new sheaf theory approach to the study of Nakajima quiver
varieties with the stability parameter of Xk and, consequently, of U(r) gauge theories on ALE spaces
of type Ak−1 which are isomorphic to Xk. In the present paper we use this new approach to study the
AGT correspondence for abelian quiver gauge theories on Xk: from a physics point of view we prove
the relations between instanton partition functions and conformal blocks and from a mathematical
point of view we prove (1), (2) and (3).

1.2 Summary of results

Let us now summarize our main results. Recall that the compactification Xk is a two-dimensional
projective toric orbifold with Deligne-Mumford torus T := C∗ × C∗; the complement Xk \ Xk is
a smooth Cartier divisor D∞ endowed with the structure of a Zk-gerbe. There exist line bundles
OD∞(j) on D∞, for j = 0, 1, . . . , k − 1, endowed with unitary flat connections associated with the
irreducible unitary representations of Zk. Hence by [23, Theorem 6.9] locally free sheaves on Xk

which are isomorphic along D∞ to OD∞(j) correspond to U(1) instantons on Xk with holonomy at
infinity given by the j-th irreducible unitary representation of Zk, for j = 0, 1, . . . , k − 1.

Fix j = 0, 1, . . . , k − 1. A rank one (D∞,OD∞(j))-framed sheaf on Xk is a pair (E , φE ), where
E is a rank one torsion free sheaf on Xk, locally free in a neighbourhood of D∞, and φE : E

∣∣
D∞

∼−→
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OD∞(j) is an isomorphism. Let M(~u, n, j) be the fine moduli space parameterizing isomorphism
classes of rank one (D∞,OD∞(j))-framed sheaves on Xk, with first Chern class given by ~u ∈ Zk−1

and second Chern class n. As explained in Remark 5.11, the vector ~u is canonically associated with
an element γ~u + ωj ∈ Q + ωj , where Q is the root lattice of the Dynkin diagram of type Ak−1 and
ωj is the j-th fundamental weight of type Ak−1. We denote by Uj the set of vectors ~u associated with
γ + ωj for some γ ∈ Q.

The moduli spaceM(~u, n, j) is a smooth quasi-projective variety of dimension 2n. OnM(~u, n; j)
there is a natural T -action induced by the toric structure of Xk. Let ε1, ε2 be the generators of the
T -equivariant cohomology of a point and consider the localized equivariant cohomology

W~u,j :=
⊕

n≥0

H∗T
(
M(~u, n, j)

)
⊗C[ε1,ε2] C(ε1, ε2) .

Define also the total localized equivariant cohomology by summing over all vectors ~u ∈ Uj:

Wj :=
⊕

~u∈Uj

W~u,j .

The affine Lie algebra ĝlk acts on Wj as follows (see Proposition 6.24 and Proposition 6.28).

Proposition. There exists a ĝlk-action on Wj under which it is the j-th dominant representation of ĝlk
at level one, i.e., the highest weight representation of ĝlk with fundamental weight ω̂j of type Âk−1.
Moreover, the weight spaces of Wj with respect to the ĝlk-action are the W~u,j with weights γ~u + ωj .

The vector spaces W~u,j also have a representation theoretic intepretation.

Corollary (Corollary 6.27). W~u,j is a highest weight representation of the Virasoro algebra asso-
ciated with ĝlk of conformal dimension ∆~u := 1

2 ~u · C−1~u, where C is the Cartan matrix of type
Ak−1.

The representation is constructed by using a vertex algebra approach via the Frenkel-Kac con-
struction. A similar construction for the cohomology groups of moduli spaces of rank one torsion free
sheaves over smooth projective surfaces is outlined in [47, Chapter 9]. In [42], Nagao analysed ver-
tex algebra realizations of representations of ŝlk on the equivariant cohomology groups of Nakajima
quiver varieties associated with the affine Dynkin diagram Âk−1, for an integer k ≥ 2, with dimension
vector corresponding to the trivial holonomy at infinity j = 0; in this case the pertinent representation
is the basic representation of ŝlk.

In the following we describe our AGT relations, which connect together Wj for j = 0, 1, . . . , k−
1, the action of ĝlk on Wj and abelian quiver gauge theories on Xk. The first relation we obtain
concerns the pure gauge theory. Let ZXk

(
ε1, ε2; q, ~ξ

)
j

be the instanton partition function for the
pure N = 2 U(1) gauge theory on the ALE space Xk with fixed holonomy at infinity given by the
j-th irreducible representation of Zk (see Section 8.1). It has the following representation theoretic
characterization.

Theorem (AGT relation for pure N = 2 U(1) gauge theory). The Gaiotto state

Gj :=
∑

~u∈Uj

∑

n≥0

[
M(~u, n, j)

]
T
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is a Whittaker vector for ĝlk. Moreover, the weighted norm of the weighted Gaiotto state

Gj

(
q, ~ξ

)
:=

∑

~u∈Uj

∑

n≥0

qn+ 1
2

~u·C−1~u ~ξ C−1~u
[
M(~u, n, j)

]
T

is exactly ZXk

(
ε1, ε2; q, ~ξ

)
j
.

We also consider N = 2 superconformal quiver gauge theories with gauge group U(1)r+1 for
some r ≥ 0. By the ADE classification in [52, Chapter 3] the admissible quivers in this case are the
linear quivers of the finite-dimensional Ar-type Dynkin diagram and the cyclic quivers of the affine
Âr-type extended Dynkin diagram. In order to state AGT relations in these cases, we introduce Ext
vertex operators [18, 17, 49]. Consider the element Eµ ∈ K

(
M(~u1, n1, j1)×M(~u2, n2, j2)

)
whose

fibre over a point
(
[(E , φE )], [(E ′, φE ′)]

)
is

(
Eµ

)
([(E,φE)] , [(E ′,φE′)])

= Ext1
(
E , E ′ ⊗OXk

(µ)⊗OXk
(−D∞)

)
,

where OXk
(µ) is the trivial line bundle on Xk on which the torus Tµ = C∗ acts by scaling the fibres

with H∗Tµ
(pt; C) = C[µ]. By using the Euler class of Eµ we define a vertex operator Vµ(~x, z) ∈

End
( ⊕k−1

j=0 Wj

)
[[z± 1, x± 1

1 , . . . , x± 1
k−1]] (see Section 7.1). Under the decomposition ĝlk = h⊕ ŝlk,

we have the following characterization of Vµ(~x, z) in terms of vertex operators depending respectively
on h and ŝlk.

Theorem (Theorem 7.6). The vertex operator Vµ(~x, z) can be expressed in the form

Vµ(~x, z) = V− µ√
−k ε1 ε2

,
µ+ε1+ε2√
−k ε1 ε2

(z)

⊗
k−1∑

j1,j2=0

∑

~u1∈Uj1
,~u2∈Uj2

V̄µ(~v21, ~x, z) z∆~u2
−∆~u1 exp

(
log z c− γ21

)
exp

(
γ21

)∣∣
W~u1,j1

,

where Vα,β(z) denotes a generalized bosonic exponential associated with the Heisenberg algebra h

(see Definition 3.3), exp
(
log z c−γ21

)
exp

(
γ21

)
is the vertex operator on Wj1 defined in Equation

(7.4), and V̄µ(~v21, ~x, z) is the primary field (7.5) of the Virasoro algebra associated with ŝlk with
conformal dimension ∆~u2−~u1

= 1
2 ~v21 ·C~v21, where ~v21 := C−1(~u2−~u1) for j1, j2 = 0, 1, . . . , k−1

and ~u1 ∈ Uj1 , ~u2 ∈ Uj2 .

For j1, j2 = 0, 1, . . . , k − 1 denote by Vj1,j2
µ (~x, z) the restriction of the vertex operator Vµ(~x, z)

to Hom(Wj1 ,Wj2)[[z
± 1, x± 1

1 , . . . , x± 1
k−1]].

Let ZÂr
Xk

(
ε1, ε2,µ;q,~ξ

)
j

be the instanton partition function for the N = 2 superconformal

U(1)r+1 quiver gauge theory of type Âr with holonomy at infinity associated with j := (j0, j1, . . . , jr),
topological couplings qυ ∈ C∗ and ~ξυ ∈ (C∗)k−1 for υ = 0, 1, . . . , r, and masses µ := (µ0, µ1, . . . , µr).
We prove the following AGT relation.

Theorem (AGT relation for N = 2 U(1)r+1 quiver gauge theory of type Âr). The partition function
of the Âr-theory on Xk is given by

ZÂr
Xk

(
ε1, ε2,µ;q,~ξ

)
j

= TrWj0
qL0 ~ξ C−1~h

r∏

υ=0

Vjυ,jυ+1
µυ

(~xυ , zυ) δconf
υ,υ+1 ,
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where q := q0 q1 · · · qr, ( ~ξ )i := (~ξ0)i (~ξ1)i · · · (~ξr)i, zυ := z0 q1 · · · qυ, and (~xυ)i := (~x0)i (~ξ1)i · · ·
(~ξυ)i for υ = 1, . . . , r and i = 1, . . . , k−1. Here L0 is the Virasoro energy operator associated to ĝlk,
~h = (h1, . . . , hk−1) are the generators of the Cartan subalgebra of slk, and δconf

υ,υ+1 is the conformal
restriction operator defined in Equation (8.6).

We also get a characterization of ZÂr
Xk

(
ε1, ε2,µ;q,~ξ

)
j

in terms of the corresponding partition

function on C2 and a part depending only on ŝlk.

Corollary. Let Vµ(~v21, ~x, z) := z∆~u2
−∆~u1 V̄µ(~v21, ~x, z) exp

(
log z c − γ21

)
exp

(
γ21

)
. Then we

have

ZÂr
Xk

(
ε1, ε2,µ;q,~ξ

)
j

= ZÂr

C2 (ε1, ε2,µ; q)
1
k q

1
24

(1− 1
k
) η(q)

1
k
−1

× TrV( ω̂j0
) qL

ŝlk
0 ~ξ C−1~h

r∏

υ=0

∑

(~uυ∈Uconf
jυ

)

Vµυ (~vυ,υ+1, ~xυ, zυ)
∣∣
W~uυ,jυ

,

where η(q) is the Dedekind function, V( ω̂j0 ) is the j0-th dominant representation of ŝlk and Uconf
jυ

is
the subset of Ujυ defined in Equation (8.4).

Let ZAr
Xk

(
ε1, ε2,µ;q,~ξ

)
j

be the instanton partition function for the N = 2 superconformal

U(1)r+1 quiver gauge theory of typeAr with holonomy at infinity associated with j := (j0, j1, . . . , jr).
We also prove the following AGT relation.

Theorem (AGT relation for N = 2 U(1)r+1 quiver gauge theory of type Ar). The partition function
of the Ar-theory on Xk is given by

ZAr
Xk

(
ε1, ε2,µ;q,~ξ

)
j

=
〈
|0〉conf , Vµ0(~x0, z0)

( r∏

υ=1

Vjυ−1,jυ
µυ

(~xυ, zυ) δconf
υ−1,υ

)
Vµr+1(~xr+1, zr+1)|0〉conf

〉
⊕k−1

j=0 Wj

,

where zυ := z0 q0 q1 · · · qυ and (~xυ)i := (~x0)i (~ξ0)i (~ξ1)i · · · (~ξυ−1)i for υ = 1, . . . , r + 1, i =
1, . . . , k − 1, and |0〉conf :=

∏r
υ=0 δ

conf
0,υ ⊲ [∅,~0 ] with [∅,~0 ] the vacuum vector of the fixed point basis

of
⊕k−1

j=0 Wj .

Denote by V the direct sum of the k level one dominant representations of ŝlk. Similarly to before,
we have the following characterization.

Corollary. We have

ZAr
Xk

(
ε1, ε2,µ;q,~ξ

)
j

= ZAr

C2 (ε1, ε2,µ;q)
1
k

×
〈
|0〉conf ,

( k−1∑

j0,j′0=0

∑

~u0∈Uj0
,~u′0∈Uj′

0

Vµ0(~v0′,0, ~x0, z0)
∣∣
W~u0,j0

)

×
r∏

υ=1

∑

(~uυUconf
jυ

)

Vµυ (~vυ−1,υ, ~xυ, zυ)
∣∣
W~uυ,jυ
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×
( k−1∑

jr+1,j′r+1=0

∑

~u1∈Uj1
,~u′1∈Uj′1

Vµr+1(~v1′,1, ~xr+1, zr+1)
∣∣
W~u1,j1

)
|0〉conf

〉
V
.

Another important aspect of the AGT correspondence that we address in this paper is the relation
of our construction with quantum integrable systems. In particular, for any j = 0, 1, . . . , k − 1 we
define an infinite system of commuting operators which are diagonalized in the fixed point basis of
Wj; geometrically these operators correspond to multiplication by equivariant cohomology classes
(see Section 7.3). The eigenvalues of these operators with respect to this basis can be decomposed
into a part associated with k non-interacting Calogero-Sutherland models and a part which can be
interpreted as particular matrix elements of the vertex operators Vµ(~x, z) in highest weight vectors of
ĝlk. The significance of this property is that this special orthogonal basis manifests itself in the special
integrable structure of the two-dimensional conformal field theory and yields completely factorized
matrix elements of composite vertex operators explicitly in terms of simple rational functions of the
basic parameters, which from the gauge theory perspective represent the contributions of bifundamen-
tal matter fields.

The study of the AGT relation for pure N = 2 U(1) gauge theories and the problem of construct-
ing commuting operators associated with ĝlk is also addressed in [8] from another point of view: there
they consider the “conformal” limit of the Ding-Iohara algebra, depending on parameters q, t, for q, t
approaching a primitive k-th root of unity and relate the representation theory of this limit to the AGT
correspondence. However, their point of view is completely algebraic, so unfortunately it is not clear
to us how to geometrically construct the action of the conformal limit on the equivariant cohomology
groups.

1.3 Outline

This paper is structured as follows. In Section 2 we briefly recall the relevant combinatorial notions
that we use in this paper. In Section 3 we collect preliminary material on Heisenberg algebras and
affine Lie algebras of type Âk−1, giving particular attention to the Frenkel-Kac construction of level
one dominant representations of ŝlk and ĝlk. In Section 4 we review the AGT relations for N = 2
superconformal abelian quiver gauge theories on R4. In Section 5 we briefly recall the construction
of the orbifold compactification Xk and of moduli spaces of framed sheaves on Xk from [14]. Sec-
tion 6 addresses the construction of the action of ĝlk on Wj for j = 0, 1, . . . , k − 1: we perform
a vertex algebra construction of the representation by using the Frenkel-Kac theorem. In Section 7
we define the virtual bundle Eµ and the vertex operator Vµ(~x, z), and we characterize it in terms of
vertex operators of an infinite-dimensional Heisenberg algebra h and primary fields of ŝlk under the
decomposition ĝlk = h ⊕ ŝlk; moreover, we geometrically define an infinite system of commuting
operators. In Section 8 we prove our AGT relations, and furthermore provide expressions for our
partition functions in terms of the corresponding partition functions on C2 and a part depending only
on ŝlk. The paper concludes with two Appendices containing some technical details of the construc-
tions from the main text: in Appendix A we give the proof that the vertex operator V̄µ(~v21, ~x, z) is
a primary field, while in Appendix B we recall the expressions from [14] for the edge factors which
appear in the definition of V̄µ(~v21, ~x, z) as well as in the eigenvalues of the integrals of motion.
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2 Combinatorial preliminaries

2.1 Partitions and Young tableaux

A partition of a positive integer n is a nonincreasing sequence of positive numbers λ = (λ1 ≥ λ2 ≥
· · · ≥ λℓ > 0) such that |λ| := ∑ℓ

a=1 λa = n. We call ℓ = ℓ(λ) the length of the partition λ. Another
description of a partition λ of n uses the notation λ = (1m1 2m2 · · · ), wheremi = #{a ∈ N |λa = i}
with

∑
i imi = n and

∑
i mi = ℓ(λ). On the set of all partitions there is a natural partial ordering

called dominance ordering: For two partitions µ and λ, we write µ ≤ λ if and only if |µ| = |λ| and
µ1 + · · · + µa ≤ λ1 + · · ·+ λa for all a ≥ 1. We write µ < λ if and only if µ ≤ λ and µ 6= λ.

One can associate with a partition λ its Young tableau, which is the set Yλ = {(a, b) ∈ N2 | 1 ≤
a ≤ ℓ(λ) , 1 ≤ b ≤ λa}. Then λa is the length of the a-th column of Yλ; we write |Yλ| = |λ|
for the weight of the Young tableau Yλ. We shall identify a partition λ with its Young tableau Yλ.
For a partition λ, the transpose partition λ′ is the partition whose Young tableau is Yλ′ := {(b, a) ∈
N2 | (a, b) ∈ Yλ}.

The elements of a Young tableau Y are called the nodes of Y . For a node s = (a, b) ∈ Y , the
arm length of s is the quantity A(s) := AY (s) = λa − b and the leg length of s the quantity L(s) :=
LY (s) = λ′b−a. The arm colength and leg colength are respectively given byA′(s) := A′Y (s) = b−1
and L′(s) := L′Y (s) = a− 1.

2.2 Symmetric functions

Here we recall some preliminaries about the theory of symmetric functions in infinitely many variables
which we shall use later on. Our main reference is [37].

Let F be a field of characteristic zero. The algebra of symmetric polynomials in N variables is
the subspace ΛF,N of F[x1, . . . , xN ] which is invariant under the action of the group of permutations
σN on N letters. Then ΛF,N is a graded ring: ΛF,N =

⊕
n≥0 Λn

F,N , where Λn
F,N is the ring of

homogeneous symmetric polynomials inN variables of degree n (together with the zero polynomial).

For any M > N there are morphisms ρMN : ΛF,M → ΛF,N that map the variables xN+1, . . . , xM

to zero. They preserve the grading, and hence we can define ρn
MN : Λn

F,M → Λn
F,N ; this allows us to

define the inverse limits
Λn

F := lim←−
N

Λn
F,N ,

9



and the algebra of symmetric functions in infinitely many variables as ΛF :=
⊕

n≥0 Λn
F. In the fol-

lowing when no confusion is possible we will denote ΛF (resp. Λn
F) simply by Λ (resp. Λn).

Now we introduce a basis for Λ. For this, we start by defining a basis in ΛN . Let µ = (µ1, . . . , µt)
be a partition with t ≤ N , and define the polynomial

mµ(x1, . . . , xN ) =
∑

τ∈σN

x
µτ(1)

1 · · · xµτ(N)

N ,

where we set µj = 0 for j = t+ 1, . . . , N . The polynomial mµ is symmetric, and the set of mµ for
all partitions µ with |µ| ≤ N is a basis of ΛN . Then the set of mµ, for all partitions µ with |µ| ≤ N
and

∑
i µi = n, is a basis of Λn

N . Since for M > N ≥ t we have ρn
MN (mµ(x1, . . . , xM )) =

mµ(x1, . . . , xN ), by using the definition of inverse limit we can define the monomial symmetric func-
tions mµ. By varying over the partitions µ of n, these functions form a basis for Λn.

Next we define the n-th power sum symmetric function pn as

pn := m(n) =
∑

i

xn
i .

The set consisting of symmetric functions pµ := pµ1 . . . pµt , for all partitions µ = (µ1, . . . , µt), is
another basis of Λ.

We now set F = C throughout and we fix a parameter β ∈ C (though everything works for any
field extension C ⊆ F and β ∈ F). Define an inner product 〈−,−〉β on the vector space Λ ⊗ Q(β)
with respect to which the basis of power sum symmetric functions pλ(x) are orthogonal with the
normalization

〈pλ, pµ〉β = δλ,µ zλ β
−ℓ(λ) , (2.1)

where δλ,µ :=
∏

a δλa,µa and

zλ :=
∏

j≥1

jmj mj! .

This is called the Jack inner product.

Definition 2.2. The monic forms of the Jack functions Jλ(x;β−1) ∈ Λ⊗Q(β) for x = (x1, x2, . . .)
are uniquely defined by the following two conditions [37]:

(i) Triangular expansion in the basis mµ(x) of monomial symmetric functions:

Jλ(x;β−1) = mλ(x) +
∑

µ<λ

ψλ,µ(β)mµ(x) with ψλ,µ(β) ∈ Q(β) .

(ii) Orthogonality:

〈Jλ, Jµ〉β = δλ,µ

∏

s∈Yλ

β L(s) +A(s) + 1
β

(
L(s) + 1

)
+A(s)

.

⊘
Lemma 2.3. For any integer n ≥ 1 we have

(p1)n = n!
∑

|λ|=n

∏

s∈Yλ

1
β L(s) +A(s) + 1

Jλ .
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Proof. The assertion follows straightforwardly from [58, Proposition 2.3 and Theorem 5.8] after nor-
malizing our Jack functions: the Jack functions considered in [58] are given by

J̃λ = β−|λ|
∏

s∈Yλ

[
β

(
L(s) + 1

)
+A(s)

]
Jλ ,

where the normalization factor is computed by using [58, Theorem 5.6].

3 Infinite-dimensional Lie algebras

3.1 Heisenberg algebras

In this section we recall the representation theory of Heisenberg algebras and the affine Lie algebras
ŝlk. Since the Lie algebra glk coincides with F id ⊕ slk, as a by-product we get the representation
theory of ĝlk.

Let C ⊆ F be a field extension of C. Let L be a lattice, i.e., a free abelian group of finite rank d
equipped with a symmetric nondegenerate bilinear form 〈−,−〉L : L×L → Z. Fix a basis γ1, . . . , γd

of L.

Definition 3.1. The lattice Heisenberg algebra hF,L associated with L is the infinite-dimensional Lie
algebra over F generated by qi

m, for m ∈ Z \ {0} and i ∈ {1, . . . , d}, and the central element c

satisfying the relations
{ [

qi
m, c

]
= 0 for m ∈ Z \ {0} , i ∈ {1, . . . , d} ,

[
qi
m, q

j
n

]
= mδm,−n 〈γi, γj〉L c for m,n ∈ Z \ {0} , i, j ∈ {1, . . . , d} .

(3.2)

⊘

For any element v ∈ L we define the element qv
m ∈ hF,L by linearity, with qi

m := q
γi
m. Set

h+
F,L :=

⊕

m>0

d⊕

i=1

Fqi
m and h−F,L :=

⊕

m<0

d⊕

i=1

Fqi
m .

Let us denote by U(hF,L) (resp. U(h±F,L)) the universal enveloping algebra of hF,L (resp. h±F,L),

i.e., the unital associative algebra over F generated by hF,L (resp. h±F,L).

We introduce some terminology similar to that used in [25, Section 5.2.5].

Definition 3.3. For v ∈ L, define free bosonic fields as the elements

ϕv
−(z) :=

∞∑

m=1

zm

m
qv
−m and ϕv

+(z) :=
∞∑

m=1

z−m

m
qv
m

in h−F,L[[z]] and h+
F,L[[z−1]], respectively. For α, β ∈ F, define the generalized bosonic exponential

Vv
α,β(z) := exp

(
αϕv
−(z)

)
exp

(
β ϕv

+(z)
)

=: : exp
(
αϕ−(z) + β ϕ+(z)

)
:

in hF,L[[z, z−1]], where the symbol : − : denotes normal ordering with respect to the decomposition
hF,L = h−F,L ⊕ h+

F,L, i.e., all negative generators qv
−m are moved to the left of all positive generators

qv
m for m > 0. When β = −α, we call Vv

α,−α(z) a normal-ordered bosonic exponential. ⊘
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Remark 3.4. The bosonic exponentials are vertex operators, i.e., they are uniquely characterized by
their commutation relations in the Heisenberg algebra hF,L: For v, v′ ∈ L one has

[
qv
m,V

v′
α,β(z)

]
=

{
α 〈v, v′ 〉L zm Vv′

α,β(z) for m > 0 ,

−β 〈v, v′ 〉L zm Vv′
α,β(z) for m < 0 .

The compositions of vertex operators Vv1
α1,β1

(z1) · · ·Vvn
αn,βn

(zn) in hF,L[[z± 1
1 , . . . , z± 1

n ]] can be easily
calculated as

n∏

i=1

Vvi
αi,βi

(zi) =
( ∏

1≤j<i≤n

(
1− zi

zj

)−αi βj 〈vi,vj〉L
)

:
n∏

i=1

Vvi
αi,βi

(zi) : , (3.5)

where the factors (1− zi
zj

)−αi βj 〈vi,vj〉L are understood as formal power series in zi
zj

. △
Remark 3.6. When v = γi for i = 1, . . . , d, we simply denote ϕi

±(z) := ϕγi
± (z); if d = 1, we further

simply write ϕ±(z). We use analogous notation for the generalized free boson exponentials. △
Example 3.7. Consider the lattice L := Zk with the symmetric nondegenerate bilinear form 〈v,w〉L =∑k

i=1 viwi. In this case hF,L is called the Heisenberg algebra of rank k over F, and we denote it by
hk

F. It is generated by elements pi
m, m ∈ Z\{0}, i = 1, . . . , k, and the central element c satisfying the

relations (3.2) with 〈γi, γj〉L = δij . When k = 1, hF,L is simply the infinite-dimensional Heisenberg
algebra hF over the field F.

Example 3.8. Fix an integer k ≥ 2 and let Q be the root lattice of type Ak−1 endowed with the
standard bilinear form 〈−,−〉Q (see Remark 3.16 below). Let hF,Q be the lattice Heisenberg algebra
over F associated to Q; we call hF,Q the Heisenberg algebra of type Ak−1 over F. It can be realized
as the Lie algebra over F generated by qi

m for m ∈ Z \ {0}, i = 1, . . . , k− 1, and the central element
c satisfying the relations

{ [
qi
m, c

]
= 0 for m ∈ Z \ {0} , i = 1, . . . , k − 1 ,

[
qi
m, q

j
n

]
= m δm,−n Cij c for m ∈ Z \ {0} , i, j = 1, . . . , k − 1 ,

where C = (Cij) is the Cartan matrix of type Ak−1.

3.1.1 Virasoro generators

We construct the Viraroso algebra associated with the Heisenberg algebra hF. Define elements

Lh
0 =

∞∑

m=1

q−m qm and Lh
n =

1
2

∑

m∈Z
q−m qm+n for n ∈ Z \ {0}

in the completion of the enveloping algebra U(hF), where we set q0 := 0. They satisfy the relations
[
Lh

n, L
h
m

]
= (n−m)Lh

n+m +
n

12
(
n2 − 1

)
δm+n,0 c ,

hence c and Lh
n with n ∈ Z generate a Virasoro algebra VirF over F.

Remark 3.9. It is well-known (see Appendix A) that the generalized bosonic exponential Vα,β(z) is
a primary field of the Virasoro algebra VirF generated by Lh

n with conformal dimension ∆(α, β) =
−1

2 αβ, i.e., it satisfies the commutation relations
[
Lh

n,Vα,β(z)
]

= zn
(
z ∂z + ∆(α, β) (n + 1)

)
Vα,β(z) .

△
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3.1.2 Fock space

We are interested in a special type of representation of a given lattice Heisenberg algebra hF,L over F.

Definition 3.10. Let W be the trivial representation of h+
F,L (i.e., the one-dimensional F-vector space

with trivial h+
F,L-action). The Fock space representation of the Heisenberg algebra hF,L is the induced

representation FF,L := hF,L ⊗h+
F,L
W . ⊘

The Fock space is an irreducible highest weight representation whereby any element w0 ∈W is a
highest weight vector, i.e., h+

F,L annihilates w0 and the elements in W of the form qv
−m1

· · · qv
−ml

⊲w0

generate FF,L for v ∈ L, l ≥ 1 and mi ≥ 1 for i = 1, . . . , l.
Example 3.11. For the Heisenberg algebra hF, the Fock space FF is isomorphic to the polynomial
algebra ΛF = F [p1, p2, . . .] in the power sum symmetric functions introduced in Section 2.2. In this
realization, the actions of the generators are given for m > 0 by

p−m ⊲ f := pmf , pm ⊲ f := m
∂f

∂pm
and c ⊲ f := f (3.12)

for any f ∈ ΛF.

Example 3.13. The Fock space Fk
F of the rank k Heisenberg algebra hk

F can be realized as the tensor
product of k copies of the polynomial algebra ΛF:

Fk
F ≃ Λ⊗k

F .

In this realization, the action of the generators pi
m is obvious: each copy of the Heisenberg algebra

generated by pi
m for m ∈ Z \ {0} acts on the i-th factor ΛF as in Equation (3.12).

3.1.3 Whittaker vectors

We give the definition of Whittaker vector for Heisenberg algebras following [19, Section 3]; in
conformal field theory it has the meaning of a coherent state.

Definition 3.14. Let χ : U(h+
F,L) → F be an algebra homomorphism such that χ|h+

F,L
6= 0, and let V

be a U(hF,L)-module. A nonzero vector w ∈ V is called a Whittaker vector of type χ if η⊲w = χ(η)w
for all η ∈ U(h+

F,L). ⊘
Remark 3.15. By [19, Proposition 10], if w,w′ are Whittaker vectors of the same type χ, then w′ =
λw for some nonzero λ ∈ F. △

3.2 Affine algebra of type Âk−1

Let k ≥ 2 be an integer and let slk := sl(k,F) denote the finite-dimensional Lie algebra of rank k− 1
over F generated in the Chevalley basis by Ei, Fi,Hi for i = 1, . . . , k − 1 satisfying the relations

[Ei, Fj ] = δij Hj , [Hi,Hj ] = 0 ,

[Hi, Ej ] = Cij Ej , [Hi, Fj ] = −Cij Fj ,

where C = (Cij) is the Cartan matrix type Ak−1 (see Remark 3.16 below).
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An explicit realization of the generators of slk in the algebra M(k,F) of k × k matrices over F
is given in the following way. Let Ei,j denote the k × k matrix unit with 1 in the (i, j) entry and 0
everywhere else for i, j = 1, . . . , k. Define

Ei := Ei,i+1 , Fi := Ei+1,i and Hi := Ei,i −Ei+1,i+1

for i = 1, . . . , k − 1. One sees immediately that Ei, Fi,Hi satisfy the defining relations for slk.

Let us denote by t the Lie subalgebra of slk generated by Hi for i = 1, . . . , k − 1 and by n+

(resp. n−) the Lie subalgebra of slk generated by Ei (resp. Fi) for i = 1, . . . , k − 1. Then there is a
triangular decomposition

slk = n− ⊕ t⊕ n+

as a direct sum of vector spaces.

Remark 3.16. For i = 1, . . . , k, define ei ∈ t∗ by

ei

(
diag(a1, . . . , ak)

)
= ai .

The elements γi := ei − ei+1 for i = 1, . . . , k − 1 form a basis of t∗. The root lattice Q is the lattice
Q :=

⊕k−1
i=1 Zγi. The elements of Q are called roots, and in particular γi are called the simple roots.

The lattice of positive roots is Q+ :=
⊕k−1

i=1 Nγi. Since ei corresponds to the i-th coordinate vector
in Zk, there is a description of Q and Q+ in Zk given by

Q =
{
ei − ej

∣∣ i, j = 1, . . . , k
}

and Q+ =
{
ei − ej

∣∣ 1 ≤ i < j ≤ k
}
.

By setting 〈γi, γj〉Q := γi(Hj) = Cij , we define a nondegenerate symmetric bilinear form 〈−,−〉Q
on Q.

The fundamental weights ωi of type Ak−1 are the elements of t∗ defined by ωi(Hj) = δij for
i, j = 1, . . . , k − 1. In the standard basis of Zk, they are given explicitly by

ωi :=
i∑

l=1

el −
i

k

k∑

l=1

el

for i = 1, . . . , k−1. Let P :=
⊕k−1

i=1 Zωi be the weight lattice. Then Q ⊂ P, as γi =
∑k−1

j=1 Cij ωj .

The set of dominant weights is P+ :=
⊕k−1

i=1 Nωi. There is a coset decomposition of P given by

P =
k−1⋃

j=0

(Q + ωj) , (3.17)

where we set ω0 := 0.

The coroot lattice is the lattice Q∨ :=
⊕k−1

i=1 ZHi. △
We now introduce the Kac-Moody algebra ŝlk of type Âk−1, first via its canonical generators and

then as a central extension of the loop algebra of slk.

Definition 3.18. The Kac-Moody algebra ŝlk of type Âk−1 over F is the Lie algebra over F generated
by ei, fi, hi for i = 0, 1, . . . , k − 1 satisfying the relations

[ei, fj ] = δij hj , [hi, hj ] = 0 ,

[hi, ej ] = Ĉij ej , [hi, fj ] = −Ĉij fj ,

where Ĉ =
(
Ĉij

)
is the Cartan matrix of the extended Dynkin diagram of type Âk−1. ⊘
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The matrix Ĉ is given for k ≥ 3 by

Ĉ =
(
Ĉij

)
=




2 −1 0 . . . −1
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

. . .
...

−1 0 0 . . . 2




and for k = 2 by

Ĉ =
(
Ĉij

)
=

(
2 −2
−2 2

)
.

Let us denote by t̂ the Lie subalgebra of ŝlk generated by hi for i = 0, 1, . . . , k − 1 and by n̂+

(resp. n̂−) the Lie subalgebra of ŝlk generated by ei (resp. fi) for i = 0, 1, . . . , k − 1. Then there is a
triangular decomposition

ŝlk = n̂− ⊕ t̂⊕ n̂+

as a direct sum of vector spaces.

Now we describe the relation between slk and ŝlk. Define in slk the elements

E0 := Ek,1 , F0 := E1,k and H0 := Ek,k −E1,1 .

Consider next the loop algebra s̃lk := slk ⊗ F[t, t−1]. Set

ẽ0 := E0 ⊗ t , ẽi := Ei ⊗ 1 ,

f̃0 := F0 ⊗ t−1 , f̃i := Fi ⊗ 1 ,

h̃0 := H0 ⊗ 1 , h̃i := Hi ⊗ 1 ,

for i = 1, . . . , k − 1. Let us denote by c the central element of ŝlk given by c =
∑k−1

i=0 hi. Then we
can realize ŝlk as a one-dimensional central extension

0 −→ Fc −→ ŝlk
π−−→ s̃lk −→ 0 ,

where the homomorphism π is defined by

π : ei 7−→ ẽi , fi 7−→ f̃i , hi 7−→ h̃i ,

for i = 0, 1, . . . , k − 1, and the Lie algebra structure of ŝlk is obtained through

[M ⊗ tm, N ⊗ tn] = [M,N ] ⊗ tm+n +mδm,−n tr(M N) c (3.19)

for every M,N ∈ slk and m,n ∈ Z. Thus the canonical generators of ŝlk are

e0 := E0 ⊗ t , ei := Ei ⊗ 1 ,

f0 := F0 ⊗ t−1 , fi := Fi ⊗ 1 ,

h0 := H0 ⊗ 1 + c , hi := Hi ⊗ 1 ,

and we can realize t̂ as the one-dimensional extension

0 −→ Fc −→ t̂
π−−→ t −→ 0 .
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Remark 3.20. Let γ0 := −∑k−1
i=1 γi. For i = 1, . . . , k − 1, let ei be as in Remark 3.16; then

γ0 = ek−e1. We extend ei from t∗ to t̂∗ by setting ei(c) = 0. Then γi(c) = 0 for i = 0, 1, . . . , k−1.
Thus the root lattice Q̂ of ŝlk is the lattice Q̂ =

⊕k−1
i=0 Zγi = Zγ0 ⊕ Q. In a similar way, one can

define the lattice of positive roots and a nondegenerate symmetric bilinear form on Q̂.

Let ω̂0 be the element in t̂∗ defined by ω̂0(t∗) = 0 and ω̂0(c) = 1. Define

ω̂i := ωi + ω̂0 for i = 1, . . . , k − 1 .

We call ω̂0, ω̂1, . . . , ω̂k−1 the fundamental weights of type Âk−1. Set P̂ :=
⊕k−1

i=0 Zω̂i. Any weight
λ̂ =

∑k−1
i=0 λi ω̂i ∈ P̂ can be written as λ̂ = λ+ k

λ̂
ω̂0, where λ ∈ P and k

λ̂
= λ̂(c) =

∑k−1
i=0 λi is

the level of λ̂. △

3.2.1 Highest weight representations

By declaring the degrees of generators deg ei = − deg fi = 1 and deg hi = 0 for i = 0, 1, . . . , k− 1,
we endow ŝlk with the principal grading

ŝlk =
⊕

n∈Z

(
ŝlk

)
n
.

The principal grading of ŝlk induces a Z-grading of its universal enveloping algebra U
(
ŝlk

)
over F,

which is written as
U

(
ŝlk

)
=

⊕

n∈Z
Un .

Set b̂ := t̂⊕ n̂+. Let λ̂ be a linear form on t̂. We define a one-dimensional b̂-module Fv
λ̂

by

n̂+ ⊲ v
λ̂

= 0 and hi ⊲ v λ̂
= λ̂(hi) v λ̂

for i = 0, 1, . . . , k − 1 .

Consider the induced ŝlk-module

Ṽ( λ̂ ) := U
(
ŝlk

)
⊗U( b̂ )

Fv
λ̂
.

Setting Ṽn := Un ⊲ v λ̂
, we define the principal grading Ṽ( λ̂ ) =

⊕
n∈Z Ṽn. The ŝlk-module Ṽ( λ̂ )

contains a unique maximal proper graded ŝlk-submodule I( λ̂ ).

Definition 3.21. The quotient module

V( λ̂ ) := Ṽ( λ̂ )
/
I( λ̂ )

is called the highest weight representation of ŝlk at level k
λ̂
. The nonzero multiples of the image of

v
λ̂

in V( λ̂ ) are called the highest weight vectors of V( λ̂ ). ⊘

The principal grading on Ṽ( λ̂ ) induces an N-grading

V( λ̂ ) =
⊕

n≥0

V−n

called the principal grading of V( λ̂ ).
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Definition 3.22. The i-th dominant representation of ŝlk at level one is the highest weight represen-
tation V( ω̂i) of ŝlk for i = 0, 1, . . . , k − 1. The module V( ω̂0) is also called the basic representation
of ŝlk.

⊘
Remark 3.23. One can define the Lie algebra ĝlk as the one-dimensional extension

0 −→ Fc −→ ĝlk
π−−→ glk ⊗ F[t, t−1] −→ 0 .

Since glk = F id ⊕ slk, the representation theory of ĝlk is obtained by combining the representation
theory of the Heisenberg algebra hF with that of ŝlk. For example, all highest weight representations
of ĝlk are of the form FF ⊗ V( λ̂ ) for some weight λ̂ ∈ P̂. △

3.2.2 Whittaker vectors

Let us denote by qi
m the element Hi ⊗ tm for i ∈ {1, . . . , k − 1} and m ∈ Z. By Equation (3.19),

these elements satisfy

[
qi
m, q

j
n

]
= m δm+n,0 Cij c and

[
qm, c

]
= 0 ,

for i, j ∈ {1, . . . , k − 1} and m,n ∈ Z. For a root γ, we denote by q
γ
m the element Hγ ⊗ tm where

Hγ ∈ t is defined by 〈H,Hγ〉Q∨⊗ZR = γ(H) for any H ∈ t.

The subalgebra of ŝlk generated by qi
m, for i ∈ {1, . . . , k−1} andm ∈ Z\{0}, and c is isomorphic

to the Heisenberg algebra hF,Q. This motivates the following definition of Whittaker vector for ŝlk
(cf. [19, Section 6]).

Definition 3.24. Let χ : U(h+
F,Q) → F be an algebra homomorphism such that χ|h+

F,Q
6= 0, and let V

be a U
(
ŝlk

)
-module. A nonzero vector w ∈ V is called a Whittaker vector of type χ if η⊲w = χ(η)w

for all η ∈ U(h+
F,Q). ⊘

3.3 Frenkel-Kac construction

Let V be a representation of hF,Q. We say that it is a level one representation if the central element c

acts by the identity map. Henceforth we let V be a level one representation of hF,Q such that for any
v ∈ V there exists an integer m(v) for which

(
ql1
m1
· · · qla

ma

)
⊲ v = 0 (3.25)

if mi > 0 and
∑

i mi > m(v).
Fix an index j ∈ {0, 1, . . . , k − 1} and consider the coset Q + ωj . Denote by F[Q + ωj] the

group algebra of Q + ωj over F. For a root γ ∈ Q we define the generating function V (γ, z) ∈
End(V ⊗ F[Q + ωj])[[z, z−1]] of operators on V ⊗ F[Q + ωj] by the bosonic vertex operator

V (γ, z) = Vγ
1,−1(z) exp(log z c + γ)

= exp
( ∞∑

m=1

zm

m
q
γ
−m

)
exp

(
−
∞∑

m=1

z−m

m
qγ
m

)
exp(log z c + γ) ,
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where exp(log z c + γ) is the operator defined by

exp(log z c + γ) ⊲ (v ⊗ [β + ωj]) := z
1
2
〈γ,γ〉Q+〈γ,β+ωj〉Q (v ⊗ [β + γ + ωj])

for v ⊗ [β + ωj] ∈ V ⊗ F[Q + ωj].
Remark 3.26. Here for the operator exp(log z c + γ) we follow the notation in [42, Section 3.2.1]. In
the existing literature, this operator is denoted in various different ways. △

Let Vm(γ) ∈ End(V ⊗ F[Q + ωj]) denote the operator defined by the formal Laurent series
expansion V (γ, z) =

∑
m∈Z Vm(γ) zm.

We define a map ǫ : Q×Q → {±1} by

ǫ(γi, γj) =
{
−1 , j = i, i + 1 ,
1 , otherwise ,

with the properties ǫ(γ + γ′, β) = ǫ(γ, β) ǫ(γ′, β) and ǫ(γ, β + β′ ) = ǫ(γ, β) ǫ(γ, β′ ).

Theorem 3.27 ([26, Theorem 1]). Let j ∈ {0, 1, . . . , k − 1} and let V be a level one representation
of hF,Q satisfying the condition (3.25). Then the vector space V ⊗ F[Q + ωj] carries a level one
ŝlk-module structure given by

(Hi ⊗ 1) ⊲ (v ⊗ [β + ωj]) =
(
〈γi, β〉Q + δij

)
(v ⊗ [β + ωj]) ,

(Hi ⊗ tm) ⊲ (v ⊗ [β + ωj]) =
(
qi
m ⊲ v

)
⊗ [β + ωj] ,

(Ei ⊗ tm) ⊲ (v ⊗ [β + ωj]) = ǫ(γi, β)Vm+δij
(γi) ⊲ (v ⊗ [β + ωj]) ,

(Fi ⊗ tm) ⊲ (v ⊗ [β + ωj]) = ǫ(β, γi)V−m−δij
(−γi) ⊲ (v ⊗ [β + ωj]) ,

for i ∈ {1, . . . , k − 1} and m ∈ Z \ {0}. If V is the Fock space of hF,Q, then V ⊗ F[Q + ωj] is the
j-th dominant representation of ŝlk.

3.3.1 Virasoro operators

Let {ηi}k−1
i=1 be an orthonormal basis of the vector space Q ⊗Z R. The Virasoro algebra associated

with hF,Q ⊂ ŝlk has generators c and Lŝlk
n for n ∈ Z defined by [26, Section 2.8]

Lŝlk
0 =

k−1∑

i=1

∞∑

m=1

q
ηi
−m qηi

m +
1
2

k−1∑

i=1

(
q
ηi
0

)2
,

Lŝlk
n =

1
2

k−1∑

i=1

∑

m∈Z
q
ηi
−m q

ηi
m+n for n ∈ Z \ {0} .

Note that distinct orthonormal bases of Q⊗Z R give rise to the same Virasoro algebra VirF.
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4 AGT relations on R4

4.1 Equivariant cohomology of Hilbn(C2)

In the following we shall give a brief survey of results concerning the equivariant cohomology of the
Hilbert schemes Hilbn(C2) and representations of Heisenberg algebras thereon [43, 29, 47, 60, 36,
55, 44].

Let us consider the action of the torus T := (C∗)2 on the complex affine plane C2 given by
(t1, t2) ⊲ (x, y) = (t1 x, t2 y), and the induced T -action on the Hilbert scheme of n points Hilbn(C2)
which is the fine moduli space parameterizing zero-dimensional subschemes of C2 of length n; it is a
smooth quasi-projective variety of dimension 2n. Following [22], the T -fixed points of Hilbn(C2) are
zero-dimensional subschemes of C2 of length n supported at the origin 0 ∈ C2 which correspond to
partitions λ of n. We shall denote by Zλ the fixed point in Hilbn(C2)T corresponding to the partition
λ of n.

For i = 1, 2 denote by ti the T -modules corresponding to the characters χi : (t1, t2) ∈ T 7→ ti ∈
C∗, and by εi the equivariant first Chern class of ti. ThenH∗T (pt; C) = C[ε1, ε2] is the coefficient ring
for the T -equivariant cohomology. The equivariant Chern character of the tangent space to Hilbn(C2)
at a fixed point Zλ is given by

chT

(
TZλ

Hilbn(C2)
)

=
∑

s∈Yλ

(
e (L(s)+1) ε1−A(s) ε2 + e−L(s) ε1+(A(s)+1) ε2

)
.

The equivariant Euler class is therefore given by

euT

(
TZλ

Hilbn(C2)
)

= (−1)n eu+(λ) eu−(λ) ,

where

eu+(λ) =
∏

s∈Yλ

(
(L(s)+1) ε1−A(s) ε2

)
and eu−(λ) =

∏

s∈Yλ

(
L(s) ε1−(A(s)+1) ε2

)
.

Remark 4.1. By [44, Corollary 3.20], eu+(λ) is the equivariant Euler class of the nonpositive part
T≤0

Zλ
of the tangent space to Hilbn(C2) at the fixed point Zλ. △

Let ıλ : {Zλ} →֒ Hilbn(C2) be the inclusion morphism and define the class

[λ] := ıλ∗(1) ∈ H4n
T

(
Hilbn(C2)

)
. (4.2)

By the projection formula we get

[λ] ∪ [µ] = δλ,µ euT

(
TZλ

Hilbn(C2)
)
[λ] = (−1)n δλ,µ eu+(λ) eu−(λ) [λ] .

Denote
ın :=

⊕

Zλ∈Hilbn(C2)T

ıλ : Hilbn(C2)T −→ Hilbn(C2) .

Let ı!n : H∗T
(
Hilbn(C2)T

)
loc
→ H∗T

(
Hilbn(C2)

)
loc

be the induced Gysin map, where

H∗T (−)loc := H∗T (−)⊗C[ε1,ε2] C(ε1, ε2)
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is the localized equivariant cohomology. By the localization theorem, ı!n is an isomorphism and its
inverse is given by

(
ı!n

)−1 : A 7−→
( ı∗λ(A)

euT

(
TZλ

Hilbn(C2)
)

)
Zλ∈Hilbn(C2)T

.

Henceforth we denote HC2,n := H∗T (Hilbn(C2))loc. Define the bilinear form

〈−,−〉HC2,n
: HC2,n ×HC2,n −→ C(ε1, ε2) , (4.3)

(A,B) 7−→ (−1)n p!
n

(
ı!n

)−1(A ∪B) ,

where pn is the projection of Hilbn(C2)T to a point.

Remark 4.4. Our sign convention in defining the bilinear form is different from the one used e.g. in
[47, 18]. We choose this convention because, under the isomorphism to be introduced later on in
(4.12), the form (4.3) becomes exactly the Jack inner product (2.1). This convention produces various
sign changes compared to previous literature. Hence every time we state that a given result coincides
with what is known in the literature, the reader should keep in mind “up to the sign convention we
choose”. △

Following [36, Section 2.2] we define the distinguished classes

[αλ] :=
1

eu+(λ)
[λ] ∈ H2n

T

(
Hilbn(C2)

)
loc
.

For λ, µ partitions of n one has

〈
[αλ] , [αµ]

〉
HC2,n

= δλ,µ
eu−(λ)
eu+(λ)

(4.5)

= δλ,µ

∏

s∈Yλ

L(s) ε1 −
(
A(s) + 1

)
ε2(

L(s) + 1
)
ε1 −A(s)ε2

= δλ,µ

∏

s∈Yλ

L(s)β +A(s) + 1(
L(s) + 1

)
β +A(s)

,

where
β = −ε1

ε2
. (4.6)

Remark 4.7. In [44, Section 3(v)], Nakajima gives a geometric interpretation of the class [αλ]. △
By the localization theorem and Equation (4.5), the classes [αλ] form a C(ε1, ε2)-basis for the

infinite-dimensional vector space HC2 :=
⊕

n≥0 HC2,n. Hence the symmetric bilinear form (4.3) is
nondegenerate. The forms 〈−,−〉HC2,n

define a symmetric bilinear form

〈−,−〉HC2 : HC2 ×HC2 −→ C(ε1, ε2)

by imposing that HC2,n1
and HC2,n2

are orthogonal for n1 6= n2. Then 〈−,−〉HC2 is also nondegen-
erate.

The unique partition of n = 1 is λ = (1). Let us denote by [α] := [α(1)] the corresponding class.
Then 〈

[α] , [α]
〉

HC2
= β−1 .

Let us denote by Dx and Dy respectively the x and y axes of C2. By localization, the corresponding
equivariant cohomology classes in H∗T (C2)loc are given by

[Dx]T =
[0]
ε1

=
[0]

eu+(1)
= [α] and [Dy]T =

[0]
ε2

= −β [α] .
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4.2 Heisenberg algebra

Following [43, 47], for an integer m > 0 define the Hecke correspondences

Dx(n,m) :=
{
(Z,Z ′ ) ∈ Hilbn+m(C2)×Hilbn(C2)

∣∣ Z ′ ⊂ Z , supp(IZ′/IZ) = {y} ⊂ Dx

}
,

where IZ ,IZ′ are the ideal sheaves corresponding to Z,Z ′ respectively. Let q1, q2 denote the projec-
tions of Hilbn+m(C2)×Hilbn(C2) to the two factors, respectively. Define linear operators p−m([Dx]T ) ∈
End(HC2) by

p−m([Dx]T )A := q!1
(
q∗2A ∪ [Dx(n,m)]T

)

for A ∈ H∗T (Hilbn(C2))loc. We also define pm([Dx]T ) ∈ End(HC2) to be the adjoint operator of
p−m([Dx]T ) with respect to the inner product 〈−,−〉HC2 on HC2 . As the class [Dx]T spansH∗T (C2)loc

over the field C(ε1, ε2), we can define operators pm(η) ∈ End(HC2) for every class η ∈ H∗T (C2)loc.

Theorem 4.8 (see [43, 44]). The linear operators pm(η), for m ∈ Z\{0} and η ∈ H∗T (C2)loc, satisfy
the Heisenberg commutation relations

[
pm(η1) , pn(η2)

]
= mδm,−n 〈η1, η2〉HC2,1

id and
[
pm(η) , id

]
= 0 .

The vector space HC2 becomes the Fock space of the Heisenberg algebra hHC2,1
modelled on HC2,1 =

H∗T (C2)loc with the unit |0〉 in H0
T (Hilb0(C2))loc as highest weight vector.

Remark 4.9. Since [Dx]T = [α], we have pm([α]) = pm([Dx]T ). △
Henceforth we denote by hC2 the Heisenberg algebra hHC2,1

, and we define

pm := pm([Dx]T ) for m ∈ Z \ {0} , (4.10)

so that one has the nonzero commutation relations

[p−m, pm] = mβ−1 id .

Since [Dx]T generates H∗T (C2)loc over C(ε1, ε2), the operators pm generate hC2 .

Let λ = (1m1 2m2 · · · ) be a partition. Define pλ :=
∏

i pmi
−i . Then

〈
pλ|0〉 , pµ|0〉

〉
HC2

= δλ,µ zλ β
−ℓ(λ) .

Let us denote by Λβ the ring of symmetric functions in infinitely many variables ΛC(ε1,ε2) over the
field C(ε1, ε2), equiped with the Jack inner product (2.1).

Theorem 4.11 (see [43, 36, 18]). There exists a C(ε1, ε2)-linear isomorphism

φ : HC2 −→ Λβ (4.12)

preserving bilinear forms such that

φ(pλ|0〉) = pλ(x) and φ([αλ]) = Jλ(x;β−1) .

Via the isomorphism φ, the operators pm act on Λβ as multiplication by p−m for m < 0 and as
mβ−1 ∂

∂pm
for m > 0.
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4.2.1 Whittaker vectors

We characterize a particular class of Whittaker vectors (cf. Definition 3.14) which will be useful in
our studies of gauge theories.

Proposition 4.13. Let η ∈ C(ε1, ε2). In the completed Fock space
∏

n≥0 HC2,n, every vector of the
form

G(η) := exp (η p−1) |0〉
is a Whittaker vector of type χη, where the algebra homomorphism χη : U(h+

C2) → C(ε1, ε2) is
defined by

χη(p1) = η β−1 and χη(pn) = 0 for n > 1 .

Proof. The statement follows from the formal expansion

G(η) =
∞∑

n=0

ηn

n!
(p−1)n|0〉 (4.14)

with respect to the vector |0〉, together with the relation pm|0〉 = 0 for m > 0 and the identity

pm (p−1)n = nβ−1 δm,1 (p−1)n−1 + (p−1)n pm

in U(hC2) for m ≥ 1.

4.3 Vertex operators

Let Tµ = C∗ and H∗Tµ
(pt; C) = C[µ]. Let us denote by OC2(µ) the trivial line bundle on C2 on

which Tµ acts by scaling the fibers. In [18], Carlsson and Okounkov define a vertex operator V(L, z)
for any smooth quasi-projective surface X and any line bundle L on X. Here we shall describe only
V(OC2(µ), z); see [18] for a complete description of such types of vertex operators.

Let Zn ⊂ Hilbn(C2)× C2 be the universal subscheme, whose fiber over a point Z ∈ Hilbn(C2)
is the subscheme Z ⊂ C2 itself. Consider

Z i := p∗i3(OZni
) ∈ K

(
Hilbn1(C2)×Hilbn2(C2)× C2

)
for i = 1, 2 ,

where pij denotes the projection to the i-th and j-th factors. Define the virtual vector bundle

En1,n2
µ = p12∗

(
(Z∨1 + Z2 −Z∨1 ·Z2) · p∗3(OC2(µ))

)
∈ K

(
Hilbn1(C2)×Hilbn2(C2)

)
,

where p3 is the projection to C2. The fibre of En1,n2
µ over (Z1, Z2) ∈ Hilbn1(C2)T × Hilbn2(C2)T

is given by
En1,n2

µ

∣∣
(Z1,Z2)

= χ
(
OC2 , OC2(µ)

)
− χ

(
IZ1 , IZ2 ⊗OC2(µ)

)
,

where χ(E,F ) :=
∑2

i=0 (−1)i Exti(E,F ) for any pair of coherent sheaves E,F on C2, while its
rank is

rk
(
En1,n2

µ

)
= n1 + n2 .

Define the operator V(OC2(µ), z) ∈ End(HC2)[[z, z−1]] by its matrix elements

(−1)n2
〈
V(OC2(µ), z)A1 , A2

〉
HC2
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:= zn2−n1

∫

Hilbn1 (C2)×Hilbn2 (C2)
euT

(
En1,n2

µ

)
∪ p∗1(A1) ∪ p∗2(A2) , (4.15)

where Ai ∈ H∗T (Hilbni(C2))loc and pi is the projection from Hilbn1(C2) × Hilbn2(C2) to the i-th
factor for i = 1, 2. By [18, Lemma 6], the matrix elements (4.15) in the fixed point basis are given by

〈
V(OC2(µ), z)[λ1] , [λ2]

〉
HC2

= (−1)|λ2| z|λ2|−|λ1| euT

(
En1,n2

µ

∣∣
(Zλ1

,Zλ2
)

)
(4.16)

= (−1)|λ2| z|λ2|−|λ1| mYλ1
,Yλ2

(ε1, ε2, µ) ,

where

mY1,Y2(ε1, ε2, a) :=
∏

s1∈Y1

(
a− LY2(s1) ε1 + (AY1(s1) + 1) ε2

)
(4.17)

×
∏

s2∈Y2

(
a+ (LY1(s2) + 1) ε1 −AY2(s2) ε2

)

for a pair of Young tableaux Y1, Y2 and a ∈ C(ε1, ε2). In gauge theory this factorized expression for
the matrix elements represents the contribution of the bifundamental hypermultiplet.

We shall now describe the operator V(OC2(µ), z) in terms of the operators pm defined in Equation
(4.10) for m ∈ Z \ {0}. In our setting, [18, Theorem 1] assumes the following form.

Theorem 4.18. The operator V(OC2(µ), z) is a vertex operator in Heisenberg operators given by the
generalized bosonic exponential associated with the Heisenberg algebra hC2 as

V(OC2(µ), z) = V− µ
ε2

,
µ+ε1+ε2

ε2

(z) . (4.19)

4.4 Integrals of motion

Let V n be the pushforward of En,n
0 with respect to the projection of the product Hilbn(C2) ×

Hilbn(C2) to the second factor. It is a T -equivariant vector bundle on Hilbn(C2) of rank n, which we
shall call the natural bundle over Hilbn(C2). The T -equivariant Chern character of V n at the fixed
point Zλ is given by

chT

(
V n

∣∣
Zλ

)
=

∑

s∈Yλ

e−L′(s) ε1−A′(s) ε2 .

Remark 4.20. The vector bundle V n can equivalently be defined as the pushforward with respect to
the projection Hilbn(C2) × C2 → Hilbn(C2) of the structure sheaf of the universal subscheme Zn.
In the literature V n is also called the tautological sheaf and denoted O[n] (cf. [34, 35, 54, 44]). △

Let us denote by V the natural bundle over
∐

n≥0 Hilbn(C2). The operators of multiplication
by I1 := rk

(
V

)
and Ip := (cp−1)T

(
V

)
for p ≥ 2 on

∏
n≥0 HC2,n have even degrees, are self-

adjoint with respect to the inner product on
∏

n≥0 HC2,n, and commute with each other; they can thus
be simultaneously diagonalized in the fixed point basis [λ] of

∏
n≥0 HC2,n (see [54], and also [44,

Section 4] where our operator pm is denoted Pm(ε2) for m ∈ Z \ {0}). For example, one has

I1 ⊲ [λ] = |λ| [λ] and I2 ⊲ [λ] = −
∑

s∈Yλ

(
L′(s) ε1 +A′(s) ε2

)
[λ] . (4.21)
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As a consequence, the operators of multiplication by Ip for p ≥ 1 can be written in terms of the
Heisenberg operators (4.10) as elements of a commutative subalgebra of U(hC2). For example, we
have

I1 = β

∞∑

m=1

p−m pm ,

I2 = ε1

( β
2

∞∑

m,n=1

(
p−m p−n pm+n + p−m−n pn pm

)
− β − 1

2

∞∑

m=1

(m− 1) p−m pm

)
.

Note that the energy operator I1 coincides with the Virasoro generator Lh
0 from Section 3.1.1, while

the operator I2 is equal to ε1 2β−1
, where 2β−1

is the bosonized Hamiltonian of the quantum trigono-
metric Calogero-Sutherland model with infinitely many particles and coupling constant β−1.

4.5 N = 2 gauge theory

The Nekrasov partition function for pure N = 2 U(1) gauge theory on R4 is given by the generating
function [50, 13]

ZC2(ε1, ε2; q) :=
∞∑

n=0

qn

∫

Hilbn(C2)

[
Hilbn(C2)

]
T

=
∞∑

n=0

(−q)n
〈
[Hilbn(C2)]T , [Hilbn(C2)]T

〉
HC2

where q ∈ C∗ with |q| < 1. By the localization theorem we obtain

ZC2(ε1, ε2; q) =
∑

λ

(
− q

ε22

)|λ| ∏

s∈Yλ

1(
(L(s) + 1)β +A(s)

) (
L(s)β + (A(s) + 1)

)

as in [13, Equation (3.16)], where the sum runs over all partitions λ.

Remark 4.22. By [48, Equation (4.7)], the partition function can be summed explicitly and written in
the closed form

ZC2(ε1, ε2; q) = exp
( q

ε1 ε2

)
. (4.23)

△

4.5.1 Gaiotto state

In [27], Gaiotto considers the inducing state of the (completed) Verma module of the Virasoro algebra.
It has the property that it is a Whittaker vector for the Verma module, and the norm of its q-deformation
coincides with the Nekrasov partition function of pure N = 2 SU(2) gauge theory on R4. Here we
consider the analogous vector for U(1) gauge theory on R4.

Following [56], we define the Gaiotto state to be the sum of all fundamental classes

G :=
∑

n≥0

[
Hilbn(C2)

]
T
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in the completed Fock space
∏

n≥0 HC2,n. We also introduce the weighted Gaiotto state as the formal
power series

Gq :=
∑

n≥0

qn
[
Hilbn(C2)

]
T
∈ ∏

n≥0
qn HC2,n .

Consider the bilinear form

〈−,−〉HC2 ,q :
∏

n≥0
qn HC2,n ×

∏
n≥0

qn HC2,n −→ C(ε1, ε2)[[q]]

defined by

〈 ∑
n≥0

qn ηn ,
∑
n≥0

qn νn

〉
HC2 ,q

:=
∞∑

n=0

qn

∫

Hilbn(C2)
ηn ∪ νn =

∞∑

n=0

(−q)n 〈ηn, νn〉HC2 .

It follows immediately that the norm of the weighted Gaiotto state is the Nekrasov partition function
for N = 2 U(1) gauge theory on R4:

ZC2(ε1, ε2; q) = 〈Gq, Gq〉HC2 ,q .

By Proposition 4.13 we have the following result.

Proposition 4.24. The Gaiotto state G is a Whittaker vector of type χ, where the algebra homomor-
phism χ : U(h+

C2) → C(ε1, ε2) is defined by

χ(p1) = − 1
ε1

and χ(pn) = 0 for n > 1 .

Proof. Let η ∈ C(ε1, ε2). By using the formal expansion (4.14) and the isomorphism φ, we can
write φ(G(η)) in terms of powers pn

1 . By Lemma 2.3 and simple algebraic manipulations we can then
rewrite the vector G(η) as

G(η) =
∑

n≥0

(η ε2)n
[
Hilbn(C2)

]
T

and the result follows.

4.6 Quiver gauge theories

We now add matter fields to the N = 2 gauge theory on R4. We consider the most general N = 2
superconformal quiver gauge theory with gauge group U(1)r+1 for r ≥ 0, following the general ADE
classification of [52, Chapter 3].

Let Q = (Q0, Q1) be a quiver, i.e., an oriented graph with a finite set of vertices Q0, a finite set of
edges Q1 ⊂ Q0 × Q0, and two projection maps s, t : Q1 ⇉ Q0 which assign to each oriented edge its
source and target vertex respectively. Representations of the quiver encode the matter field content
of the gauge theory. Fix a vector (nυ)υ∈Q0 ∈ NQ0 of integers labelled by the nodes of the quiver Q,
and consider the product of Hilbert schemes

∏
υ∈Q0

Hilbnυ (C2). The vertices υ ∈ Q0 label U(1)
gauge groups and mυ ≥ 0 (resp. m̄υ ≥ 0) fundamental (resp. antifundamental) hypermultiplets
of masses µs

υ, s = 1, . . . ,mυ (resp. µ̄s̄
υ, s̄ = 1, . . . , m̄υ) which correspond to the T -equivariant

vector bundles V nυ
µs

υ
(resp. V̄

nυ

µ̄s̄
υ
) of rank nυ on Hilbnυ (C2) obtained by pushforward of Enυ,nυ

µs
υ

(resp. Enυ,nυ

µ̄s̄
υ

) with respect to the projection of Hilbnυ (C2) × Hilbnυ(C2) to the second (resp. first)
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factor. The edges e ∈ Q1 label U(1) × U(1) bifundamental hypermultiplets of masses µe which
correspond to the vector bundles E

ns(e),nt(e)
µe of rank ns(e) + nt(e) on Hilbns(e)(C2)× Hilbnt(e)(C2);

if the edge e is a vertex loop, i.e., s(e) = t(e), then the restriction of E
ns(e),ns(e)
µe to the diagonal of

Hilbns(e)(C2) × Hilbns(e)(C2) describes an adjoint hypermultiplet of mass µe. The total matter field
content of the N = 2 quiver gauge theory associated to Q in the sector labelled by (nυ)υ∈Q0 ∈ NQ0 is
thus described by the bundle on

∏
υ∈Q0

Hilbnυ(C2) given by

M
(nυ)
(µs

υ),(µ̄s̄
υ),(µe) :=

⊕

υ∈Q0

p∗υ
( mυ⊕

s=1

V nυ
µs

υ
⊕

m̄υ⊕

s̄=1

V̄
nυ

µ̄s̄
υ

)
⊕

⊕

e∈Q1

p∗eE
ns(e),nt(e)
µe ,

where pυ is the projection of
∏

υ∈Q0
Hilbnυ (C2) to the υ-th factor and pe the projection to Hilbns(e)(C2)×

Hilbnt(e)(C2).
For each vertex υ ∈ Q0, the degree of the Euler class of the pushforward of this bundle to the υ-th

factor is the integer

dυ := dimC Hilbnυ(C2)− rk
(
M

(nυ)
(µs

υ),(µ̄s̄
υ),(µe)

∣∣∣
Hilbnυ (C2)

)

= nυ

(
2−mυ − m̄υ −#{e ∈ Q1 | s(e) = υ} −#{e ∈ Q1 | t(e) = υ}

)
.

The N = 2 quiver gauge theory is said to be conformal if dυ = 0 for all υ ∈ Q0; it is asymptotically
free if dυ > 0. Note that with this definition the pure N = 2 gauge theory of Section 4.5 is asymp-
totically free. As explained in [52, Chapter 3], N = 2 asymptotically free quiver gauge theories can
be recovered from conformal theories, so in the following we restrict our attention to superconformal
quiver gauge theories.

Introduce coupling constants qυ ∈ C∗ with |qυ| < 1 at each vertex υ ∈ Q0, and let Tµ be the
maximal torus of the total flavour symmetry group

Gf =
∏

υ∈Q0

GL(mυ,C)×GL(m̄υ,C) ×
∏

e∈Q1

C∗

with H∗Tµ(pt; C) = C[(µe), (µs
υ), (µ̄s̄

υ)]. Then the quiver gauge theory partition function is defined by
the generating function

ZQ
C2(ε1, ε2,µ;q) :=

∑

(nυ)∈NQ0

qn

∫
∏

υ∈Q0
Hilbnυ (C2)

euT×Tµ

(
M

(nυ)
(µs

υ),(µ̄s̄
υ),(µe)

)

=
∑

(nυ)∈NQ0

qn

∫
∏

υ∈Q0
Hilbnυ (C2)

∏

υ∈Q0

p∗υ
( mυ∏

s=1

euT

(
V nυ

µs
υ

) m̄υ∏

s̄=1

euT

(
V̄

nυ

µ̄s̄
υ

) )

×
∏

e∈Q1

p∗e euT

(
E

ns(e),nt(e)
µe

)
,

where qn :=
∏

υ∈Q0
qnυ

υ . By the localization theorem, we obtain

ZQ
C2(ε1, ε2,µ;q) =

∑

(λυ)

(−q)λ
∏

υ∈Q0

mυ∏
s=1

mYλυ

(
ε1, ε2, µ

s
υ

) m̄υ∏
s̄=1

mYλυ

(
ε1, ε2, µ̄

s̄
υ + ε1 + ε2

)

mYλυ ,Yλυ (ε1, ε2, 0)
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×
∏

e∈Q1

mY
λs(e)

,Y
λt(e)

(ε1, ε2, µe) (4.25)

where qλ :=
∏

υ∈Q0
q
|λυ|
υ for a collection of partitions λυ associated to the vertices of the quiver, and

mY (ε1, ε2, a) :=
∏

s∈Y

(
a− L′(s) ε1 −A′(s) ε2

)

for a Young tableau Y and a ∈ C(ε1, ε2).
The conformal constraint

mυ + m̄υ + #
{
e ∈ Q1

∣∣ s(e) = υ
}

+ #
{
e ∈ Q1

∣∣ t(e) = υ
}

= 2 (4.26)

for each υ ∈ Q0 severely restricts the possible quivers in the abelian gauge theory. It is easy to check
that the only admissible quivers in the ADE classification of [52, Chapter 3] are the linear (or chain)
quivers of the finite-dimensional Ar-type Dynkin diagram and the cyclic (or necklace) quivers of the
affine Âr-type extended Dynkin diagram for some r ≥ 01. We consider in detail each case in turn.

4.7 Âr theories

For the cyclic quivers of type Âr

◦

◦ ◦ . . . ◦ ◦

with r+1 vertices and arrows, one has mυ = m̄υ = 0 by Equation (4.26). We label the vertices Q0 by
υ = 0, 1, . . . , r with counterclockwise orientation and read modulo r + 1, and similarly for the edges
e = (υ, υ + 1) ∈ Q1. The partition function for the N = 2 quiver gauge theory of type Âr reads as

ZÂr

C2 (ε1, ε2,µ;q) =
∑

λ

(−q)λ
r∏

υ=0

mYλυ ,Yλυ+1(ε1, ε2, µυ)
mYλυ ,Yλυ (ε1, ε2, 0)

, (4.27)

where the sum is over all r + 1-vectors of partitions λ = (λ0, λ1, . . . , λr) with λr+1 := λ0 and

qλ :=
∏r

υ=0 q
|λυ|
υ .

4.7.1 Conformal blocks

We will relate the partition function (4.27) to the trace of vertex operators V(OC2(µυ), zυ). We shall
also denote by h the Heisenberg algebra hC2 to simplify the presentation.

Proposition 4.28. The partition function of the Âr-theory on R4 is given by

ZÂr

C2 (ε1, ε2,µ;q) = TrHC2 qLh
0

r∏

υ=0

V(OC2(µυ), zυ)

independently of z0 ∈ C∗, where q := q0 q1 · · · qr and zυ := z0 q1 · · · qυ for υ = 1, . . . , r.

1Here the A0-type Dynkin diagram is the trivial quiver consisting of a single vertex with no arrows, and the Â0-type
Dynkin diagram is the quiver consisting of a single vertex with a vertex edge loop.
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Proof. By Equation (4.21), the Virasoro operator Lh
0 acts in HC2 as

Lh
0

∣∣
HC2,n

= n idHC2,n
,

and so the trace of products of Ext vertex operators V(OC2(µυ), zυ) is given by the sum of their matrix
elements over the fixed point basis as

TrHC2 qLh
0

r∏

υ=0

V(OC2(µυ), zυ) =
∑

n∈Nr+1

qn0
∑

λ : |λυ|=nυ

r∏

υ=0

〈
V(OC2(µυ), zυ)[λυ] , [λυ+1]

〉
HC2〈

[λυ] , [λυ]
〉

HC2

.

By Equation (4.16) we obtain

TrHC2 qLh
0

r∏

υ=0

V(OC2(µυ), 1) =
∑

n∈Nr+1

qn0

r∏

υ=0

(−1)nυ znυ−nυ+1
υ

×
∑

λ : |λυ|=nυ

r∏

υ=0

euT

(
E

nυ,nυ+1
µυ

∣∣
(Zλυ ,Zλυ+1)

)

euT

(
TZλυ Hilbnυ(C2)

)

=
∑

n∈Nr+1

(−q)n
∑

λ : |λυ|=nυ

r∏

υ=0

mYλυ ,Yλυ+1 (ε1, ε2, µυ)
mYλυ ,Yλυ (ε1, ε2, 0)

,

and the result follows.

Remark 4.29. Proposition 4.28 shows that the partition function of the Âr-theory coincides with the
conformal block of the Heisenberg algebra hC2 on the elliptic curve with nome q and r+1 punctures at
z0, z1, . . . , zr; we can set z0 = 1 without loss of generality. The conformal dimension of the primary
field inserted at the υ-th puncture is

∆(µυ; ε1, ε2) =
µυ (µυ + ε1 + ε2)

2ε1 ε2
.

This elliptic curve is the Seiberg-Witten curve of the N = 2 U(1)r+1 quiver gauge theory on R4.
△

By using the same arguments as in the proof of [18, Corollary 1], an explicit formula for the
trace in this case can be obtained using Equation (4.19) and we arrive at the explicit evaluation of the
partition function. In the following η(q) := q

1
24

∏∞
n=1 (1− qn) denotes the Dedekind function.

Proposition 4.30.

ZÂr

C2 (ε1, ε2,µ;q) =
r∏

υ=0

(
q
− 1

24
υ η(qυ)

)−µυ (µυ+ε1+ε2)
ε1 ε2 q

1
24 η(q)−1 .

A similar formula for the U(1)r+1 quiver gauge theory partition function is conjectured in [3,
Appendix C.2].
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4.7.2 Â0 theory

The degenerate case r = 0 of the Âr quiver gauge theory corresponds to the quiver consisting of a
single node with a vertex edge loop

◦

and is known as the N = 2∗ gauge theory; it describes a single adjoint matter hypermultiplet of mass
µ in the U(1) N = 2 gauge theory on R4. Then the quiver gauge theory partition function is the
Nekrasov partition function for N = 2∗ gauge theory [50, 13] and is given by

ZÂ0

C2 (ε1, ε2, µ; q) =
∑

λ

q|λ|
∏

s∈Yλ

(
(L(s) + 1) ε1 −A(s) ε2 + µ

) (
L(s) ε1 − (A(s) + 1) ε2 − µ

)
(
(L(s) + 1) ε1 −A(s) ε2

) (
L(s) ε1 − (A(s) + 1) ε2

)

as in [13, Equation (3.26)].

By Proposition 4.30, we have

ZÂ0

C2 (ε1, ε2, µ; q) =
(
q−

1
24 η(q)

)−µ (µ+ε1+ε2)
ε1 ε2

−1
. (4.31)

A similar formula is written in [62, Equation (2.28)]. In the case of an antidiagonal torus action, i.e.,
ε1 = −ε2, this result coincides with the formula derived in [51, Equation (6.12)]. We can then rewrite
Proposition 4.28 in the following way.

Corollary 4.32.

ZÂr

C2 (ε1, ε2,µ;q) =
r∏

υ=0

ZÂ0

C2 (ε1, ε2, µυ; qυ)

r∏
υ=0

η(qυ)

η(q)
.

4.8 Ar theories

Consider now the linear quivers of type Ar

• ◦ . . . ◦ •

with r+1 vertices and r arrows, where the solid nodes indicate the insertion of a single fundamental or
antifundamental hypermultiplet. In this case we label vertices Q0 from left to right with υ = 0, 1, . . . , r
and edges Q1 with e = (υ, υ + 1); for definiteness we take m̄υ = 0, so that m0 = mr = 1 by the
conformal constraints (4.26). The partition function for the N = 2 quiver gauge theory of type Ar for
r ≥ 1 reads as

ZAr

C2 (ε1, ε2,µ;q) =
∑

λ

(−q)λ
mYλ0 (ε1, ε2, µ0)

r−1∏
υ=0

mYλυ ,Yλυ+1 (ε1, ε2, µυ+1) mYλr (ε1, ε2, µr+1)

r∏
υ=0

mYλυ ,Yλυ (ε1, ε2, 0)
.

(4.33)
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4.8.1 Conformal blocks

We will express the partition function (4.33) as a particular matrix element of Ext vertex operators.

Proposition 4.34. The partition function of the Ar-theory on R4 is given by

ZAr

C2 (ε1, ε2,µ;q) =
〈
|0〉 ,

r+1∏

υ=0

V
(
OC2(µυ), zυ

)
|0〉

〉
HC2

independently of z0 ∈ C∗, where zυ := z0 q0 q1 · · · qυ−1 for υ = 1, . . . , r + 1.

Proof. Arguing as in the proof of Proposition 4.28, we write

〈
|0〉 ,

r+1∏

υ=0

V
(
OC2(µυ), zυ

)
|0〉

〉
HC2

=
∑

n∈Nr+1

∑

λ : |λυ|=nυ

〈
V(OC2(µ0), z0) [λ0], |0〉

〉
HC2

r−1∏
υ=0

〈
V(OC2(µυ+1), zυ+1)[λυ+1] , [λυ]

〉
HC2

r∏
υ=0

〈
[λυ ] , [λυ ]

〉
HC2

×
〈
V(OC2(µr+1), zr+1)|0〉 , [λr]

〉
HC2

,

and by Equation (4.16) and the orthogonality relation (4.5) the result then follows.

Remark 4.35. Proposition 4.34 expresses the partition function of the Ar-theory as a conformal block
of the Heisenberg algebra hC2 on the Riemann sphere with r + 4 punctures at ∞, z0, z1, . . . , zr+1, 0;
again we can set z0 = 1 without loss of generality. The conformal dimension of the primary field at
the insertion point zυ is ∆(µυ; ε1, ε2), while at ∞, 0 they are given respectively by ∆(µ̃∞,0; ε1, ε2),
where the masses µ̃∞,0 obey

µ̃∞ + µ̃0 = ε1 + ε2 +
r+1∑

υ=0

µυ .

The Seiberg-Witten curve of the N = 2 U(1)r+1 quiver gauge theory on R4 is a branched cover of
this (r + 2)-punctured Riemann sphere, ramified over the points ∞, 0. △

Using the vertex operator representation, we can again get a closed formula for the combinatorial
expansion (4.33).

Proposition 4.36.

ZAr

C2 (ε1, ε2,µ;q) =
∏

0≤υ<υ′≤r+1

(
1− qυ+1 · · · qυ′

)−µυ′ (µυ+ε1+ε2)

ε1 ε2 .

Proof. Using Equation (3.5) to express the product of vertex operators in Proposition 4.34 in normal
ordered form, we can write

r+1∏

υ=0

V
(
OC2(µυ), zυ

)
|0〉 =

∏

0≤υ<υ′≤r+1

(
1− zυ′

zυ

)−µ
υ′ (µυ+ε1+ε2)

ε1 ε2
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× exp
(
−

r+1∑

υ=0

µυ

ε2

∞∑

m=1

zm
υ

m
p−m

)
|0〉

since pm|0〉 = 0 for all m > 0. Since pm is the adjoint operator of p−m with respect to the scalar
product on HC2 , we have

〈
|0〉, (p−m)n|0〉

〉
HC2

= 0 for all m,n ≥ 1 and the result follows.

A similar formula for the U(1)r+1 quiver gauge theory partition function is conjectured in [3,
Appendix C.1].

4.8.2 A0 theory

The degenerate limit r = 0 of the Ar quiver gauge theory is built on the trivial quiver consisting of a
single vertex with no arrows

•
and m0 = 2 fundamental matter fields by Equation (4.26). Then the quiver gauge theory partition
function is the Nekrasov partition function for N = 2 gauge theory with two fundamental matter
hypermultiplets of masses µ0, µ1 [50, 13] which is given by

ZA0

C2 (ε1, ε2, µ0, µ1; q) =
∑

λ

(−q)|λ|
∏

s∈Yλ

(
L′(s)β −A′(s) + µ̃0

) (
L′(s)β −A′(s) + µ̃1

)
(
(L(s) + 1)β +A(s)

) (
L(s)β +A(s) + 1

)

as in [13, Equation (3.22)], where µ̃0 = µ0/ε2 and µ̃1 = µ1/ε2. By Proposition 4.34 this partition
function computes the four-point conformal block for the Heisenberg algebra hC2 on the Riemann
sphere with primary field insertions at ∞, 1, q, 0, and by Proposition 4.36 the combinatorial sum can
be evaluated explicitly with the result

ZA0

C2 (ε1, ε2, µ0, µ1; q) = (1− q)−
µ1 (µ0+ε1+ε2)

ε1 ε2 . (4.37)

A similar expression is written in [62, Equation (2.27)]. In the antidiagonal limit β = 1, this formula
coincides with the partition function expression derived in [38, Equation (49)].

5 Moduli spaces of framed sheaves

5.1 Orbifold compactification of Xk

In this subsection we recall the construction of the orbifold compactification of the minimal resolution
of C2/Zk from [14, Section 3] and describe the main results that we will use in this paper. For
background to the theory of root and toric stacks used in the construction, see [14, Section 2], and to
the theory of framed sheaves on (projective) Deligne-Mumford stacks, see [15].

Fix an integer k ≥ 2 and denote by µk the group of k-th roots of unity in C. A choice of a
primitive k-th root of unity ω defines an isomorphism of groups µk ≃ Zk. We define an action of
µk ≃ Zk on C2 as ω ⊲ (x, y) := (ω x, ω−1 y). The quotient C2/Zk is a normal affine toric surface.
The origin is the only singular point of C2/Zk, and is a particular case of a rational double point or
du Val singularity [21, Definition 10.4.10].
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Let ϕk : Xk → C2/Zk be the minimal resolution of the singularity of C2/Zk; it is a smooth
toric surface with k torus-fixed points p1, . . . , pk and k + 1 torus-invariant divisors D0,D1, . . . ,Dk

which are smooth projective curves of genus zero. For any i = 1, . . . , k the divisors Di−1 and Di

intersect at the point pi. Moreover, D1, . . . ,Dk−1 are the irreducible components of the exceptional
divisor ϕ−1

k (0). By the McKay correspondence, there is a one-to-one correspondence between the
irreducible representations of µk and the divisors D1, . . . ,Dk−1 [21, Corollary 10.3.11]. By [21,
Equation (10.4.3)], the intersection matrix (Di ·Dj)1≤i,j≤k−1 is given by minus the Cartan matrix C
of type Ak−1, i.e., one has

(Di ·Dj)1≤i,j≤k−1 = −C =




−2 1 · · · 0
1 −2 · · · 0
...

...
. . .

...
0 0 · · · −2


 .

The surface Xk is an ALE space of type Ak−1.

Let Ui be the torus-invariant affine open subset of Xk which is a neighbourhood of the torus-
fixed point pi for i = 1, . . . , k. Its coordinate ring is given by C[Ui] := C[T 2−i

1 T 1−i
2 , T i−1

1 T i
2] for

i = 1, . . . , k. By imposing the change of variables T1 = tk1 and T2 = t2 t
1−k
1 , we have

C[Ui] = C[tk−i+1
1 t1−i

2 , ti−k
1 ti2] . (5.1)

Define
χi

1(t1, t2) = tk−i+1
1 t1−i

2 and χi
2(t1, t2) = ti−k

1 ti2 .

After identifying characters of T with one-dimensional T -modules, let ε(i)j denote the equivariant first
Chern class of χi

j for i = 1, . . . , k and j = 1, 2. Then

ε
(i)
1 (ε1, ε2) = (k − i+ 1) ε1 − (i− 1) ε2 and ε

(i)
2 (ε1, ε2) = −(k − i) ε1 + i ε2 .

One can compactify the ALE space Xk to a normal projective toric surface X̄k by adding a torus-
invariant divisor D∞ ≃ P1 such that for k = 2 the surface X̄2 coincides with the second Hirzebruch
surface F2. For k ≥ 3 the surface X̄k is singular, but one can associate with X̄k its canonical toric
stack X can

k which is a two-dimensional projective toric orbifold with Deligne-Mumford torus T and
coarse moduli space πcan

k : X can
k → X̄k. By canonical we mean that the locus over which πcan

k

is not an isomorphism has non-positive dimension; for k = 2 one has X can
2 ≃ F2. Consider the

one-dimensional, torus-invariant, integral closed substack D̃∞ := (πcan
k )−1(D∞)red ⊂ X can

k . By
performing the k-th root construction on X can

k along D̃∞ to extend the automorphism group of a
generic point of D̃∞ by µk, we obtain a two-dimensional projective toric orbifold Xk with Deligne-
Mumford torus T and coarse moduli space πk : Xk → X̄k. The surface Xk is isomorphic to the open
subset Xk \ D∞ of Xk, where D∞ := π−1

k (D∞)red. Let Di := π−1
k (Di)red be the divisors in Xk

corresponding to Di for i = 1, . . . , k − 1. The classes

−
k−1∑

j=1

(
C−1

)ij
Dj

are integral for i = 1, . . . , k − 1, where the inverse of the Cartan matrix C is given by

(
C−1

)ij =
i (k − j)

k
for i ≤ j .
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Denote by Ri the associated line bundles on Xk; the restrictions of Ri to Xk are precisely the tauto-
logical line bundles of Kronheimer and Nakajima [32].

Proposition 5.2 ([14, Proposition 3.25]). The Picard group Pic(Xk) of Xk is freely generated over
Z by OXk

(D∞) and Ri with i = 1, . . . , k − 1.

The divisor D∞ can be characterized as a toric Deligne-Mumford stack with Deligne-Mumford
torus C∗ ×Bµk and coarse moduli space rk : D∞ → D∞.

Proposition 5.3 ([14, Proposition 3.27]). The divisor D∞ is isomorphic as a toric Deligne-Mumford
stack to the global toric quotient stack [

C2 \ {0}
C∗ × µk

]
,

where the group action is given in [14, Equation (3.28)].

Corollary 5.4 ([14, Corollary 3.29]). The Picard group Pic(D∞) is isomorphic to Z ⊕ Zk. It is
generated by the line bundles L1 and L2 corresponding respectively to the characters

χ1 : (t, ω) ∈ C∗ × µk 7−→ t ∈ C∗ and χ2 : (t, ω) ∈ C∗ × µk 7−→ ω ∈ C∗ .

For j = 0, 1, . . . , k − 1 define the line bundles

OD∞(j) =




L⊗j

2 for even k ,

L⊗j k+1
2

2 for odd k .

Proposition 5.5 ([14, Corollary 3.34]). The restrictions of the tautological line bundles Rj to D∞
are given by

Rj

∣∣
D∞

≃ OD∞(j) .

Remark 5.6. In [14] the line bundles OD∞(j) are the line bundles OD∞(s, j) for s = 0. Indeed, one
can prove that the degree ofOD∞(j) is zero. Moreover, OD∞(0, j) can be endowed with a unitary flat
connection associated with the j-th irreducible unitary representation ρj of Zk for j = 0, 1, . . . , k− 1
(cf. [23, Remark 6.5]). △

5.2 Rank one framed sheaves

Definition 5.7. Fix j ∈ {0, 1, . . . , k − 1}. A rank one (D∞,OD∞(j))-framed sheaf on Xk is a pair
(E , φE ), where E is a torsion-free sheaf on Xk of rank one which is locally free in a neighbourhood of
D∞, and φE : E

∣∣
D∞

∼−→ OD∞(j) is an isomorphism. We call φE a framing of E . A morphism between
(D∞,OD∞(j))-framed sheaves (E , φE ) and (G, φG) of rank one is a morphism f : E → G such that
φG ◦ f

∣∣
D∞

= φE . ⊘
Remark 5.8. By [14, Remark 4.3], the Picard group of Xk is isomorphic to the second singular
cohomology group of Xk with integral coefficients via the first Chern class map c1. Thus fixing the
determinant line bundle of a coherent sheaf E on Xk is equivalent to fixing its first Chern class. △

Given a vector ~u = (u1, . . . , uk−1) ∈ Zk−1, we denote by R~u the line bundle
⊗k−1

i=1 R⊗ui
i and

by R0 the trivial line bundle OXk
.

33



Lemma 5.9 ([14, Lemma 4.4]). Let (E , φE ) be a rank one (D∞,OD∞(j))-framed sheaf on Xk. Then
the determinant det(E) of E is of the form R~u, where the vector ~u ∈ Zk−1 satisfies the condition

k−1∑

i=1

i ui = j mod k . (5.10)

Remark 5.11. Set ~v := C−1~u. Then Equation (5.10) implies the relations

k vl = −l j mod k

for l = 1, . . . , k − 1. Note that a component vl is integral if and only if every component of ~v is
integral. We subdivide the vectors ~u ∈ Zk−1 according to Equation (5.10) as

Uj :=
{
~u ∈ Zk−1

∣∣∣
k−1∑
i=1

i ui = j mod k
}
.

Define now a bijective map by identifying a vector ~u ∈ Zk−1 with
∑k−1

i=1 ui c1(Ri) =
∑k−1

i=1 ui ωi as

ψ : ~u ∈ Zk−1 7−→
k−1∑

i=1

ui ωi ∈ P .

It is natural to split this map according to the coset decomposition (3.17) as

ψ−1(Q + ωj) = Uj ,

which means that ψ(~u ) for ~u ∈ Uj is naturally written as a sum of the fundamental weight ωj and an
element γ~u of the root lattice Q, which is given by

γ~u :=
k−1∑

i=1

( k−1∑

l=1

(
C−1

)il
ul −

(
C−1

)ij
)
γi =

k−1∑

i=1

(
vi −

(
C−1

)ij
)
γi ∈ Q .

We write
ψj := ψ

∣∣
Uj

: Uj −→ Q + ωj . (5.12)

△
Following [14, Section 4], letM(~u, n, j) be the fine moduli space parameterizing (D∞,OD∞(j))-

framed sheaves of rank one on Xk with determinant line bundle R~u and second Chern class n ∈ Z;
the vector ~u belongs to Uj . Let pXk

: Xk ×M(~u, n, j) → Xk be the projection. As explained in
[14, Remark 4.7], by “fine” one means that there exists a universal framed sheaf (E ,φE), where E is
a coherent sheaf on M(~u, n, j) ×Xk which is flat over M(~u, n, j), and φE : E → p∗Xk

(OD∞(j)) is
a morphism such that its restriction to M(~u, n, j)×D∞ is an isomorphism; the fibre over [(E , φE )] ∈
M(~u, n, j) is itself the (D∞,OD∞(j))-framed sheaf (E , φE ) on Xk. In the following we shall call E
the universal sheaf.

Theorem 5.13 ([14, Theorem 4.13]). The moduli space M(~u, n, j) is a smooth quasi-projective va-
riety of dimension 2n. The Zariski tangent space of M(~u, n, j) at a point [(E , φE )] is Ext1(E , E ⊗
OXk

(−D∞)).

34



As explained in [14, Section 4.3], the Hilbert scheme of n points Hilbn(Xk) of Xk is isomorphic
to M(~u, n, j) for any ~u ∈ Uj . For this, let ı : Xk →֒ Xk be the inclusion morphism. If Z is a point
of Hilbn(Xk) and ~y ∈ Zk−1, then the coherent sheaf E := ı∗(IZ) ⊗ Rej−C~y is a rank one torsion-
free sheaf on Xk with a framing φE induced by the canonical isomorphism Rej−C~y |D∞

∼−→ OD∞(j)
such that (E , φE ) is a rank one (D∞,OD∞(j))-framed sheaf with determinant line bundle R~u, where
~u := ej−C~y, and second Chern class n. Thus Z induces a point [(E , φE )] inM(~u, n, j). This defines
an inclusion morphism

ı̃~u,n,j : Hilbn(Xk) →֒ M(~u, n, j)

which is an isomorphism of fine moduli spaces by [14, Proposition 4.16].

Remark 5.14. In [33] it is shown that the Hilbert scheme of points Hilbn(Xk) is isomorphic to a
Nakajima quiver variety of type Âk−1 with suitable dimension vectors. Thus M(~u, n, j) is a quiver
variety. △

5.3 Equivariant cohomology

We define a T -action on M(~u, n, j) in the following way (cf. [14, Section 4.6]). For (t1, t2) ∈ T let
F(t1,t2) be the automorphism of Xk induced by the torus action; then the T -action is given by

(t1, t2) ⊲
[
(E , φE )

]
:=

[(
(F−1

(t1,t2))
∗(E) , φ′E

)]
,

where φ′E is the composition of isomorphisms

φ′E :
(
F−1

(t1,t2)

)∗E
∣∣
D∞

(F−1
(t1,t2)

)∗(φE )

−−−−−−−−−→
(
F−1

(t1,t2)

)∗OD∞(j) −→ OD∞(j) ;

here the last arrow is given by the T -equivariant structure induced on OD∞(j) by restriction of the
torus action of Xk to D∞. Note that the T -action on Xk naturally lifts to Hilbn(Xk) and the isomor-
phism ı̃~u,n,j is equivariant with respect to these torus actions.

Proposition 5.15 ([14, Proposition 4.22]). For a T -fixed point [(E , φE )] ∈ M(~u, n, j)T the underly-
ing sheaf is of the form E = ı∗(IZ) ⊗R~u, where IZ is the ideal sheaf of a T -fixed zero-dimensional
subscheme Z of Xk.

Remark 5.16. Let [(E , φE )] be a T -fixed point of M(~u, n, j), with E = ı∗(IZ) ⊗ R~u. The T -
fixed subscheme Z of Xk of length n is a disjoint union of T -fixed subschemes Zi for i = 1, . . . , k
supported at the T -fixed points pi with

∑k
i=1 lengthpi

(Zi) = n. Put ni = lengthpi
(Zi). Since

pi is the T -fixed point of the smooth affine toric surface Ui ≃ C2, as explained in Section 4.1 the
T -fixed subscheme Zi ∈ Hilbni(Ui) corresponds to a Young tableau Y i of weight |Y i| = ni for
i = 1, . . . , k. Thus the T -fixed point Z corresponds to a k-tuple of Young tableaux ~Y = (Y 1, . . . , Y k)
with |~Y | := ∑k

i=1 |Y i| = n. Hence we can parametrize the point [(E , φE )] by the pair (~Y , ~u ) which
we call the combinatorial datum of [(E , φE )]. △

Consider the T -equivariant cohomology of the moduli spaces M(~u, n, j) and set

W~u,n,j := H∗T
(
M(~u, n, j)

)
loc
.

We endow W~u,n,j with the nondegenerate C(ε1, ε2)-valued bilinear form

〈A,B〉W~u,n,j
:= (−1)n p!

~u,n,j

(
ı!~u,n,j

)−1(A ∪B) ,
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where p~u,n,j is the projection from M(~u, n, j) to a point and ı~u,n,j : M(~u, n, j)T →֒ M(~u, n, j) is
the inclusion of the fixed-point locus. Thus for ~u ∈ Uj we define

W~u,j :=
⊕

n≥0

W~u,n,j , (5.17)

and the total equivariant cohomology

Wj :=
⊕

~u∈Uj

⊕

n≥0

W~u,n,j

which is an infinite-dimensional vector space over the field C(ε1, ε2) endowed with the nondegenerate
C(ε1, ε2)-valued bilinear form 〈−,−〉Wj induced by the symmetric bilinear forms 〈−,−〉W~u,n,j

.

Let us denote by [~Y , ~u ] the equivariant cohomology class, defined similarly to (4.2), associated
with the T -fixed point [(E , φE )] with combinatorial datum (~Y , ~u ). By the localization theorem, the
classes [~Y , ~u ] with ~u ∈ Uj form a C(ε1, ε2)-basis of Wj .

6 Representations of ĝlk

6.1 Overview

The results collected so far imply the following result.

Proposition 6.1. There is an isomorphism

Ψj : Wj
∼−−→

⊕

~u∈Uj

⊕

n≥0

H∗T
(
Hilbn(Xk)

)
loc

≃
( ⊕

n≥0

H∗T
(
Hilbn(Xk)

)
loc

)
⊗ C(ε1, ε2)[Uj ]

∼−−→
( ⊕

n≥0

H∗T
(
Hilbn(Xk)

)
loc

)
⊗C(ε1, ε2)[Q + ωj ] , (6.2)

where the first arrow is induced by the morphisms ı̃ ∗~u,n,j while the last arrow is induced by the map ψj

introduced in (5.12). There is also an isomorphism

Ψ :=
k−1⊕

j=0

Ψj : W ∼−−→
k−1⊕

j=0

⊕

n≥0

H∗T
(
Hilbn(Xk)

)
loc
⊗ C(ε1, ε2)[Q + ωj] ,

where W :=
⊕k−1

j=0 Wj .

In this section we first study the equivariant cohomology of Hilbn(Xk) and construct over it an
action of the sum (identifying central elements) hC(ε1,ε2) ⊕ hC(ε1,ε2),Q. Then we use the Frenkel-Kac

construction (Theorem 3.27) to obtain an action of ĝlk = hC(ε1,ε2)⊕ ŝlk on Wj for j = 0, 1, . . . , k−1.
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6.2 Equivariant cohomology of Hilbn(Xk)

In this subsection we derive some results concerning the equivariant cohomology of the Hilbert
schemes Hilbn(Xk) by generalizing similar results of [55, Section 2] (see also [39, Section 2]).

As discussed in Remark 5.16, a T -fixed point Z ∈ Hilbn(Xk) corresponds to a k-tuple (Z1, . . . , Zk)
where Zi is a T -fixed point of Hilbni(Ui) for i = 1, . . . , k with

∑k
i=1 ni = n, or equivalently to a

k-tuple ~Y = (Y 1, . . . , Y k) of Young tableaux with |~Y | :=
∑k

i=1 |Y i| = n. The following result is
straightforward to prove.

Lemma 6.3. Let Z be a T -fixed point of Hilbn(Xk). Then there is a T -equivariant isomorphism

TZHilbn(Xk) ≃
k⊕

i=1

TZiHilbni(Ui) ,

where Z =
⊔k

i=1 Zi and ni is the length of Zi at pi for i = 1, . . . , k.

By Lemma 6.3 we get

chT

(
TZHilbn(Xk)

)
=

k∑

i=1

chT

(
TZiHilbni(Ui)

)
.

By using the description (5.1) of the coordinate ring C[Ui] of Ui, one computes the equivariant Chern
characters

chT

(
TZiHilbni(Ui)

)
=

∑

s∈Y i

(
e (L(s)+1) ε

(i)
1 −A(s) ε

(i)
2 + e−L(s) ε

(i)
1 +(A(s)+1) ε

(i)
2

)
.

From now on we identify a torus-fixed point Z of Hilbn(Xk) with its k-tuple ~Y of Young tableaux.

Let ~Y = (Y 1, . . . , Y k) be a torus-fixed point. Define

eu+(~Y ) :=
k∏

i=1

∏

s∈Y i

((
L(s) + 1

)
ε
(i)
1 −A(s) ε(i)2

)
,

eu−(~Y ) :=
k∏

i=1

∏

s∈Y i

(
L(s) ε(i)1 −

(
A(s) + 1

)
ε
(i)
2

)
.

Then the equivariant Euler class of the tangent bundle at the fixed point ~Y is given by

euT

(
T~Y Hilbn(Xk)

)
= (−1)n eu+(~Y ) eu−(~Y ) .

6.2.1 Equivariant basis I: Torus-fixed points

Let ~Y be a k-tuple of Young tableaux corresponding to a fixed point in Hilbn(Xk) and [~Y ] the equiv-
ariant cohomology class defined similarly to (4.2). By the projection formula we get

[~Y ] ∪ [~Y ′ ] = δ~Y ,~Y ′ euT

(
T~Y Hilbn(Xk)

)
[Y ] = (−1)n δ~Y ,~Y ′ eu+(~Y ) eu−(~Y )[~Y ] .
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Denote
ın :=

⊕

~Y ∈Hilbn(Xk)T

ı~Y : Hilbn(Xk)T −→ Hilbn(Xk) .

In analogy to Equation (4.3), define the bilinear form

〈−,−〉Hn : Hn ×Hn −→ C(ε1, ε2) , (6.4)

(A,B) 7−→ (−1)n p!
n

(
ı!n

)−1(A ∪B)

where Hn := H∗T (Hilbn(Xk))loc.

As in Section 4.1, for any class [~Y ] ∈ H4n
T (Hilbn(Xk)) we define a distinguished class

[α~Y ] :=
[~Y ]

eu+(~Y )
∈ H2n

T

(
Hilbn(Xk)

)
loc
.

Then by the same computation as in Equation (4.5) we get

〈
[α~Y

] , [α~Y ′ ]
〉

Hn
= δ~Y ,~Y ′

eu−(~Y )

eu+(~Y )
= δ~Y ,~Y ′

k∏

i=1

∏

s∈Y i

L(s)βi +A(s) + 1(
L(s) + 1

)
βi +A(s)

, (6.5)

where analogously to (4.6) we defined

βi := −ε
(i)
1

ε
(i)
2

.

Note that when n = 1, ~Y is just a fixed point pi ∈ XT
k with i = 1, . . . , k. Thus we have

eu+(pi) = ε
(i)
1 = (k − i+ 1) ε1 − (i− 1) ε2 and eu−(pi) = −ε(i)2 = (k − i) ε1 − i ε2 ,

and therefore

βi =
eu+(pi)
eu−(pi)

.

If for i = 1, . . . , k we define [αi] := [αpi ], then we get

〈
[αi] , [αj ]

〉
H1

= β−1
i δij ∈ C(ε1, ε2) .

By the localization theorem and Equation (6.5), the classes [α~Y
] with |~Y | = n form a C(ε1, ε2)-

linear basis of Hn. Hence the bilinear form (6.4) is nondegenerate; it extends to give a nondegenerate
symmetric bilinear form 〈−,−〉H on the total equivariant cohomology H :=

⊕
n≥0 Hn of the Hilbert

schemes of points on Xk.

Remark 6.6. Let i ∈ {1, . . . , k}. By the localization theorem, the C(ε1, ε2)-linear subspace of H
generated by all classes [~Y ] associated to fixed points ~Y = (Y 1, . . . , Y k) such that Y j = ∅ for every
j ∈ {1, . . . , k} with j 6= i is isomorphic to

⊕

m≥0

H∗T
(
Hilbm(Ui)

)
⊗C[ε

(i)
1 ,ε

(i)
2 ]

C
(
ε
(i)
1 , ε

(i)
2

)
. (6.7)

△
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Note that C
[
ε
(i)
1 , ε

(i)
2

]
= C[ε1, ε2] and C

(
ε
(i)
1 , ε

(i)
2

)
= C(ε1, ε2). Analogously to what we did for

C2, we can thus define

HUi,m := H∗T
(
Hilbm(Ui)

)
loc

and HUi :=
⊕

m≥0

HUi,m .

By the localization theorem, there exists a C(ε1, ε2)-linear isomorphism

Ω : H ∼−−→
k⊗

i=1

HUi . (6.8)

In particular, for a fixed point ~Y = (Y 1, . . . , Y k) we have

Ω : [α~Y ] 7−→ [αY 1 ]⊗ · · · ⊗ [αY k ] .

The isomorphism Ω interwines the bilinear forms 〈−,−〉H and
∏k

i=1 〈−,−〉i, where 〈−,−〉i is the
symmetric bilinear form on HUi defined analogously to (4.3). In a similar way, there is a C(ε1, ε2)-
linear isomorphism

Ωk : H1
∼−−→

k⊕

i=1

HUi,1 . (6.9)

In this case Ωk : [αi] 7→ (0, . . . , [αi], . . . , 0), where the class [αi] on the left-hand side belongs to
H1 = H∗T (Xk)loc while on the right-hand side it belongs to HUi,1 as defined in Section 4.1. The
isomorphism Ωk also intertwines the symmetric bilinear forms.

6.2.2 Equivariant basis II: Torus-invariant divisors

Let [Di]T be the class in H1 = H∗T (Xk)loc given by the T -invariant divisor Di for i = 0, 1, . . . , k.
For i = 1, . . . , k − 1, we have

[Di]T =
[pi]

euT (TpiDi)
+

[pi+1]
euT (Tpi+1Di)

=
[pi]

ε
(i)
2

+
[pi+1]

ε
(i+1)
1

= −βi [αi] + [αi+1] . (6.10)

Thus for i, j = 1, . . . , k − 1 we obtain the pairings

〈
[Di]T , [Dj ]T

〉
H1

=





2 , i = j ,
−1 , |i− j| = 1 ,
0 , otherwise .

(6.11)

By applying the localization theorem to [D0]T and [Dk]T we further obtain

[D0]T =
[p1]
k ε1

=
[p1]

ε
(1)
1

= [α1] and [Dk]T =
[pk]
k ε2

=
[pk]

ε
(k)
2

= −βk [αk] .

By using these expressions, one can straightforwardly obtain the pairings

〈
[D0]T , [Di]T

〉
H1

=





β−1
1 , i = 0 ,
−1 , i = 1 ,
0 , otherwise

and
〈
[Dk]T , [Di]T

〉
H1

=





βk , i = k ,
−1 , i = k − 1 ,
0 , otherwise .
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Now we can relate the classes [αi] for i = 1, . . . , k to the classes [Dj ]T for j = 0, 1, . . . , k. By using
Equation (6.10), for i = 2, . . . , k one obtains

[αi] =
i−2∑

j=0

( i−1∏

s=j+1

βs

)
[Dj ]T + [Di−1]T . (6.12)

Since eu+(pl) = eu−(pl−1) for l = 2, . . . , k, we get

i−1∏

s=j+1

βs =
eu+(pj+1)
eu−(pi−1)

.

By using the definition of [αk] and Equation (6.12) for i = k we obtain

−β−1
k [Dk]T = [αk] =

k−1∑

j=0

eu+(pj+1)
eu−(pk−1)

[Dj ]T .

If we formally put eu+(pk+1) := eu−(pk), we can reformulate this equation as

k∑

j=0

eu+(pj+1) [Dj ]T = 0 , (6.13)

and in particular for all i = 0, 1, . . . , k we have

[Di]T = −
k∑

j=0
j 6=i

eu+(pj+1)
eu+(pi+1)

[Dj ]T .

Remark 6.14. If the action is antidiagonal, i.e., t = t1 = t−1
2 , Equation (6.13) implies that

∑k
j=0 [Dj ]T =

0. △
As the classes [α1], . . . , [αk] form a C(ε1, ε2)-linear basis of H1, by Equations (6.12) and (6.13)

the classes
{
[D0]T , [D1]T , . . . , [Dk−1]T

}
and

{
[D1]T , [D2]T , . . . , [Dk]T

}
(6.15)

are also C(ε1, ε2)-linear bases for H1. Under the isomorphism Ωk of Equation (6.9), we have

Ωk : [Di]T 7−→ −βi

(
0, . . . , 0, [αi], 0, . . . , 0

)
+

(
0, . . . , 0, [αi+1], 0, . . . , 0

)

for i = 1, . . . , k − 1, together with a similar description for [D0]T and [Dk]T .

6.3 Heisenberg algebras

Let m be a positive integer and Y a torus-invariant closed curve in Xk. Define the correspondences

Yn,m :=
{
(Z,Z ′ ) ∈ Hilbn+m(Xk)×Hilbn(Xk)

∣∣ Z ′ ⊂ Z , supp(IZ′/IZ) = {y} ⊂ Y
}
.

Let q1 and q2 be the projections of Hilbn+m(Xk) × Hilbn(Xk) to the two factors respectively.
We define the linear operator p−m([Y ]T ) : H → H which acts on A ∈ Hn as p−m([Y ]T )(A) :=
q!1

(
q∗2(A) ∪ [Yn,m]T

)
∈ Hn+m. This definition is well-posed because the restriction of q1 to Yn,m is

proper. Since the bilinear form 〈−,−〉H is nondegenerate on H, we can define pm([Y ]T ) to be the
adjoint operator of p−m([Y ]T ). By using one of the two bases in (6.15), we extend by linearity in α
to obtain the linear operator pm(α) for every α ∈ H1 = H∗T (Xk)loc.

40



Theorem 6.16 (see [55, 39]). The linear operators pm(α), where m ∈ Z \ {0} and α ∈ H∗T (Xk)loc,
satisfy the Heisenberg commutation relations

[
pm(α), pn(β)

]
= mδm,−n 〈α, β〉H1 id and

[
pm(α), id

]
= 0 .

The vector space H is the Fock space of the Heisenberg algebra hH1 modelled on H1 = H∗T (Xk)loc

with highest weight vector the unit element |0〉 in H0
T (Hilb0(Xk))loc.

6.3.1 Heisenberg algebra of rank k

Let i ∈ {1, . . . , k}. Consider the Heisenberg algebra hi over C(ε1, ε2) generated by the operators

pi
−m := p−m([αi]) and pi

m := pm([αi])

for m ∈ Z>0. By Theorem 6.16, the commutation relations are
[
pi

m, p
j
n

]
= mδm,−n δij

〈
[αi] , [αi]

〉
H id = mδm,−n δij β

−1
i id .

Since {[α1], . . . , [αk]} is a C(ε1, ε2)-linear basis of H1, the Heisenberg algebra hH1 is generated by
pi

m for i = 1, . . . , k and m ∈ Z \ {0}.

Let HUi be the C(ε1, ε2)-linear subspace of H introduced in Section 6.2.1. Then by Theorem 4.8
HUi is the Fock space for the Heisenberg algebra hi for any i ∈ {1, . . . , k}; therefore the C(ε1, ε2)-
vector space HUi is generated by the elements pi

λ|0〉 where pi
λ :=

∏
l≥1 (pi

−l)
ml for a partition λ =

(1m1 2m2 · · · ). One can show that

〈
pi

λ|0〉 , pi
µ|0〉

〉
HUi

= δλ,µ zλ β
−ℓ(λ)
i .

On the algebra ΛC(ε1,ε2) of symmetric functions over the field C(ε1, ε2) we introduce the Jack
inner product (2.1) with parameter βi. We shall denote with Λβi

the algebra ΛC(ε1,ε2) endowed with
the symmetric bilinear form 〈−,−〉βi

. Thus by the isomorphism (6.7) and Theorem 4.11 there exists
an isomorphism of C(ε1, ε2)-vector spaces

Φi : HUi

∼−−→ Λβi
, pi

λ|0〉 7−→ pλ ,

which intertwines the symmetric bilinear forms 〈−,−〉i and 〈−,−〉βi
. For m > 0 the operator pi

−m

acts as multiplication by pm on Λβi
while its adjoint pi

m with respect to the symmetric bilinear form
〈−,−〉i acts as mβ−1

i
∂

∂pm
.

By Theorem 4.11 we can also determine how Φi acts on the C(ε1, ε2)-linear basis {[α~Y ]} of HUi ,

where ~Y = (Y 1, . . . , Y k) is a fixed point such that Y j = ∅ for every j ∈ {1, . . . , k} with j 6= i.

Proposition 6.17. Let ~Y = (Y 1, . . . , Y k) be a fixed point such that Y j = ∅ for every j ∈ {1, . . . , k}
with j 6= i. Then

Φi([α~Y
]) = Jλi

(x;β−1
i ) ,

where Yλi
:= Y i.

Define Λ~β
=

⊗k
i=1 Λβi

endowed with the symmetric bilinear form 〈p, q〉~β :=
∏k

i=1 〈pi, qi〉βi
for

p = p1⊗ · · · ⊗ pk and q = q1 ⊗ · · · ⊗ qk in Λ~β
. For a k-tuple of Young tableaux ~Y , define in U(hH1)

the operators p~Y =
∏k

i=1 pi
λi

. We have thus proven the following result.
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Theorem 6.18. There exists a C(ε1, ε2)-linear isomorphism

Φ :=
k⊗

i=1

Φi : H −→ Λ~β

preserving bilinear forms such that

Φ
(
p~Y |0〉

)
= pλ1 ⊗ · · · ⊗ pλk

and Φ
(
[α~Y ]

)
= Jλ1(x;β

−1
1 )⊗ · · · ⊗ Jλk

(x;β−1
k ) .

Via the isomorphism Φ, the operators pi
m act on Λ~β

as multiplication by p−m on the i-th factor for

m < 0 and as the derivation mβ−1
i

∂
∂pm

on the i-th factor for m > 0.

6.3.2 Lattice Heisenberg algebra of type Ak−1

Let us now define
qi
−m := p−m([Di]T ) and qi

m := pm([Di]T )

for m ∈ Z>0 and i = 1, . . . , k − 1. By Equation (6.11) the operators qi
m satisfy the commutation

relations

[qi
m, q

j
n] = mδm,−nCij id for i, j = 1, . . . , k − 1 , m, n ∈ Z \ {0} ,

where C = (Cij) is the Cartan matrix of the Dynkin diagram of type Ak−1. Let L ⊂ H∗T (Xk)loc be
the Z-lattice generated by the classes [D1]T , . . . , [Dk−1]T with the symmetric bilinear form given by
the Cartan matrix C . Then the lattice Heisenberg algebra hC(ε1,ε2),L associated with L over C(ε1, ε2),
which has generators qi

m for m ∈ Z \ {0} and i = 1, . . . , k − 1, is isomorphic to the Heisenberg
algebra hC(ε1,ε2),Q of type Ak−1 over C(ε1, ε2) (cf. Example 3.8).

Let

E :=
k∑

i=0

ai [Di]T (6.19)

where ai ∈ C(ε1, ε2) with i = 0, 1, . . . , k satisfy the relations

2aj − aj−1 − aj+1 = 0 , j = 1, . . . , k − 1 and a0 ε2 + ak ε1 6= 0 . (6.20)

The first condition ensures that 〈[Di]T , E〉H1 = 0 for i = 1, . . . , k − 1 while the second condition
implies that {[D1]T , . . . , [Dk−1]T , E} is a C(ε1, ε2)-linear basis of H∗T (Xk)loc. By (6.20) one has

κ := 〈E,E〉H1 = a2
0 β
−1
1 − a0 a1 − ak ak−1 + a2

k βk .

From now on we set ai = i in Equation (6.19) for i = 0, 1, . . . , k, which is consistent with the con-
ditions in Equation (6.20). This implies that κ = k β. In the following we normalize the equivariant
cohomology class E such that 〈E,E〉H1 = 1; we denote the normalized class with the same symbol.

Define p−m := p−m(E) and pm := pm(E) for m ∈ Z>0. Then the operators qi
m and pm satisfy

the commutation relations




[
qi
m, q

j
n

]
= mδm,−n Cij id for i, j = 1, . . . , k − 1 , m, n ∈ Z \ {0} ,

[
qi
m, pn

]
= 0 for i = 1, . . . , k − 1 , m, n ∈ Z \ {0} ,

[
pm, pn

]
= mδm,−n id for m,n ∈ Z \ {0} .
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Let L′ ⊂ H∗T (Xk)loc be the Z-lattice generated by the classes [D1]T , . . . , [Dk−1]T and E. Then the
operators qi

m and pn for m,n ∈ Z \ {0} and 1 ≤ i ≤ k − 1 define the lattice Heisenberg alge-
bra hC(ε1,ε2),L′ associated with L′ over C(ε1, ε2). In particular, hC(ε1,ε2),L′ is the sum (identifying
central elements) of, respectively, the Heisenberg algebra hC(ε1,ε2),Q of type Ak−1 over C(ε1, ε2)
and the Heisenberg algebra hC(ε1,ε2) over C(ε1, ε2) generated by pm for m ∈ Z \ {0}. Since
{[D1]T , . . . , [Dk−1]T } ∪ {E} is a C(ε1, ε2)-linear basis of H∗T (Xk)loc, we have hC(ε1,ε2),L′

∼= hH1 .
Hence H is the Fock space of hC(ε1,ε2),L′ . In what follows we omit the symbol C(ε1, ε2) from the
notation for the Heisenberg algebras generated over the field C(ε1, ε2).
Remark 6.21. By Equation (6.10), for l = 1, . . . , k − 1 one has

ql
m = −βl p

l
m + pl+1

m , (6.22)

pm =
√
−k ε1 ε2

k∑

i=1

1

ε
(i)
2

pi
m =

1√〈
[Xk], [Xk]

〉
H1

k∑

i=1

1

ε
(i)
2

pi
m . (6.23)

△

6.4 Dominant representation of ĝlk on Wj

In the following we omit the dependence of the Lie algebras on the field C(ε1, ε2) to simplify the
presentation.

Proposition 6.24. Let j ∈ {0, 1, . . . , k − 1}. There is an action of ĝlk on Wj under which Wj is
the j-th dominant representation of ĝlk at level one, i.e., the highest weight representation of ĝlk with
fundamental weight ω̂j of type Âk−1.

Proof. The vector space H is an irreducible highest weight representation of the sum (identifying
central elements) h ⊕ hQ of the Heisenberg algebra h and the lattice Heisenberg algebra hQ of type
Ak−1 generated over the field C(ε1, ε2), respectively, by the operators pm and qi

m for m ∈ Z \ {0}
and i = 1, . . . , k − 1. We apply the Frenkel-Kac construction (Theorem 3.27) to the representation
hQ → End(H) to obtain a level one representation

ŝlk −→ End
(
H⊗ C(ε1, ε2)[Q + ωj]

)
.

We can extend the representation of h from H to H⊗C(ε1, ε2)[Q+ωj ] by letting it act as the identity
on the group algebra of Q + ωj . Thus we get a level one representation of ĝlk with

ĝlk −→ End
(
H⊗C(ε1, ε2)[Q + ωj]

)
.

Thanks to the isomorphism Ψj introduced in (6.2), this gives a level one representation of ĝlk with

ĝlk −→ End(Wj) .

Since H is the Fock space of h ⊕ hQ, the module H ⊗ C(ε1, ε2)[Q + ωj] is isomorphic to the j-th
dominant representation FC(ε1,ε2) ⊗ V( ω̂j ) of ĝlk (cf. Theorem 3.27). Hence to complete the proof
it is enough to note that the class [∅,ej ] corresponding to the fixed point (Rj , φRj ) in M(ej, 0, j) is
sent via Ψj to |0〉 ⊗ [ωj], which is the highest weight vector of H⊗ C(ε1, ε2)[Q + ωj].
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Remark 6.25. Proposition 6.24 is analogous to a previous result derived for Nakajima quiver varieties
(see e.g. [45, Section 10] and [57, Section 5.1]). △

Let us introduce the Virasoro operators of ĝlk by (cf. Sections 3.1.1 and 3.3.1)

L0 := Lh
0 + Lŝlk

0 =
∞∑

m=1

p−m pm +
k−1∑

i=1

∞∑

m=1

q
ηi
−m qηi

m +
1
2

k−1∑

i=1

(
q
ηi
0

)2
,

Ln := Lh
n + Lŝlk

n =
1
2

∑

m∈Z
p−m pm+n +

1
2

k−1∑

i=1

∑

m∈Z
q
ηi
−m q

ηi
m+n for n 6= 0 ,

where {ηi}k−1
i=1 is an orthonormal basis of the vector space Q ⊗Z R and we set p0 := 0. Note that

{ηi}k−1
i=1 ∪ {E} is an orthonormal basis of the vector space C(ε1, ε2)k ≃ H∗T (Xk)loc, so after an

orthonormal change of basis and a suitable normalization one can rewrite the operators Ln in the form

L0 =
k∑

l=1

βl

∞∑

m=1

pl
−m pl

m +
1
2

k−1∑

i=1

(
q
ηi
0

)2
,

Ln =
1
2

k∑

l=1

βl

∑

m∈Z
m6=0,−n

pl
−m pl

m+n +
k−1∑

i=1

q
ηi
0 qηi

n for n 6= 0 .

Proposition 6.26. Let j ∈ {0, 1, . . . , k − 1}, ~u ∈ Uj and n ∈ N. Then

L0

∣∣
W~u,n,j

=
(
n+ 1

2 ~v · C~v
)

idW~u,n,j
,

where ~v := C−1~u.

Proof. By Equation (4.21), we have
∑∞

m=1 pl
−m pl

m⊲[~Y ] = β−1
l |Y l| [~Y ] for [~Y ] = [(∅, . . . , Y l, . . . , ∅)]

in HUl
and l ∈ {1, . . . , k}. Then by using the isomorphism Ω introduced in (6.8) and the isomorphism

Ψj introduced in (6.2) we get

( k∑

l=1

βl

∞∑

m=1

pl
−m pl

m

)∣∣∣
W~u,n,j

= n idW~u,n,j
.

On the other hand, since {ηi}k−1
i=1 is an orthonormal basis of Q⊗Z R we get

( k−1∑

i=1

(
q
ηi
0

)2
)∣∣∣

W~u,n,j

=
( k−1∑

i=1

〈
ηi ,

k−1∑

s=1

vs γs

〉2

Q⊗ZR

)
idW~u,n,j

=
(
~v · C~v

)
idW~u,n,j

,

where ~v := C−1~u.

Since

L0 ⊲ [∅, ~u ] = 1
2 ~v · C~v [∅, ~u ] and Ln ⊲ [∅, ~u ] = 0 for n > 0 ,

we have the following result.
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Corollary 6.27. W~u,j is a highest weight representation of the Virasoro algebra Vir associated with
ĝlk, which is generated by the operators Ln and c with highest weight vector [∅, ~u ] and conformal
dimension

∆~u := 1
2 ~v · C~v .

Moreover, the energy eigenspace decomposition of the representation W~u,j is given by (5.17).

Proposition 6.28. Let j ∈ {0, 1, . . . , k − 1}. The weight decomposition of Wj as a ĝlk-module is
given by

Wj =
⊕

~u∈Uj

W~u,j .

Proof. For j = 0, 1, . . . , k − 1 and for any element A ⊗ [γ~u + ωj ] ∈ H ⊗ C(ε1, ε2)[Q + ωj] with
~u ∈ Uj , we have

h0 ⊲ (A⊗ [γ~u + ωj]) =
(
1−

k−1∑

l=1

ul

)
(A⊗ [γ~u + ωj]) ,

hi ⊲ (A⊗ [γ~u + ωj]) = ui (A⊗ [γ~u + ωj]) for i = 1, . . . , k − 1 .

Under the ĝlk-action, W~u,j decomposes as

W~u,j ≃ FC(ε1,ε2) ⊗ V(ω̂j)γ~u
,

where V(ω̂j)λ := {w ∈ V(ω̂j) |hi⊲w = (ω̂j +λ)(hi)w} for any weight λ. The assertion now follows
by showing that for a weight λ, the vector space V(ω̂j)λ is nonzero if and only if λ = γ~u for some
~u ∈ Uj . For this, let ~ξ ~v :=

∏k−1
i=1 ξvi

i for ξi ∈ C∗ with |ξi| < 1 and any vector ~v = (v1, . . . , vk−1),
and set ~h := (h1, . . . , hk−1). Then it is enough to note that the trace of the operator qL0 ~ξ C−1~h is
given by

TrWj qL0 ~ξ C−1~h =
∑

~u∈Uj

∞∑

n=0

qn+ 1
2

~v·C~v ~ξ ~v

and the right-hand side is exactly the character of the j-th dominant representation of ĝlk by [14,
Section 5.3].

6.4.1 Whittaker vectors

Consider now the completed total equivariant cohomology

Ŵj :=
∏

~u∈Uj

∏

n≥0

W~u,n,j .

We can extend the isomorphism (6.2) to

Ψ̂j : Ŵj
∼−−→ Ĥ⊗

( ∏

γ~u∈Q

C(ε1, ε2) (γ~u + ωj)
)
,
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where Ĥ :=
∏

n≥0 H
∗
T (Hilbn(Xk))loc is the completed total equivariant cohomology of the Hilbert

schemes of points on Xk. In the following we drop the explicit symbols Ψ̂j from the notation in order
to simplify the presentation, and we denote

|ωj〉 :=
∑

~u∈Uj

[∅, ~u ] .

Proposition 6.29. Fix ~η ∈ C(ε1, ε2)k. In the completed total equivariant cohomology Ŵj the vector

Gj(~η ) := exp
( k∑

i=1

ηi pi
−1

)
|ωj〉

is a Whittaker vector of type χ~η , where χ~η : U(h+ ⊕ h+
Q) → C(ε1, ε2) is defined by

χ~η(qi
1) = ηi+1 β

−1
i+1 − ηi and χ~η(qi

m) = 0 for m > 1 , i = 1, . . . , k − 1 ,

χ~η(p1) =
1√〈

[Xk], [Xk]
〉

H1

k∑

i=1

ηi

ε
(i)
1

and χ~η(pm) = 0 for m > 1 .

Proof. Let ĤUi :=
∏

n≥0 H
∗
T (Hilbn(Ui))loc be the completed total equivariant cohomology of the

Hilbert scheme Hilbn(Ui) for i = 1, . . . , k, and define G(ηi) := exp
(
ηi pi
−1

)
|0〉 ∈ ĤUi . By using

Theorem 6.18 and the completed versions of the isomorphisms (6.8) and (6.2), we can rewrite the
vector Gj(~η ) as

Gj(~η ) = G(η1)⊗ · · · ⊗G(ηk) ⊗
∑

~u∈Uj

(γ~u + ωj) .

By Proposition 4.13, G(ηi) for i = 1, . . . , k is a Whittaker vector for the Heisenberg algebra hi of
type χi, where

χi(pi
1) := ηi β

−1
i and χi(pi

m) := 0 for m > 1 .

Again by Theorem 6.18, each hi acts trivially on HUl
for l 6= i and it is easy to see that Gj(~η ) is

a Whittaker vector for the Heisenberg algebra hH1 of type χ̃~η, where χ̃~η : U
(
h+

H1

)
→ C(ε1, ε2) is

defined by χ̃~η(pi
m) := χi(pi

m) for i = 1, . . . , k and m ∈ Z \ {0}. Then by Remark 6.21, Gj(~η ) is a
Whittaker vector for ĝlk of type χ~η with χ~η : U(h+ ⊕ h+

Q) → C(ε1, ε2) defined for every m > 0 by

χ~η(qi
m) := χ̃~η(pi+1

m )− βi χ̃~η(pi
m) = δm,1

(
ηi+1 β

−1
i+1 − ηi

)
,

χ~η(pm) :=
√
−k ε1 ε2

k∑

i=1

1

ε
(i)
2

χ̃~η(pi
m) = δm,1

√
−k ε1 ε2

k∑

i=1

ηi

ε
(i)
1

.
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7 Chiral vertex operators for ĝlk

7.1 Ext-bundles and bifundamental hypermultiplets

In this section we construct and study the natural generalizations of the Ext vertex operators from
Section 4.3 for the moduli spaces M(~u, n, j).

For n ∈ N, j ∈ {0, 1, . . . , k−1} and ~u ∈ Uj , let E~u,n,j denote the universal sheaf onM(~u, n, j)×
Xk. Define

E i := p∗i3
(E~ui,ni,ji

)
∈ K

(
M(~u1, n1; j1)×M(~u2, n2; j2)×Xk

)
for i = 1, 2 ,

where pij is the projection of M(~u1, n1; j1) ×M(~u2, n2; j2) ×Xk onto the product of the i-th and
j-th factors. Denote by p3 the projection of the same product onto Xk.

Let Tµ = C∗ and H∗Tµ
(pt; C) = C[µ]. Denote by OXk

(µ) the trivial line bundle on Xk on which
Tµ acts by scaling the fibers.

Definition 7.1 ([14, Definition 4.17]). The Carlsson-Okounkov bundle is the element

E~u1,n1,j1;~u2,n2,j2
µ := p12∗

(
− E∨1 · E2 · p∗3(OXk

(µ)⊗OXk
(−D∞))

)

in the K-theory K
(
M(~u1, n1; j1)×M(~u2, n2; j2)

)
. ⊘

By [14, Section 4.5], the fibre of E~u1,n1,j1;~u2,n2,j2
µ over

(
[(E , φE )] , [(E ′, φE ′)]

)
inM(~u1, n1; j1)×

M(~u2, n2; j2) is given by

E~u1,n1,j1;~u2,n2,j2
µ

∣∣
([(E,φE)] , [(E ′,φE′ )])

= Ext1
(
E , E ′ ⊗OXk

(µ)⊗OXk
(−D∞)

)
.

One can compute the dimension of this vector space by a straightforward generalization of the dimen-
sion computations of [14, Appendix A] to get the rank

rk
(
E~u1,n1,j1;~u2,n2,j2

µ

)
= n1 + n2 + 1

2 ~v21 · C~v21 − 1
2k j21 (k − j21) ,

where ~v21 := C−1(~u2− ~u1) and j21 ∈ {0, 1, . . . , k− 1} is the equivalence class modulo k of j2− j1.

Let W :=
⊕k−1

j=0 Wj endowed with the nondegenerate C(ε1, ε2)-valued bilinear form 〈−,−〉W
induced by the symmetric bilinear forms 〈−,−〉Wj . Define the operator Vµ(~x, z) ∈ End(W )[[z± 1, x± 1

1 ,

. . . , x± 1
k−1]] by its matrix elements

(−1)n2
〈
Vµ(~x, z)A1 , A2

〉
W := zn2−n1+∆~u2

−∆~u1 ~x ~v21

×
∫

M(~u1,n1;j1)×M(~u2,n2;j2)
euT

(
E~u1,n1,j1;~u2,n2,j2

µ

)
∪ p∗1(A1) ∪ p∗2(A2) , (7.2)

where Ai ∈ H∗T (M(~ui, ni; ji))loc and pi is the projection from M(~u1, n1; j1) ×M(~u2, n2; j2) to
the i-th factor for i = 1, 2. The extra isospin parameters ~x := (x1, . . . , xk−1) weigh the ŝlk-action,
and we abbreviated ~x ~v :=

∏k−1
i=1 xvi

i for a vector ~v = (v1, . . . , vk−1). By the computations of [14,
Section 4.7], the matrix elements (7.2) in the fixed point basis are given by

〈
Vµ(~x, z)[~Y1, ~u1 ] , [~Y2, ~u2 ]

〉
W

= (−1)|~Y2| z|
~Y2|−|~Y1|+∆~u2

−∆~u1 ~x ~v21 euT

(
E~u1,n1,j1;~u2,n2,j2

µ

∣∣
([(E1,φE1 )] , [(E2,φE2 )])

)
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= (−1)|~Y2| z|
~Y2|−|~Y1|+∆~u2

−∆~u1 ~x ~v21

k∏

i=1

mY i
1 ,Y i

2

(
ε
(i)
1 , ε

(i)
2 , µ− (~v21)i ε

(i)
1 − (~v21)i−1 ε

(i)
2

)

×
k−1∏

n=1

ℓ
(n)
~v21

(
ε
(n)
1 , ε

(n)
2 , µ

)
, (7.3)

where [(E1, φE1)] and [(E2, φE2)] are the T -fixed points corresponding respectively to the combinato-
rial data (~Y1, ~u1) and (~Y2, ~u2), and we use the convention (~v21)0 = (~v21)k = 0. HeremY1,Y2 is defined

in (4.17), while ℓ(n)
~v is the edge contribution defined in Appendix B. This factorized expression for

the matrix elements represents the contribution of the U(1)×U(1) bifundamental hypermultiplet for
N = 2 quiver gauge theories on the ALE space Xk.

7.2 Vertex operators and primary fields

In this subsection we factorize the operators Vµ(~x, z) defined in (7.2) under the decomposition ĝlk =
h⊕ ŝlk as tensor products of generalized bosonic exponentials associated to the Heisenberg algebra h

from Definition 3.3 with primary fields of the Virasoro algebra associated to the affine Lie algebra ŝlk
from Section 3.3.1.

For l = 1, 2 fix jl ∈ {0, 1, . . . , k − 1} and respectively ~ul ∈ Ujl
. Set

γ21 :=
k−1∑

i=1

(~v21)i γi = ψj2(~u2)− ψj1(~u1) ∈ Q⊗Z Q .

Note that γ21 = γ~u2
− γ~u1

+ ωj2 − ωj1 . We define the maps

exp
(
γ21

)
: H⊗ C(ε1, ε2)[Q + ωj1 ] −→ H⊗ C(ε1, ε2)[Q + ωj2 ] ,

v ⊗ [β + ωj1 ] 7−→ v ⊗ [β + γ~u2
− γ~u1

+ ωj2 ] ,

and exp
(
log z c + γ21

)
: H⊗ C(ε1, ε2)[Q + ωj1 ] → H⊗ C(ε1, ε2)[Q + ωj2 ], given by

exp
(
log z c+γ21

)
⊲(v⊗[β+ωj1 ]) := z

1
2
〈γ21,γ21〉Q⊗ZQ+〈γ21,β+ωj1

〉Q⊗ZQ (v⊗[β+γ~u2
−γ~u1

+ωj2 ]) .

Note that the operator exp
(
log z c − γ21

)
exp

(
γ21

)
∈ End(H ⊗ C(ε1, ε2)[Q + ωj1 ])[[z, z

−1]] is
given by

exp
(
log z c− γ21

)
exp

(
γ21

)
⊲ (v ⊗ [β + ωj1])

= z−
1
2
〈γ21,γ21〉Q⊗ZQ−〈γ21,β+ωj1

〉Q⊗ZQ (v ⊗ [β + ωj1 ]) . (7.4)

In the following we shall suppress the explicit isomorphism Ψ from Theorem 6.1 in our formulas in
order to simplify the presentation.

We will now rewrite the operator Vµ(~x, z) in terms of chiral vertex operators in Hom(W~u1;j1 ,W~u2;j2)
[[z± 1, x± 1

1 , . . . , x± 1
k−1]] between two highest weight representations of the Virasoro algebra associ-

ated with ŝlk. For this, let us define the vertex operator V̄µ(~v21, ~x, z) of Hom(Wj1 ,Wj2)[[z
± 1, x± 1

1 ,
. . . , x± 1

k−1]] by

V̄µ(~v21, ~x, z) := ~x ~v21

k−1∏

l=1

ℓ
(l)
~v21

(
ε
(l)
1 , ε

(l)
2 , µ

)
Vγ21

1,−1(z) exp
(
log z c + γ21

)
, (7.5)
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where Vγ21
1,−1(z) is the normal-ordered bosonic exponential associated with the Heisenberg algebra

hQ.

Theorem 7.6. Under the decomposition ĝlk = h ⊕ ŝlk, the operator Vµ(~x, z) is given in terms of
products of vertex operators as

Vµ(~x, z) = V− µ√
−k ε1 ε2

,
µ+ε1+ε2√
−k ε1 ε2

(z)

⊗
k−1∑

j1,j2=0

∑

~u1∈Uj1
,~u2∈Uj2

V̄µ(~v21, ~x, z) z∆~u2
−∆~u1 exp

(
log z c− γ21

)
exp

(
γ21

)∣∣
W~u1,j1

,

where V̄µ(~v21, ~x, z) is a primary field of the Virasoro algebra generated by Lŝlk
n and c with conformal

dimension ∆~u2−~u1
= 1

2 ~v21 · C~v21, i.e., for any n ∈ Z we have

[
Lŝlk

n , V̄µ(~v21, ~x, z)
]

= zn
(
z ∂z + 1

2 ~v21 · C~v21 n
)
V̄µ(~v21, ~x, z) . (7.7)

Proof. By using the isomorphism Ψ and Equation (4.16) we get

Vµ(~x, z) = Ψ−1 ◦
( k−1∑

j1,j2=0

∑

~u1∈Uj1
,~u2∈Uj2

z∆~u2
−∆~u1 ~x ~v21

k−1∏

n=1

ℓ
(n)
~v21

(
ε
(n)
1 , ε

(n)
2 , µ

)

× :
k∏

i=1

V
(
OUi

(
µ− (~v21)i ε

(i)
1 − (~v21)i−1 ε

(i)
2

)
, z

)
: ⊗

(
ψj2(~u2)⊗ ψj1(~u1)∗

) )
◦Ψ

where OUi(µ) is the trivial line bundle on Ui ≃ C2 with an action of Tµ which rescales the fibers,
and ψj1(~u1)∗ denotes the dual vector to ψj1(~u1) in the dual vector space C(ε1, ε2)[Q + ωj1 ]

∗. By
Theorem 4.18 we get an expression determined by the operators pi

m for m ∈ Z\{0} and i = 1, . . . , k
as

V
(
OUi

(
µ− (~v21)i ε

(i)
1 − (~v21)i−1 ε

(i)
2

)
, z

)

= exp
(
− µ− (~v21)i ε

(i)
1 − (~v21)i−1 ε

(i)
2

ε
(i)
2

∞∑

m=1

zm

m
pi
−m

)

× exp
( µ+ ε1 + ε2 − (~v21)i ε

(i)
1 − (~v21)i−1 ε

(i)
2

ε
(i)
2

∞∑

m=1

z−m

m
pi

m

)
.

By using Equations (6.22) and (6.23), we can rewrite :
∏k

i=1 V
(
OUi

(
µ−(~v21)i ε

(i)
1 −(~v21)i−1 ε

(i)
2

)
, z

)
:

in terms of Heisenberg operators ql
m and pm, for l = 1, . . . , k − 1 and m ∈ Z \ {0}, and the first as-

sertion now follows. The proof of Equation (7.7) is somewhat lengthy and can be found in Appendix
A.

Remark 7.8. In the following we will denote by Vj1,j2
µ (~x, z) the restriction of the vertex operator

Vµ(~x, z) to Hom(Wj1 ,Wj2)[[z
± 1, x± 1

1 , . . . , x± 1
k−1]]. △
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7.3 Integrals of motion

Let V ~u,n,j be the pushforward of E~u,n,j;~u,n,j
0 with respect to the projection of the productM(~u, n, j)×

M(~u, n, j) to the second factor. It is a T -equivariant vector bundle on M(~u, n, j) of rank n + 1
2 (~v ·

C~v − 1
k j (k − j)), which we shall call the natural bundle over M(~u, n, j). The T -equivariant Chern

character of V ~u,n,j at a fixed point [(E , φE )] with combinatorial datum (~Y , ~u ) is given by (cf. [14,
Section 4.7])

chT

(
V ~u,n,j

∣∣
[(E,φE)]

)
=

k∑

i=1

∑

s∈Y i

e−(vi+L′
Y i(s)) ε

(i)
1 −(vi−1+A′

Y i (s)) ε
(i)
2 +

k−1∑

n=1

L
(n)
~v

(
ε
(n)
1 , ε

(n)
2

)
,

where the edge contributions L(n)
~v

(
ε
(n)
1 , ε

(n)
2

)
are defined in Appendix B.

Let us denote by V j the natural bundle over
∐

~u∈Uj

∐
n≥0 M(~u, n, j), and consider the operators

of multiplication by I1 := rk
(
V j

)
and Ip := (cp−1)T

(
V j

)
for p ≥ 2 on

∏
~u∈Uj

∏
n≥0 W~u,n,j. For

example, one has

I1 ⊲ [~Y , ~u ] =
(
|~Y |+ 1

2 ~v · C~v
)
[~Y , ~u ]− 1

2k j (k − j) [~Y , ~u ] ,

I2 ⊲ [~Y , ~u ] = −
k∑

i=1

∑

s∈Y i

((
vi + L′Y i(s)

)
ε
(i)
1 +

(
vi−1 +A′Y i(s)

)
ε
(i)
2

)
[~Y , ~u ]

+
k−1∑

n=1

ℓ
(n)
~v

(
ε
(n)
1 , ε

(n)
2

)
[1]

[~Y , ~u ] ,

where the quantities ℓ(n)
~v (ε(n)

1 , ε
(n)
2 )[1] are defined in Appendix B. Note that, by Proposition 6.26, the

operator I1 coincides (up to a constant shift) with the Virasoro operator L0 for ĝlk. By using the
description in Section 4.4, these operators can be written partly in terms of the Heisenberg operators
pi

m of hH1 and the ŝlk generators qi
0 = hi; one has

I1 =
k∑

i=1

βi

∞∑

m=1

pi
−m pi

m +
1
2

k−1∑

i=1

(
q
ηi
0

)2 − 1
2k

j (k − j) id ,

I2 =
k∑

i=1

ε
(i)
1

( βi

2

∞∑

m,n=1

(
pi
−m pi

−n pi
m+n + pi

−m−n pi
n pi

m

)

− βi − 1
2

∞∑

m=1

(m− 1) pi
−m pi

m

)

+
k∑

i=1

ε
(i)
1

k−1∑

j=1

((
C−1

)ij
βi −

(
C−1

)i−1,j
) ∞∑

m=1

pi
−m pi

m q
j
0 + L1 ,

where L1 is the operator defined by L1 ⊲ [~Y , ~u ] :=
∑k−1

n=1 ℓ
(n)
~v (ε(n)

1 , ε
(n)
2 )[1] [~Y , ~u ] and we set

(C−1)0j = 0 = (C−1)kj .

Following [7], here we shall identify a quantum integrable system for each Heisenberg subalgebra
h of ĝlk. Then each integral of motion associated to the Heisenberg algebra hH1 is a sum of integrals of
motion of k non-interacting Calogero-Sutherland models from Section 4.4 with prescribed couplings;
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in particular the Hamiltonian is given by k copies of one-component bosonized Calogero-Sutherland
Hamiltonians as

∑k
i=1 ε

(i)
1 2β−1

i . This infinite system of commuting operators is diagonalized in
the fixed-point basis [~Y , ~u ]. This simultaneous eigenbasis also factorizes the primary operators from
Theorem 7.6. The remaining ~v-dependent parts of the eigenvalues are instead interpreted as particular
matrix elements of our geometrically defined vertex operators Vµ(~x, z) in highest weight vectors of
ĝlk, as we discuss in Appendix B.

Remark 7.9. By Remark 5.14, the moduli spaces M(~u, n, j) are Nakajima quiver varieties of type
Âk−1. The descriptions of the integrable systems corresponding to quiver varieties are detailed in
[40, 57]. △

8 N = 2 quiver gauge theories on Xk

8.1 N = 2 gauge theory

In this subsection we fix j ∈ {0, 1, . . . , k − 1} corresponding to a fixed holonomy at infinity. The
instanton partition function for the pure N = 2 U(1) gauge theory on the ALE space Xk is the
generating function (cf. [14, Section 5.1])

ZXk

(
ε1, ε2; q, ~ξ

)
j

:=
∑

~v∈ 1
k

Zk−1

k vk−1=j mod k

~ξ ~v
∞∑

n=0

qn+ 1
2

~v·C~v

∫

M(~u,n,j)

[
M(~u, n, j)

]
T

=
∑

~u∈Uj

∞∑

n=0

q
1
2

~u·C−1~u ~ξ C−1~u (−q)n
〈
[M(~u, n, j)]T , [M(~u, n, j)]T

〉
Wj

,

where q ∈ C∗ with |q| < 1, and the fugacities ~ξ := (ξ1, . . . , ξk−1) ∈ (C∗)k−1 with |ξi| < 1 can be
interpreted as coordinates on the maximal torus of the Lie group SL(k,C).

In general, as described in [14, Section 5.1], the partition functions factorize into products of
the corresponding instanton partition functions over the affine toric subsets Ui ≃ C2 of Xk and
are weighted by the edge contributions ℓ(n)

~v which appear in the equivariant Euler classes of the
Carlsson-Okounkov bundle from Section 7.1 (see Appendix B). The edge contributions for the rank
one N = 2 gauge theory on Xk are roughly speaking the equivariant Euler classes of the vector space
H1(Xk,OXk

(−D∞)), which are zero by the computation of the rank of the natural bundle in [14,
Appendix A], hence the edge contribution is always equal to one. We thus obtain a factorization in
terms of Nekrasov partition functions for the pure N = 2 gauge theory on R4 given by

ZXk

(
ε1, ε2; q, ~ξ

)
j

=
∑

~u∈Uj

q
1
2

~u·C−1~u ~ξ C−1~u
k∏

i=1

ZC2

(
ε
(i)
1 , ε

(i)
2 ; q

)
.

Let us denote by

χω̂j
(
q, ~ζ

)
:= TrV( ω̂j ) qL

ŝlk
0 − k−1

24
id ~x

~h (8.1)

the character of the j-th dominant highest weight representation of ŝlk at level one, with weight
the j-th fundamental weight ω̂j of type Âk−1 for j = 0, 1, . . . , k − 1; here ~ζ :=

∑k−1
i=1 ziHi and
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xi := e 2π i zi for i = 1, . . . , k − 1, while ~h := (h1, . . . , hk−1). Setting ξi = e 2π i (2zi−zi−1−zi+1) for
i = 1, . . . , k − 1 with z0 = zk = 0, by explicit computation of the character we get [14, Section 5.3]

χω̂j
(
q, ~ζ

)
=

1
η(q)k−1

∑

~u∈Uj

q
1
2

~u·C−1~u ~ξ C−1~u ,

where q
1
24 η(q)−1 =

∏∞
n=1 (1− qn)−1 = TrFC(ε1,ε2)

qLh
0 is the character of the Fock space represen-

tation of the Heisenberg algebra h. By Equation (4.23) and the identity

k∑

i=1

1

ε
(i)
1 ε

(i)
2

=
1

k ε1 ε2
(8.2)

we obtain explicitly

ZXk

(
ε1, ε2; q, ~ξ

)
j

= η(q)k−1 χω̂j
(
q, ~ζ

)
exp

( q

k ε1 ε2

)
.

8.1.1 Gaiotto state

Following Section 4.5.1, we define the Gaiotto state Gj to be the sum, in the completed total equiv-
ariant cohomology Ŵj , of all fundamental classes

Gj :=
∑

~u∈Uj

∑

n≥0

[
M(~u, n, j)

]
T
.

We also define the weighted Gaiotto state

Gj

(
q, ~ξ

)
:=

∑

~u∈Uj

∑

n≥0

qn+ 1
2

~u·C−1~u ~ξ C−1~u
[
M(~u, n, j)

]
T

in the completion
Ŵj

(
q, ~ξ

)
:=

∏

~u∈Uj

∏

n≥0

qn+ 1
2

~u·C−1~u ~ξ C−1~u W~u,n,j .

If we endow Ŵj

(
q, ~ξ

)
with the scalar product

〈 ∑
~u∈Uj

∑
n≥0

qn+ 1
2

~u·C−1~u ~ξ C−1~u η~u,n ,
∑

~u∈Uj

∑
n≥0

qn+ 1
2

~u·C−1~u ~ξ C−1~u ν~u,n

〉
Ŵj(q,~ξ )

:=
∑

~u∈Uj

∞∑

n=0

q
1
2

~u·C−1~u (−q)n ~ξ C−1~u
〈
η~u,n, ν~u,n

〉
W~u,n,j

,

then it is straightforward to see that the norm of the weighted Gaiotto state is the instanton partition
function for the N = 2 U(1) gauge theory on Xk:

ZXk

(
ε1, ε2; q, ~ξ

)
j

=
〈
Gj

(
q, ~ξ

)
, Gj

(
q, ~ξ

)〉
Ŵj(q,~ξ )

.

Proposition 8.3. The Gaiotto state is a Whittaker vector for ĝlk of type χ, where the algebra homo-
morphism χ : U(h+ ⊕ h+

C(ε1,ε2),Q
) → C(ε1, ε2) is defined by

χ(qi
m) = 0 for m > 0 , i = 1, . . . , k − 1 ,

χ(pm) = δm,1

√〈
[Xk], [Xk]

〉
H1

for m > 0 .
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Proof. We first note that under the isomorphism Ψj defined in (6.2) the fundamental class [M(~u, n, j)]T
is sent to [Hilbn(Xk)]T ⊗ (γ~u + ωj). Hence under the isomorphism (6.8) the Gaiotto state becomes

Gj =
k⊗

i=1

∑

n≥0

[
Hilbn(Ui)

]
T
⊗

∑

~u∈Uj

(γ~u + ωj) ∈
k⊗

i=1
ĤUi ⊗

∏
~u∈Uj

C(ε1, ε2)(γ~u + ωj) .

By Proposition 4.24,
∑

n≥0 [Hilbn(Ui)]T is the Whittaker vector G(ηi) for the Heisenberg algebra hi

with ηi =
(
ε
(i)
2

)−1. It follows that Gj is the Whittaker vector Gj(~η ) for ĝlk as in Proposition 6.29
with ~η = (η1, . . . , ηk) of type χ where

χ(qi
m) = δm,1

(
ηi+1 β

−1
i+1 − ηi

)
and χ(pm) = δm,1

√
−k ε1 ε2

k∑

i=1

ηi

ε
(i)
1

.

By computing explicitly the quantities on the right-hand sides of these equations, one gets the asser-
tion.

8.2 Quiver gauge theories

As we did in Section 4.6, we will now add matter to the N = 2 gauge theory and consider N = 2
superconformal quiver gauge theories on the ALE space Xk with gauge group U(1)r+1 for r ≥ 0; we
shall follow [16], where superconformal quiver gauge theories on the ALE space Xk are introduced.

For a quiver Q = (Q0, Q1) we fix vectors of integers (~uυ, nυ, jυ)υ∈Q0 representing the topolog-
ical numbers of the moduli spaces M(~uυ, nυ, jυ) at the vertices Q0 with ~uυ ∈ Ujυ , nυ ∈ N, and
jυ ∈ {0, 1, . . . , k − 1}. The fundamental (resp. antifundamental) hypermultiplets of masses µs

υ,
s = 1, . . . ,mυ (resp. µ̄s̄

υ, s̄ = 1, . . . , m̄υ) at the nodes υ ∈ Q0 correspond to the T -equivariant vector
bundles V ~uυ ,nυ,jυ

µs
υ

(resp. V̄
~uυ ,nυ,jυ

µ̄s̄
υ

) on M(~uυ, nυ, jυ) obtained by pushforward of E~uυ,nυ,jυ;~uυ,nυ,jυ
µs

υ

(resp. E~uυ,nυ,jυ;~uυ,nυ,jυ

µ̄s̄
υ

) with respect to the projection of M(~uυ, nυ, jυ) × M(~uυ , nυ, jυ) to the
second (resp. first) factor. The bifundamental hypermultiplets of masses µe at the edges e ∈ Q1 corre-

spond to the vector bundles E
~us(e),ns(e),js(e);~ut(e),nt(e),jt(e)
µe onM(~us(e), ns(e), js(e))×M(~ut(e), nt(e), jt(e));

for vertex loops with s(e) = t(e) the restriction of E
~us(e),ns(e),js(e);~us(e),ns(e),js(e)
µe to the diagonal of

M(~us(e), ns(e), js(e))×M(~us(e), ns(e), js(e)) describes an adjoint hypermultiplet of mass µe. The to-
tal matter field content of the N = 2 quiver gauge theory on Xk associated to Q in the sector labelled
by (~uυ, nυ, jυ)υ∈Q0 is thus described by the bundle on

∏
υ∈Q0

M(~uυ , nυ, jυ) given by

M
(~uυ,nυ,jυ)
(µs

υ),(µ̄s̄
υ),(µe) :=

⊕

υ∈Q0

p∗υ
( mυ⊕

s=1

V ~uυ,nυ,jυ
µs

υ
⊕

m̄υ⊕

s̄=1

V̄
~uυ ,nυ,jυ

µ̄s̄
υ

)

⊕
⊕

e∈Q1

p∗eE
~us(e),ns(e),js(e);~ut(e),nt(e),jt(e)
µe ,

where pυ is the projection of
∏

υ∈Q0
M(~uυ , nυ, jυ) to the υ-th factor while pe is the projection to the

product M(~us(e), ns(e), js(e))×M(~ut(e), nt(e), jt(e)).

The degree of the Euler class of the hypermultiplet bundle M
(~uυ,nυ,jυ)
(µs

υ),(µ̄s̄
υ),(µe) is given by

deg eu
(
M

(~uυ,nυ,jυ)
(µs

υ),(µ̄s̄
υ),(µe)

)
:=

∑

υ∈Q0

dimM(~uυ , nυ, jυ)− rk
(
M

(~uυ ,nυ,jυ)
(µs

υ),(µ̄s̄
υ),(µe)

)
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=
∑

υ∈Q0

2nυ −
∑

υ∈Q0

(
mυ + m̄υ

) (
nυ + 1

2 ~vυ · C~vυ − 1
2k jυ (k − jυ)

)

−
∑

e∈Q1

(
nt(e)+ns(e)+ 1

2 ~vs(e) ·C~vs(e)+ 1
2 ~vt(e) ·C~vt(e)−~vs(e) ·C~vt(e)− 1

2k jt(e)s(e) (k−jt(e)s(e))
)
,

where ~vυ := C−1~uυ. Using (4.26) the degree becomes

deg eu
(
M

(~uυ,nυ,jυ)
(µs

υ),(µ̄s̄
υ),(µe)

)
=

∑

υ∈Q0

dXk
υ (~vυ) ,

where we defined

dXk
υ (~vυ) := 1

2k jυ (k − jυ)
(
2−#{e ∈ Q1 | s(e) = υ} −#{e ∈ Q1 | t(e) = υ}

)

+ 1
4k

( ∑

e∈Q1
s(e)=υ

jt(e)υ (k − jt(e)υ) +
∑

e∈Q1
t(e)=υ

jυs(e) (k − jυs(e))
)

− ~vυ · C~vυ + 1
2

∑

e∈Q1
s(e)=υ

~vυ · C~vt(e) + 1
2

∑

e∈Q1
t(e)=υ

~vυ · C~vs(e)

for each vertex υ ∈ Q0; here ~vυ :=
(
~vυ, (~vt(e))e∈Q1 : s(e)=υ , (~vs(e))e∈Q1 : t(e)=υ

)
. By analogy with the

case of gauge theories on R4 (see Section 4.6), we say that the N = 2 quiver gauge theory on Xk is
conformal if dXk

υ (~vυ) = 0 for all υ ∈ Q0; this is formally the requirement of vanishing beta-function
for the running of the υ-th gauge coupling constant. For any vertex υ ∈ Q0, define the set of conformal
fractional instanton charges by

Uconf
jυ

:=
{
~uυ ∈ Ujυ

∣∣ dXk
υ (~vυ) = 0

}
. (8.4)

The conformal constraint is always trivially satisfied by any ~uυ for the Â0-theory, while for the A0-
theory the set of conformal fractional instantons charges reduces to

Uconf
j :=

{
~u ∈ Uj

∣∣ ~u · C−1~u = 1
k j (k − j)

}
.

Note that in this case, this is a restriction on the conformal dimension ∆~u = 1
2 〈ωj , ωj〉Q⊗ZQ of the

highest weight representation W~u,j of the Virasoro algebra.

Introduce topological couplings qυ ∈ C∗ with |qυ| < 1 and ~ξv =
(
(ξv)1, . . . , (ξv)k−1

)
∈ (C∗)k−1

with |(ξv)i| < 1 at each vertex υ ∈ Q0. With notation as in Section 4.6, the quiver gauge theory
partition function on Xk is then defined by the generating function

ZQ
Xk

(
ε1, ε2,µ;q,~ξ

)
j

:=
∑

(~uυ∈Uconf
jυ

)

~ξ C−1~u
∑

(nυ)∈NQ0

qn+ 1
2

~u·C−1~u

×
∫

∏
υ∈Q0

M(~uυ ,nυ,jυ)
euT×Tµ

(
M

(~uυ,nυ,jυ)
(µs

υ),(µ̄s̄
υ),(µe)

)

=
∑

(~uυ∈Uconf
jυ

)

∑

(nυ)∈NQ0

qn+ 1
2

~u·C−1~u ~ξ C−1~u
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×
∫

∏
υ∈Q0

M(~uυ ,nυ,jυ)

∏

υ∈Q0

p∗υ
( mυ∏

s=1

euT

(
V ~uυ,nυ,jυ

µs
υ

) m̄υ∏

s̄=1

euT

(
V̄

~uυ,nυ,jυ

µ̄s̄
υ

) )

×
∏

e∈Q1

p∗e euT

(
E

~us(e),ns(e),js(e);~ut(e),nt(e),jt(e)
µe

)
,

where qn+ 1
2

~u·C−1~u :=
∏

υ∈Q0
q

nυ+ 1
2

~uυ·C−1~uυ
υ and ~ξ C−1~u :=

∏
υ∈Q0

~ξ C−1~uυ
υ . By applying the

localization theorem, and using Equations (4.25) and (7.3), we obtain a factorization in terms of N =
2 quiver gauge theory partition functions on R4 weighted by edge contributions. For the fundamental
and antifundamental matter fields, the relevant edge contributions ℓ(n)

~vυ
are the equivariant Euler classes

of H1(Xk,R~uυ ⊗ OXk
(−D∞)) for υ ∈ Q0; by [14, Section 5] this vector space is zero if and only

if ~uυ ∈ Uconf
jυ

and the corresponding edge contribution is equal to one. Thus only the arrows of the
quiver yield edge contributions and the partition function is given by

ZQ
Xk

(
ε1, ε2,µ;q,~ξ

)
j

=
∏

υ∈Q0

q
1
2
〈ωjυ ,ωjυ 〉Q⊗ZQ

υ

∑

(~uυ∈Uconf
jυ

)

~ξ C−1~u
k−1∏

n=1

∏

e∈Q1

ℓ
(n)
~ve

(
ε
(n)
1 , ε

(n)
2 , µe

)

×
k∏

i=1

ZQ
C2

(
ε
(i)
1 , ε

(i)
2 ,µ(i);q

)
,

where ~ve := ~vt(e) − ~vs(e); the shifted masses are

(
µs

v

)(i) := µs
v − (~vv)i ε

(i)
1 − (~vv)i−1 ε

(i)
2

for v ∈ Q0, s = 1, . . . ,mv and i = 1, . . . , k, and similarly for
(
µ̄s̄

v

)(i), whereas

µ(i)
e := µe − (~ve)i ε

(i)
1 − (~ve)i−1 ε

(i)
2

for e ∈ Q1 and i = 1, . . . , k.

In the remainder of this section we consider in detail each of the admissible quivers in turn.

8.3 Âr theories

With the conventions of Section 4.7, the instanton partition function for the N = 2 U(1)r+1 quiver
gauge theory of type Âr on the ALE space Xk reads as

ZÂr
Xk

(
ε1, ε2,µ;q,~ξ

)
j

=
r∏

υ=0

q
1
2
〈ωjυ ,ωjυ 〉Q⊗ZQ

υ

∑

(~uυ∈Uconf
jυ

)

~ξ C−1~u
k−1∏

n=1

r∏

υ=0

ℓ
(n)
~vυ,υ+1

(
ε
(n)
1 , ε

(n)
2 , µυ

)

×
k∏

i=1

ZÂr

C2

(
ε
(i)
1 , ε

(i)
2 ,µ(i);q

)
, (8.5)

where~ξ C−1~u :=
∏r

υ=0
~ξ C−1~uυ
υ with ~ur+1 := ~u0, while µ(i)

υ := µυ−(~vυ,υ+1)i ε
(i)
1 −(~vυ,υ+1)i−1 ε

(i)
2

with ~vυ,υ+1 := ~vυ+1 − ~vυ.
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8.3.1 Conformal blocks

We will relate the partition function (8.5) to the trace of vertex operators Vjυ,jυ+1
µυ (~xυ, zυ) from Section

7, analogously to what we did in Section 4.7, and hence interpret it as a torus (r+ 1)-point conformal
block. For this, we fix vertices υ, υ′ ∈ {0, 1, . . . , r} and introduce the conformal restriction operators
δconf
υ,υ′ : W → W which are defined by their matrix elements in the fixed point basis of the vector space

W by
〈
δconf
υ,υ′ ⊲ [~Y , ~u ] , [~Y ′, ~u ′ ]

〉
W :=

{
1 if ~u ∈ Uconf

jυ
, ~u ′ ∈ Uconf

jυ′
,

0 otherwise .
(8.6)

Suitable insertions of this operator restrict the first Chern classes ~uυ ∈ Ujυ in the way required by
the superconformal constraints of the quiver gauge theory and the constrained conformal dimensions
of the associated Virasoro algebras at the nodes of the Âr-type quivers. Using Proposition 6.26 and
Proposition 6.28, by performing analogous manipulations to those used in the proof of Proposition
4.28 we arrive at the following result.

Proposition 8.7. The partition function of the Âr-theory on Xk is given by

ZÂr
Xk

(
ε1, ε2,µ;q,~ξ

)
j

= TrWj0
qL0 ~ξ C−1~h

r∏

υ=0

Vjυ,jυ+1
µυ

(~xυ , zυ) δconf
υ,υ+1

independently of z0 ∈ C∗ and ~x0 ∈ (C∗)k−1, where q := q0 q1 · · · qr, ( ~ξ )i := (~ξ0)i (~ξ1)i · · · (~ξr)i,
zυ := z0 q1 · · · qυ, and (~xυ)i := (~x0)i (~ξ1)i · · · (~ξυ)i for υ = 1, . . . , r and i = 1, . . . , k − 1.

By combining Theorem 7.6 and Proposition 8.7, it follows that the quiver gauge theory partition
function completely factorizes under the isomorphism of Proposition 6.24 into partition functions
associated to the affine algebras h and ŝlk.

Corollary 8.8. Let Vµ(~v21, ~x, z) be the vertex operator in Hom(Wj1 ,Wj2)[[z
± 1, x± 1

1 , . . . , x± 1
k−1]]

given by

Vµ(~v21, ~x, z) := z∆~u2
−∆~u1 V̄µ(~v21, ~x, z) exp

(
log z c− γ21

)
exp

(
γ21

)
. (8.9)

Then

ZÂr
Xk

(
ε1, ε2,µ;q,~ξ

)
j

= ZÂr

C2 (ε1, ε2,µ; q)
1
k q

1
24

(1− 1
k
) η(q)

1
k
−1

× TrV( ω̂j0
) qL

ŝlk
0 ~ξ C−1~h

r∏

υ=0

∑

(~uυ∈Uconf
jυ

)

Vµυ (~vυ,υ+1, ~xυ, zυ)
∣∣
W~uυ,jυ

.

Proof. By Theorem 7.6 and Proposition 6.24 we get

TrWj0
qL0 ~ξ C−1~h

r∏

υ=0

Vjυ,jυ+1
µυ

(~xυ, zυ) δconf
υ,υ+1 = TrFC(ε1,ε2)

qLh
0

r∏

υ=0

V− µυ√
−k ε1 ε2

,
µυ+ε1+ε2√
−k ε1 ε2

(zυ)

× TrV( ω̂j0
) qL

ŝlk
0 ~ξ C−1~h

r∏

υ=0

∑

~u1∈Ujυ ,~u2∈Ujυ+1

Vµ(~v21, zυ)
∣∣
W~u1,jυ

δconf
υ,υ+1 .
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Then by using the same arguments as in the proof of [18, Corollary 1] one gets

TrFC(ε1,ε2)
qLh

0

r∏

υ=0

V− µυ√
−k ε1 ε2

,
µυ+ε1+ε2√
−k ε1 ε2

(zυ) =
r∏

υ=0

(
q
− 1

24
υ η(qυ)

)−µυ (µυ+ε1+ε2)
k ε1 ε2 q

1
24 η(q)−1 .

The result now follows from Proposition 4.30.

8.3.2 Â0 theory

For the N = 2∗ gauge theory on Xk, similar arguments to those of Section 8.1 show that the edge
contributions are also equal to one in this case. In this instance the gauge theory is automatically
conformal without further restriction of the first Chern classes ~u ∈ Uj . Then the instanton partition
function for U(1) gauge theory on the ALE space Xk with a single adjoint hypermultiplet of mass
µ can be written in a factorized form in terms of the Nekrasov partition function for N = 2∗ gauge
theory on R4 given by

ZÂ0
Xk

(
ε1, ε2, µ; q, ~ξ

)
j

= η(q)k−1 χω̂j
(
q, ~ζ

) k∏

i=1

ZÂ0

C2

(
ε
(i)
1 , ε

(i)
2 , µ; q

)
.

In this case Proposition 8.7 may be stated in a factorized form under the decomposition of Theorem
7.6 in terms of characters of h ⊂ ĝlk and ĝlk as

ZÂ0
Xk

(
ε1, ε2, µ; q, ~ξ

)
j

= η(q)k−1 χω̂j
(
q, ~ζ

)
TrH qLh

0 V− µ√
−k ε1 ε2

,
µ+ε1+ε2√
−k ε1 ε2

(1) .

By using the identities (4.31) and (8.2), we obtain explicitly

ZÂ0
Xk

(
ε1, ε2, µ; q, ~ξ

)
j

= q
k
24 η(q)−1 χω̂j

(
q, ~ζ

) (
q−

1
24 η(q)

)−µ (µ+ε1+ε2)
k ε1 ε2 .

Remark 8.10. Note that H is not the Fock space of h, as we have

TrH qLh
0 V− µ√

−k ε1 ε2
,

µ+ε1+ε2√
−k ε1 ε2

(1) =
(
q

1
24 η(q)−1

)k−1 TrFC(ε1,ε2)
qLh

0 V− µ√
−k ε1 ε2

,
µ+ε1+ε2√
−k ε1 ε2

(1) .

△

8.4 Ar theories

With the conventions of Section 4.8, the instanton partition function for the N = 2 U(1)r+1 quiver
gauge theory of type Ar on the ALE space Xk reads as

ZAr
Xk

(
ε1, ε2,µ;q,~ξ

)
j

=
r∏

υ=0

q
1
2
〈ωjυ ,ωjυ 〉Q⊗ZQ

υ

∑

(~uυ∈Uconf
jυ

)

~ξ C−1~u
k−1∏

n=1

r−1∏

υ=0

ℓ
(n)
~vυ,υ+1

(
ε
(n)
1 , ε

(n)
2 , µυ+1

)

×
k∏

i=1

ZAr

C2

(
ε
(i)
1 , ε

(i)
2 ,µ(i);q

)
. (8.11)
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8.4.1 Conformal blocks

By performing analogous manipulations to those used in the proof of Proposition 4.34, we can express
the partition function (8.11) as a particular matrix element of vertex operators and hence interpret it
as an (r + 4)-point conformal block on the sphere. For this, let

|0〉conf :=
r∏

υ=0

δconf
0,υ ⊲ [∅,~0 ] .

Proposition 8.12. The partition function of the Ar-theory on Xk is given by

ZAr
Xk

(
ε1, ε2,µ;q,~ξ

)
j

=
〈
|0〉conf , Vµ0(~x0, z0)

( r∏

υ=1

Vjυ−1,jυ
µυ

(~xυ, zυ) δconf
υ−1,υ

)
Vµr+1(~xr+1, zr+1)|0〉conf

〉
W

independently of z0 ∈ C∗ and ~x0 ∈ (C∗)k−1, where zυ := z0 q0 q1 · · · qυ and (~xυ)i := (~x0)i (~ξ0)i (~ξ1)i
· · · (~ξυ−1)i for υ = 1, . . . , r + 1 and i = 1, . . . , k − 1.

Again, combining Theorem 7.6 and Proposition 8.12 yields a completely factorized form for the
quiver gauge theory partition function under the isomorphism of Proposition 6.24. In the following
we denote V :=

⊕k−1
j=0 V( ω̂j ).

Corollary 8.13. Let Vµ(~v21, ~x, z) be the vertex operator in Hom(Wj1 ,Wj2)[[z
± 1, x± 1

1 , . . . , x± 1
k−1]]

given by (8.9). Then

ZAr
Xk

(
ε1, ε2,µ;q,~ξ

)
j

= ZAr

C2 (ε1, ε2,µ;q)
1
k

×
〈
|0〉conf ,

( k−1∑

j0,j′0=0

∑

~u0∈Uj0
,~u′0∈Uj′0

Vµ0(~v0′,0, ~x0, z0)
∣∣
W~u0,j0

)

×
r∏

υ=1

∑

(~uυ∈Uconf
jυ

)

Vµυ (~vυ−1,υ , ~xυ, zυ)
∣∣
W~uυ,jυ

×
( k−1∑

jr+1,j′r+1=0

∑

~ur+1∈Ujr+1
,~u′r+1∈Uj′

r+1

Vµr+1(~vr+1′,r+1, ~xr+1, zr+1)
∣∣
W~ur+1,jr+1

)
|0〉conf

〉
V
.

Proof. The proof follows that of Corollary 8.8, and by repeating the proof of Proposition 4.36 to
compute

〈
|0〉 ,

r+1∏

υ=0

V− µυ√
−k ε1 ε2

,
µυ+ε1+ε2√
−k ε1 ε2

(zυ)|0〉
〉
FC(ε1,ε2)

=
∏

0≤υ<υ′≤r+1

(
1−qυ+1 · · · qυ′

)−µυ′ (µυ+ε1+ε2)

k ε1 ε2 .
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8.4.2 A0 theory

For the N = 2 superconformal gauge theory on Xk with two fundamental hypermultiplets of masses
µ0, µ1, the set Uconf

j coincides with the rank one limit of the more general conformal charge sets

obtained in [14, Section 5.4]. Analogously to Equation (8.1), let us define the restricted ŝlk characters

χ
ω̂j

conf

(
q, ~ζ

)
:= TrV( ω̂j ) qL

ŝlk
0 − k−1

24
id ~x

~h δconf
j,j

=
1

η(q)k−1

∑

~u∈Uconf
j

q
1
2

~u·C−1~u ~ξ C−1~u =
q

1
2
〈ωj ,ωj〉Q⊗ZQ

η(q)k−1

∑

~u∈Uconf
j

~ξ C−1~u .

Then the instanton partition function is given by the factorization

ZA0
Xk

(
ε1, ε2, µ0, µ1; q, ~ξ

)
j

= η(q)k−1 χ
ω̂j

conf

(
q, ~ζ

) k∏

i=1

ZA0

C2

(
ε
(i)
1 , ε

(i)
2 , µ0, µ1; q

)
.

In this instance Proposition 8.12 factorizes under the decomposition of Theorem 7.6 as

ZA0
Xk

(
ε1, ε2, µ1, µ2; q, ~ξ

)
j

= η(q)k−1 χ
ω̂j

conf

(
q, ~ζ

) 〈
|0〉 , V− µ0√

−k ε1 ε2
,
µ0+ε1+ε2√
−k ε1 ε2

(1) V− µ1√
−k ε1 ε2

,
µ1+ε1+ε2√
−k ε1 ε2

(q)|0〉
〉

H
.

By Equation (4.37) we then obtain explicitly

ZA0
Xk

(
ε1, ε2, µ0, µ1; q, ~ξ

)
j

= η(q)k−1 χ
ω̂j

conf

(
q, ~ζ

)
(1− q)−

µ1 (µ0+ε1+ε2)
k ε1 ε2 .

A Virasoro primary fields

In this appendix we prove Theorem 7.6. We need to show that the vertex operator V̄µ(~v21, ~x, z) is

a primary field of the Virasoro algebra generated by Lŝlk
n and c. We begin with the following result

establishing the commutation relations between the Virasoro operators Lŝlk
n introduced in Section

3.3.1 and the normal-ordered bosonic exponentials Vγ21
1,−1(z) associated with the Heisenberg algebra

hQ.

Lemma A.1. For n 6= 0 we have

[
Lŝlk

n , Vγ21
1,−1(z)

]
= zn

(
z ∂z +

1
2
~v21 · C~v21 (n + 1) +

k−1∑

i=1

(
~v21

)
i

(
qi
0 − z−n qi

n

))
Vγ21

1,−1(z) ,

[
Lŝlk

0 , Vγ21
1,−1(z)

]
= z ∂z Vγ21

1,−1(z) .

Proof. Let {ηi}k−1
i=1 be an orthonormal basis of the vector space Q⊗ZR. By the commutation relations

(3.2), we easily get [
Lŝlk

n , q
ηj
m

]
= −m q

ηj

n+m (A.2)
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for n,m ∈ Z and j = 1, . . . , k − 1. Fix a vector ~v ∈ Rk−1 and for j = 1, . . . , k − 1 define

Aj
~v(z)− := vj ϕ

ηj

− (z) = vj

∞∑

m=1

zm

m
q
ηj

−m and Aj
~v(z)+ := −vj ϕ

ηj

+ (z) = −vj

∞∑

m=1

z−m

m
q
ηj
m .

Using the commutation relations (A.2), we get

[
Lŝlk

n , Aj
~v(z)−

]
= vj

∞∑

m=1

zm q
ηj

n−m =: vj ϕ
ηj

−,n(z) ,

[
Lŝlk

n , Aj
~v(z)+

]
= vj

∞∑

m=1

z−m q
ηj

n+m =: vj ϕ
ηj

+,n(z) .

For n ≤ 0 the operator ϕηj

−,n(z) is a series in the Heisenberg operators q
ηj

l with l < 0, thus it commutes

with Aj
~v(z)−. For n > 0, using again the relations (3.2) we get

[
Aj

~v(z)−, ϕ
ηj

−,n(z)
]

= vj

n−1∑

m,l=1

zm+l

m

[
q
ηj

−m, q
ηj

n−l

]
= −(n− 1) vj z

n c . (A.3)

Analogously, for n ≥ 0 the operators Aj
~v(z)+ and ϕηj

+,n(z) commute, while for n < 0 we have

[
Aj

~v(z)+, ϕ
ηj

+,n(z)
]

= (n + 1) vj z
n c .

Now we compute the commutator

[
Lŝlk

n , exp
(
Aj

~v(z)−
)]

=
∞∑

l=1

1
l!

l−1∑

i=0

Aj
~v(z)

i
−

[
Lŝlk

n , Aj
~v(z)−

]
Aj

~v(z)
l−i−1
−

= vj

∞∑

l=1

1
l!

l−1∑

i=0

Aj
~v(z)

i
− ϕ

ηj

−,n(z)Aj
~v(z)

l−i−1
− .

For n ≤ 0 we get simply
[
Lŝlk

n , exp
(
Aj

~v(z)−
)]

= vj ϕ
ηj

−,n(z) exp
(
Aj

~v(z)−
)
, while for n > 0 we can

apply (A.3) iteratively to obtain

[
Lŝlk

n , exp
(
Aj

~v(z)−
)]

=
(
vj ϕ

ηj

−,n(z)− 1
2 v

2
j (n− 1) zn

)
exp

(
Aj

~v(z)−
)
.

Noting that

zn+1 ∂z exp
(
Aj

~v(z)−
)

=





vj

(
ϕ

ηj

−,n(z) −
n∑

t=1
zt q

ηj

n−t

)
exp

(
Aj

~v(z)−
)

n > 0

vj

(
ϕ

ηj

−,n(z) −
−n−1∑
t=0

z−t q
ηj

n+t

)
exp

(
Aj

~v(z)−
)

n ≤ 0
,

and substituting in the previous expressions we finally get

[
Lŝlk

n , exp
(
Aj

~v(z)−
)]

=





zn
(
z ∂z + vj

n−1∑
s=0

z−s q
ηj
s − 1

2 v
2
j (n− 1)

)
exp

(
Aj

~v(z)−
)

n > 0

zn
(
z ∂z − vj

−n∑
s=1

zs q
ηj

−s

)
exp

(
Aj

~v(z)−
)

n ≤ 0
.
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Repeating these computations for the operator Aj
~v(z)+, we get analogous relations

[
Lŝlk

n , exp
(
Aj

~v(z)+
)]

=





zn
(
z ∂z − vj

n∑
s=1

z−s q
ηj
s

)
exp

(
Aj

~v(z)+
)

n ≥ 0

zn
(
z ∂z + vj

−n−1∑
s=0

zs q
ηj

−s + 1
2 v

2
j (n+ 1)

)
exp

(
Aj

~v(z)+
)

n < 0
.

Now set

A~v(z)− :=
k−1∑

j=1

Aj
~v(z)− and A~v(z)+ :=

k−1∑

j=1

Aj
~v(z)+ .

We are ready to compute

[
Lŝlk

n , exp
(
A~v(z)−

)
exp

(
A~v(z)+

)]

=
k−1∑

j=1

(
exp

(
A1

~v(z)−
)
· · ·

[
Lŝlk

n , exp(Aj
~v(z)−)

]
· · · exp

(
Ak−1

~v (z)−
)

exp
(
A~v(z)+

)

+ exp
(
A~v(z)−

)
exp

(
A1

~v(z)+
)
· · ·

[
Lŝlk

n , exp
(
Aj

~v(z)+
)]
· · · exp

(
Ak−1

~v (z)+
))

.

Fix n < 0. Using the commutation relations computed before and noting that the Heisenberg operator
q
ηj
m commutes with the vertex operators exp

(
Al

~v(z)−
)

and exp
(
Al

~v(z)+
)

for l 6= j and any m ∈
Z \ {0}, we obtain

[
Lŝlk

n , exp
(
A~v(z)−

)
exp

(
A~v(z)+

)]

= zn
(
z ∂z +

1
2

(n+ 1)
k−1∑

j=1

v2
j −

k−1∑

j=1

vj

−n∑

t=1

zt q
ηj

−t

)(
exp

(
A~v(z)−

)
exp

(
A~v(z)+

))

+
k−1∑

j=1

vj exp
(
A~v(z)−

) ( −n−1∑

t=0

zt q
ηj

−t

)
exp

(
A~v(z)+

)
.

Since the Heisenberg operators q
ηj

−t for t ≥ 0 also commute with exp
(
Aj

~v(z)−
)
, we thus find

[
Lŝlk

n , exp
(
A~v(z)−

)
exp

(
A~v(z)+

)]

= zn
(
z ∂z +

1
2

(n+ 1)
k−1∑

j=1

v2
j −

k−1∑

j=1

vj

(
q
ηj

0 − z−n q
ηj
n

))(
exp

(
A~v(z)−

)
exp

(
A~v(z)+

))
.

(A.4)

For n > 0 we arrive at the similar expression

[
Lŝlk

n , exp
(
A~v(z)−

)
exp

(
A~v(z)+

)]

= zn
(
z ∂z −

1
2

(n− 1)
k−1∑

j=1

v2
j +

k−1∑

j=1

vj

n−1∑

t=0

z−t q
ηj

t

)(
exp

(
A~v(z)−

)
exp

(
A~v(z)+

))

−
k−1∑

j=1

vj exp
(
A~v(z)−

) ( n∑

t=1

z−t q
ηj

t

)
exp

(
A~v(z)+

)
,
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but this time the operators q
ηj

t for t > 0 do not commute with exp
(
Aj

~v(z)−
)
. Since

[
Aj

~v(z)− ,
n∑

t=1

z−t q
ηj

t

]
= −n vj c ,

we get
[
exp

(
Aj

~v(z)−
)
,

n∑

t=1

z−t q
ηj

t

]
= −n vj exp

(
Aj

~v(z)−
)

and thus we arrive again at Equation (A.4). For n = 0 we obtain

[
Lŝlk

0 , exp
(
A~v(z)−

)
exp

(
A~v(z)+

)]
= z ∂z

(
exp

(
A~v(z)−

)
exp

(
A~v(z)+

))
.

Finally, to get the assertion it is sufficient to note that if D = (dij) is the change of basis matrix
such that γi =

∑k−1
j=1 dij ηj with dij ∈ R, then Vγ21

1,−1(z) = exp
(
AD~v21

(z)−
)

exp
(
AD~v21

(z)+
)
, and

moreover

k−1∑

j=1

(
D~v21

)
j
ηj =

k−1∑

i=1

(~v21)i γi ,

k−1∑

j=1

(
D~v21

)2

j
=

〈 k−1∑

j=1

(
D~v21

)
j
ηj ,

k−1∑

j=1

(
D~v21

)
j
ηj

〉
Q⊗ZR

= ~v21 · C~v21 .

Remark A.5. A similar (but simpler) calculation shows that the vertex operators Vα,β(z) are primary
fields in the sense stated in Remark 3.9. △

The proof of Theorem 7.6 is now completed once we establish the following commutation rela-
tions.

Lemma A.6. For any n ∈ Z we have

[
Lŝlk

n , V̄µ(~v21, ~x, z)
]

= zn
(
z ∂z + 1

2 ~v21 · C~v21 n
)
V̄µ(~v21, ~x, z) .

Proof. To get the assertion, it is enough to derive the commutation relations

[
Lŝlk

n , exp
(
log z c + γ21

)]
= zn

(
z ∂z +

1
2
~v21 · C~v21

−
k−1∑

i=1

(
~v21

)
i

(
qi
0 − z−n qi

n

))
exp

(
log z c + γ21

)
,

[
Lŝlk

0 , exp
(
log z c + γ21

)]
= z ∂z exp

(
log z c + γ21

)
.

62



B Edge contributions

In this appendix we begin by listing the edge contributions

k−1∑

n=1

L
(n)
~v

(
ε
(n)
1 , ε

(n)
2

)

to the T -equivariant Chern character of the natural bundle V ~u,n,j on M(~u, n; j) which were derived
in [14, Appendix C]. For this, we first introduce some notation. Let j ∈ {0, 1, . . . , k − 1} be the
equivalence class of k vk−1 modulo k. Set (C−1)n0 = 0 for n ∈ {1, . . . , k − 1} and (C−1)k,j = 0.
We also set ~s := C−1(~u − ej) if j > 0 and ~s := ~v if j = 0; then ~s ∈ Zk−1. We denote by ⌊x⌋ ∈ Z
the integer part and by {x} := x− ⌊x⌋ ∈ [0, 1) the fractional part of a rational number x.

If sn ≥ 0 for every n = 1, . . . , k − 1, consider the equation

Cnn

2
i2−i

(
~v−

n−1∑

p=1

sp ep

)
·Cen+

1
2

((
~v−

n−1∑

p=1

sp ep

)
·C

(
~v−

n−1∑

p=1

sp ep

)
−

(
C−1

)cc
)

= 0 , (B.1)

and define the set

S+
n := {i ∈ N | i ≤ sn is a solution of Equation (B.1)} .

Let d+
n := min(S+

n ) if S+
n 6= ∅ and d+

n := sn otherwise.

When sn < 0 for n = 1, . . . , k − 1 consider the equation

Cnn

2
i2+i

(
~v−

n−1∑

p=1

sp ep

)
·Cen+

1
2

((
~v−

n−1∑

p=1

sp ep

)
·C

(
~v−

n−1∑

p=1

sp ep

)
−

(
C−1

)cc
)

= 0 , (B.2)

and define the set

S−n := {i ∈ N | i ≤ −sn is a solution of Equation (B.2)} .

Let d−n := min(S−n ) if S−l 6= ∅ and d−n := −sn otherwise. Let m be the smallest integer n ∈
{1, . . . , k − 1} such that S+

n or S−n is nonempty; if all of these sets are empty, let m := k − 1.

Then for fixed n = 1, . . . ,m we set:

� For vn − (C−1)nj > 0:

• For δn,j − vn+1 + (C−1)n+1,j + 2(vn − (C−1)nj − d+
n ) ≥ 0:

L
(n)
~v

(
ε
(n)
1 , ε

(n)
2

)
= −

vn−(C−1)nj−1∑

i=vn−(C−1)nj−d+
n

2i+δn,j−vn+1+(C−1)n+1,j∑

j=0

(
χn

1

)i+
⌊

δn,j−vn+1+(C−1)n+1,j

2

⌋ (
χn

2

)j
.

• For 2 ≤ δn,j − vn+1 + (C−1)n+1,j + 2(vn − (C−1)nj) < 2d+
n :

L
(n)
~v

(
ε
(n)
1 , ε

(n)
2

)
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=
−
⌊

δn,j−vn+1+(C−1)n+1,j

2

⌋
−1∑

i=vn−(C−1)nj−d+
n

2i−(δn,j−vn+1+(C−1)n+1,j)−1∑

j=1

(
χn

1

)i−
⌊
− δn,j−vn+1+(C−1)n+1,j

2

⌋ (
χn

2

)−j

−
2(vn−(C−1)nj)+δn,j−vn+1+(C−1)n+1,j−2∑

i=−
⌊

δn,j−vn+1+(C−1)n+1,j

2

⌋

2i+δn,j−vn+1+(C−1)n+1,j∑

j=0

(
χn

1

)i+
⌊

δn,j−vn+1+(C−1)n+1,j

2

⌋ (
χn

2

)j
.

• For δn,j − vn+1 + (C−1)n+1,j < 2− 2(vn − (C−1)nj):

L
(n)
~v

(
ε
(n)
1 , ε

(n)
2

)

=
vn−(C−1)nj−1∑

i=vn−(C−1)nj−d+
n

−2i−δn,j+vn+1−(C−1)n+1,j−1∑

j=1

(
χn

1

)i−
⌊
− δn,j−vn+1+(C−1)n+1,j

2

⌋ (
χn

2

)−j
.

� For vn − (C−1)nj = 0: L
(n)
~v

(
ε
(n)
1 , ε

(n)
2

)
= 0.

� For vn − (C−1)nj < 0:

• For δn,j − vn+1 + (C−1)n+1,j + 2vn − 2(C−1)nj < 2− 2d−n :

L
(n)
~v

(
ε
(n)
1 , ε

(n)
2

)

= −
−vn+(C−1)nj∑

i=1−vn+(C−1)nj−d−n

2i−(δn,j−vn+1+(C−1)n+1,j)−1∑

j=1

(
χn

1

)−i−
⌊
− δn,j−vn+1+(C−1)n+1,j

2

⌋ (
χn

2

)−j
.

• For 2− 2d−n ≤ δn,j − vn+1 + (C−1)n+1,j + 2vn − 2(C−1)nj < 0:

L
(n)
~v

(
ε
(n)
1 , ε

(n)
2

)

=

⌊
δn,j−vn+1+(C−1)n+1,j

2

⌋
∑

i=1−vn+(C−1)nj−d−n

−2i+δn,j−vn+1+(C−1)n+1,j∑

j=0

(
χn

1

)−i+
⌊

δn,j−vn+1+(C−1)n+1,j

2

⌋ (
χn

2

)j

−
−vn+(C−1)nj∑

i=
⌊

δn,j−vn+1+(C−1)n+1,j

2

⌋
+1

2i−(δn,j−vn+1+(C−1)n+1,j)−1∑

j=1

(
χn

1

)−i−
⌊
− δn,j−vn+1+(C−1)n+1,j

2

⌋ (
χn

2

)−j
.

• For δn,j − vn+1 + (C−1)n+1,j ≥ −2vn + 2(C−1)nj :

L
(n)
~v

(
ε
(n)
1 , ε

(n)
2

)
=

−vn+(C−1)nj∑

i=1−vn+(C−1)nj−d−n

−2i+δn,j−vn+1+(C−1)n+1,j∑

j=0

(
χn

1

)−i+
⌊

δn,j−vn+1+(C−1)n+1,j

2

⌋ (
χn

2

)j
.
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For n = m + 1, . . . , k − 1 we set L(n)
~v

(
ε
(n)
1 , ε

(n)
2

)
= 0. Note that for any fixed n ∈ {1, . . . , k − 1},

d±n = 0 implies L(n)
~v

(
ε
(n)
1 , ε

(n)
2

)
= 0.

The edge factors ℓ(n)
~v21

(
ε
(n)
1 , ε

(n)
2 , µ

)
which contribute to the T -equivariant Euler class of the Carlsson-

Okounkov bundle E~u1,n1,j1;~u2,n2,j2
µ on M(~u1, n1; j1) ×M(~u2, n2; j2) are then obtained in the fol-

lowing way. We replace ~v in the above by ~v21 and j by j21. If

L
(n)
~v21

(
ε
(n)
1 , ε

(n)
2

)
=

D∑

i=1

ηi e σi

with ηi = 0,± 1, then

ℓ
(n)
~v21

(
ε
(n)
1 , ε

(n)
2 , µ

)
=

D∏

i=1

(µ+ σi)ηi .

Explicit formulas are written in [14, Section 4.7].

The contribution of L(n)
~v21

(
ε
(n)
1 , ε

(n)
2

)
to the p-th equivariant Chern class (cp)T

(
V j

)
is gotten by

extracting the monomial terms of total degree p in ε1, ε2. In particular, the contribution to the first
Chern class is given by

ℓ
(n)
~v

(
ε
(n)
1 , ε

(n)
2

)
[1]

=
(
ε1

∂

∂ε1

∣∣∣∣
ε1=0

+ ε2
∂

∂ε2

∣∣∣∣
ε2=0

)
L

(n)
~v21

(
ε
(n)
1 , ε

(n)
2

)
.

Example B.3. Let k = 2. Then j21 ∈ {0, 1}, while {v21} = 1
2 δ1,j21 and ⌊v21⌋ = v21 − (C−1)1,j21 .

Since m = 1, d+
1 = ⌊v21⌋ and d−1 = −⌊v21⌋, and we get

ℓv21

(
ε1, ε2, µ

)
=





⌊v21⌋−1∏
i=0

2i+2{v21}∏
j=0

(
µ+ i ε1 + j ε2

)
for ⌊v21⌋ > 0 ,

1 for ⌊v21⌋ = 0 ,

−⌊v21⌋∏
i=1

2i−2{v21}−1∏
j=1

(
µ+ (2{v21} − i) ε1 − j ε2

)
for ⌊v21⌋ < 0 .

For {v21} = 0 these formulas coincide with the blowup factors obtained in [28] up to a redefinition
of the equivariant parameters (see also [20]). Moreover, for ⌊v21⌋ > 0 they can be easily written in
the form

ℓv21

(
ε1, ε2, µ

)
=

∏

i,j≥1 , i+j≤2⌊v21⌋
i+j≡0 mod 2

(
µ+ (i− 1) ε̃1 + (j − 1) ε̃2

)

with ε̃1 = ε1
2 and ε̃2 = ε1

2 + ε2, which coincide with the blowup factors of [10, 11, 7] (similarly for
⌊v21⌋ < 0 and/or {v21} = 1

2 ). In [7] it is stated that these edge factors can be represented as suitable

matrix elements of primary fields from Theorem 7.6 in highest weight states of ĝl2 = h⊕ ŝl2 at level
one; the proof makes use of the Frenkel-Kac construction and the Dotsenko-Fateev integrals of [24].
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