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ABSTRACT. We construct level one dominant representations of the affine Kac-Moody algebra
gl on the equivariant cohomology groups of moduli spaces of rank one framed sheaves on the
orbifold compactification of the minimal resolution X}, of the Aj_; toric singularity C? /Zy,. We
show that the direct sum of the fundamental classes of these moduli spaces is a Whittaker vector
for gl;, which proves the AGT correspondence for pure AV = 2 U(1) gauge theory on X;. We
consider Carlsson-Okounkov type Ext-bundles over products of the moduli spaces and use their
Euler classes to define vertex operators. Under the decomposition gl;, ~ § @ slj, these vertex
operators decompose as products of bosonic exponentials associated to the Heisenberg algebra b
and primary fields of sl;. We use these operators to prove the AGT correspondence for N' = 2

superconformal abelian quiver gauge theories on Xj.
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1 Introduction and summary

1.1 AGT relations and ALE spaces

In this paper we study a new occurrence of the deep relations between the moduli theory of sheaves
and the representation theory of affine/vertex algebras.

We are particularly interested in the kind of relations which come from gauge theory considera-
tions. An important example of these relations is the AGT correspondence for gauge theories on R*:
in [3] Alday, Gaiotto and Tachikawa conjectured a relation between the instanton partition functions
of N = 2 supersymmetric quiver gauge theories on R* and the conformal blocks of two-dimensional
A,_1 Toda conformal field theories (see also [62, 4]); this conjecture has been explicitly confirmed in
some special cases, see e.g. [41, 2, 59, 1]. From a mathematical perspective, this correspondence im-
plies: (1) the existence of a representation of the W-algebra WW(gl,.) on the equivariant cohomology of
the moduli spaces M (r,n) of framed sheaves on the projective plane IP? of rank r and second Chern
class n such that the latter is isomorphic to a Verma module of W(gl,.); (2) the fundamental classes of
M(r,n) give a Whittaker vector of WW(gl,.) (pure gauge theory); (3) the Ext vertex operator is related
to a certain “intertwiner” of JV(gl,) under the isomorphism stated in (1) (quiver gauge theory). The
instances (1) and (2) were proved by Schiffmann and Vasserot [56], and independently by Maulik and
Okounkov [40]. For r = 1, the moduli space M (1, n) is isomorphic to the Hilbert scheme of n points
on C? and W(gl,) is the W-algebra associated with an infinite-dimensional Heisenberg algebra; the
AGT correspondence for pure U(1) gauge theory reduces to the famous result of Nakajima [46, 47]
in the equivariant case [60, 36, 44]. Presently, (3) has been proved only in the rank one case [18] and
in the rank two case [17, 49].

In this paper we are interested in the AGT correspondence for N = 2 quiver gauge theories
on ALE spaces associated with the Dynkin diagram of type Ay_; for £k > 2. The corresponding
instanton partition functions are defined in terms of equivariant cohomology classes over Nakajima
quiver varieties of type the affine Dynkin diagram Ek,l. These quiver varieties depend on a real
stability parameter &g, which lives in an open subset of R* having a “chambers” decomposition:
if two real stability parameters belong to the same chamber, the corresponding quiver varieties are
(equivariantly) isomorphic; otherwise, the corresponding quiver varieties are only C*-diffeomorphic.
Therefore, the pure gauge theories partition functions should be all nontrivially equivalent, while the
partition functions for quiver gauge theories should satisfy “wall-crossing” formulas (cf. [7, 31]).

By looking at instanton partition functions of pure gauge theories associated with moduli spaces
of Zj-equivariant framed sheaves on P? (which are quiver varieties depending on a so-called “level
zero chamber”), the authors of [9, 53, 6] conjectured an extension of the AGT correspondence in
the A-type ALE case as a relation between instanton partition functions of A/ = 2 quiver gauge



theories and conformal blocks of Toda-like conformal field theories with Z;, parafermionic symmetry.
In particular, the pertinent algebra to consider in this case is the coset
al
Alr k) = 2N
oly

acting at level 7, where NV is related to the equivariant parameters. For 7 = 1 the algebra A(1,k) is
simply gl;, acting at level one. In general, A(r, k) is isomorphic to the direct sum of the affine Lie
algebra gl acting at level r and the Zj-parafermionic WW(gl,.)-algebra. Checks of the conjecture has
been done [61, 30] by using partition functions of pure gauge theories associated with moduli spaces
of Z-equivariant framed sheaves on P2, In [10, 11] the authors studied in details V" = 2 quiver gauge
theories on the minimal resolution X5 of the Kleinian singularity C2/Zs and provided evidences for
the conjecture: in this case, the quiver variety depends on a so-called “level infinity chamber” and
corresponds to moduli spaces of framed sheaves on a suitable stacky compactification of X5. In the
k = 2 case, a comparison of these approaches using different stability chambers is done in [5]; further
speculations in the arbitrary k case are in [12].

Mathematically, this correspondence should imply: (1) the existence of a representation of the
coset A(r, k) on the equivariant cohomology of Nakajima quiver varieties associated with the affine
A-type Dynkin diagram such that the latter is isomorphic to a Verma module of A(r, k); (2) the fun-
damental classes of the quiver varieties give a Whittaker vector of A(r, k) (pure gauge theory); (3)
the Ext vertex operator is related to a certain “intertwiner” of A(r, k) under the isomorphism stated in
(1) (quiver gauge theory). As pointed out in [5], different chambers should provide different realiza-
tions of the action conjectured in (1). On the other hand, the conjectural wall-crossing behavior of the
instanton partition functions for quiver gauge theories [31] should be related by a similar behavior of
the Ext vertex operators by varying of the stability chambers.

The ALE space we consider in this paper is the minimal resolution X} of the simple Kleinian
singularity C2/Zy. In [14] an orbifold compactification .2}, of X}, is constructed by adding a smooth
divisor Z,, which lays the foundations for a new sheaf theory approach to the study of U(r) instan-
tons on Xy, (cf. [23]). Moduli spaces of sheaves on Z}, framed along %, are also constructed in [14];
by using these moduli spaces we have a new sheaf theory approach to the study of Nakajima quiver
varieties with the stability parameter of X} and, consequently, of U(r) gauge theories on ALE spaces
of type Aj_1 which are isomorphic to X. In the present paper we use this new approach to study the
AGT correspondence for abelian quiver gauge theories on Xy: from a physics point of view we prove
the relations between instanton partition functions and conformal blocks and from a mathematical
point of view we prove (1), (2) and (3).

1.2 Summary of results

Let us now summarize our main results. Recall that the compactification 2}, is a two-dimensional
projective toric orbifold with Deligne-Mumford torus 7' := C* x C*; the complement 2} \ X is
a smooth Cartier divisor %, endowed with the structure of a Zj-gerbe. There exist line bundles
Og. (j) on D, for j = 0,1,...,k — 1, endowed with unitary flat connections associated with the
irreducible unitary representations of Zj. Hence by [23, Theorem 6.9] locally free sheaves on 2}
which are isomorphic along Z., to Og__ (j) correspond to U(1) instantons on X}, with holonomy at

infinity given by the j-th irreducible unitary representation of Zg, for j = 0,1,... k — 1.
Fix j=0,1,...,k — 1. Arank one (Z, Og_ (j))-framed sheaf on 2, is a pair (£, ¢¢), where

~

£ is a rank one torsion free sheaf on 2, locally free in a neighbourhood of %, and ¢¢g: € ‘ 9. —
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Og..(j) is an isomorphism. Let M (i, n,j) be the fine moduli space parameterizing isomorphism
classes of rank one (Zso, Og__(j))-framed sheaves on 2}, with first Chern class given by @ € Z+~!
and second Chern class n. As explained in Remark 5.11, the vector « is canonically associated with
an element v; + w; € Q + w;, where £ is the root lattice of the Dynkin diagram of type A;_; and
wj is the j-th fundamental weight of type A;_;. We denote by ; the set of vectors # associated with
v + wj for some vy € Q.

The moduli space M (i, n, j) is a smooth quasi-projective variety of dimension 2n. On M (i, n; j)
there is a natural T-action induced by the toric structure of Z%. Let €1, &5 be the generators of the
T'-equivariant cohomology of a point and consider the localized equivariant cohomology

Waj = @D Hi(M(@,n, ) Ocje, e Cler,€2) -
n>0

Define also the total localized equivariant cohomology by summing over all vectors 4 € iA;:

Wj = @ ij .

uell;
The affine Lie algebra gA [, acts on W, as follows (see Proposition 6.24 and Proposition 6.28).

Proposition. There exists a g[k -action on W ; under which it is the j-th dominant representation of g[k
at level one, i.e., the highest weight representation of g[k with fundamental weight &; of type Ak 1.
Moreover, the weight spaces of W ; with respect to the g[k -action are the Wy ; with weights vz + wj.

The vector spaces Wy ; also have a representation theoretic intepretation.

Corollary (Corollary 6.27). Wy ; is a highest weight representation of the Virasoro algebra asso-

ciated with gl of conformal dimension Az := %f[ - C~VYi, where C'is the Cartan matrix of type

Ak—l-

The representation is constructed by using a vertex algebra approach via the Frenkel-Kac con-
struction. A similar construction for the cohomology groups of moduli spaces of rank one torsion free
sheaves over smooth projective surfaces is outlined in [47, Chapter 9]. In [42], Nagao analysed ver-
tex algebra realizations of representations of s?[k on the equivariant cohomology groups of Nakajima
quiver varieties associated with the affine Dynkin diagram fAlk_l, for an integer £ > 2, with dimension
vector corresponding to the trivial holonomy at infinity j = 0; in this case the pertinent representation
is the basic representation of s?[k

In the following we describe our AGT relations, which connect together W for j = 0,1,...,k —
1, the action of thk on W, and abelian quiver gauge theories on Xj. The first relation we obtain
concerns the pure gauge theory. Let Zx, (51, €9; q,g )j be the instanton partition function for the
pure N' = 2 U(1) gauge theory on the ALE space X}, with fixed holonomy at infinity given by the
j-th irreducible representation of Zj, (see Section 8.1). It has the following representation theoretic
characterization.

Theorem (AGT relation for pure N' = 2 U(1) gauge theory). The Gaiotto state

Gj=Y_ > [M(dnj)],

ﬁEﬂj n>0

5



is a Whittaker vector for gl,.. Moreover, the weighted norm of the weighted Gaiotto state

Gi(q,€) = > N qutr e O [M(T,n, )],

aeld; n>0
is exactly Zx, (81, €2;0,§ )j-

We also consider N/ = 2 superconformal quiver gauge theories with gauge group U(1)"*! for
some r > 0. By the ADE classification in [52, Chapter 3] the admissible quivers in this case are the
linear quivers of the finite-dimensional A,-type Dynkin diagram and the cyclic quivers of the affine
A,-type extended Dynkin diagram. In order to state AGT relations in these cases, we introduce Ext
vertex operators [18, 17, 49]. Consider the element E,, € K(M(ﬁl,nl,jl) x Mz, ng,jg)) whose
fibre over a point ([(£, ¢¢)], [(E, per)]) is

(Bo) (6,00 (€19 = BXU (6:€ © 023, (1) ® O (= Doc))

where O g, (1) is the trivial line bundle on 2}, on which the torus 7), = C* acts by scaling the fibres
with Hp (pt; C) = C[u). By using the Euler class of E,, we define a vertex operator V (&, z) €

End (@f;é W) [z%1, ait, ..., 2F L] (see Section 7.1). Under the decomposition gly = b @ sly,
we have the following characterization of V, (%, z) in terms of vertex operators depending respectively
on b and sl.

Theorem (Theorem 7.6). The vertex operator V ,(Z, z) can be expressed in the form

Vﬂ(f7z) =V I ptejteg (Z)

_\/—ksl e’ \/—keyeg

k—1
o Y Y Vg2 Ae e exp(logzc—m) e (1 )y,

. - — U171
J1,52=0 @y 6”'1‘1 LU EL(]-Q

where V , g(z) denotes a generalized bosonic exponential associated with the Heisenberg algebra b
(see Definition 3.3), exp (log Z¢—"21 ) exp (721 ) is the vertex operator on W ;, defined in Equation
(7.4), and \7“(1721, ¥, z) is the primary field (71.5) of the Virasoro algebra associated with sA[k with
conformal dimension Ag, gz, = % o1 - Oiy1, where Uy := C~ Yty — 1) for j1,j2 = 0,1,..., k—1
and ﬁl S ujl,ﬁg € L[j2.

For j1,jo = 0,1,...,k — 1 denote by V{} J2(#, 2) the restriction of the vertex operator Vu(Z, 2)
to Hom (W, , W, )[[z*1, $it L :Uf_ll]]

Let Z)‘?Z (e1, €2, p; q,€ )j be the instanton partition function for the N’ = 2 superconformal
U(1)" ! quiver gauge theory of type A, with holonomy at infinity associated with j := (J0s J1s -+ Jr)s

topological couplings q,, € C*and &, € (C*)*~!forv = 0,1,...,r, and masses pt := (o, i1, - - , fbr)-
We prove the following AGT relation.

Theorem (AGT relation for N = 2 U (1)"+! quiver gauge theory of type A,). The partition function
of the A,.-theory on Xy, is given by

r
A\r prig L _»C_l}_i v, Jo b f
ZXk (517527H;q7€ >j = TerO q° ¢ H VLU] (T, 20) 55?5+1 )

v=0



where q == qo 1+ qr, (€ )i = (£0)i (§1)i =+ (&)ir 20 = 2001+ Qu, and (L) = (Fo)s (€1); -+~

(é_’;))ifor v=1,...,randi =1,...,k—1. Here Ly is the Virasoro energy operator associated to gl;,
h = (h1,...,hi_1) are the generators of the Cartan subalgebra of s\, and 55°Efr1 is the conformal

restriction operator defined in Equation (8.6).

We also get a characterization of Z (51, €2, 15 4, £ ) in terms of the corresponding partition
function on C? and a part depending only on 5[k.

Aﬁz —Ag. \7

Corollary. Let V,(V21,%,2) = z “V,(U21,%, 2) exp (logz c— 721) exp (721 ) Then we

have

Z}?k(el,ez,u,q S) Zéz (617627%(1)’“ q24(

5% So-1
C h | | } :
X TFV(@jO) VuU(UU U+1,£L‘U,ZU |Wﬁ
v=0 (u Euconf) v

1-1) -1

n(q)*

where 1(q) is the Dedekind function, V(Wj, ) is the jo-th dominant representation of sl and ﬂ;’fgnf is
the subset of U;, defined in Equation (8.4).

Let Z (51,52, 5 q, 5 ) . be the instanton partition function for the A/ = 2 superconformal

U(1)" ! quiver gauge theory of type A, with holonomy at infinity associated with § := (jo, j1,- - -, Jr)-
We also prove the following AGT relation.

Theorem (AGT relation for A" = 2 U(1)"*! quiver gauge theory of type A,.). The partition function
of the A.-theory on Xy, is given by

Z)‘?; (517627/*1';(]75)3'

4
= (10)cont + Vo (@01 20) ( T VAT @0 20) 0524 ) Virs @, 20 Obeont)

k—1 Y
, ] DIy W,

where z, = Zodoq1 - du and (Ty); := (o) (&0)i (éi) (Er)iforv=1,...,r+1,i =
L,....,k—1, and |0)cont :== ], _, (5°°nf [0,0] with [0,0] the vacuum vector oftheﬁxedpomt basis

of @5 W;.

Denote by V the direct sum of the k level one dominant representations of s?[k Similarly to before,
we have the following characterization.

Corollary. We have
z 1
Zf};(el,@,u;q S)-Z 225 (e1, 62, 3 Q)

<’0 conf ( Z Z V,u() (770’,0) fO) ZO) ‘Wﬂo,jo )

]0,]0—0 o SITN ,uo Gil i

X H E Vuv UU 1quv)zv ‘Wi y
v v

= u uconf)



k—1

X ( Z Z V/J‘T'Jrl (171’71’ Try1, Zr—l-l) |Wﬁ1 i ) |0>Conf>v

j7.+17j;.+1:() U1 Gﬂjl ,ﬁlléiljll

Another important aspect of the AGT correspondence that we address in this paper is the relation
of our construction with quantum integrable systems. In particular, for any j = 0,1,...,k — 1 we
define an infinite system of commuting operators which are diagonalized in the fixed point basis of
W;; geometrically these operators correspond to multiplication by equivariant cohomology classes
(see Section 7.3). The eigenvalues of these operators with respect to this basis can be decomposed
into a part associated with £ non-interacting Calogero-Sutherland models and a part which can be
interpreted as particular matrix elements of the vertex operators V ,(Z, z) in highest weight vectors of
gA [.. The significance of this property is that this special orthogonal basis manifests itself in the special
integrable structure of the two-dimensional conformal field theory and yields completely factorized
matrix elements of composite vertex operators explicitly in terms of simple rational functions of the
basic parameters, which from the gauge theory perspective represent the contributions of bifundamen-
tal matter fields.

The study of the AGT relation for pure N =2U(1) gauge theories and the problem of construct-
ing commuting operators associated with gl is also addressed in [8] from another point of view: there
they consider the “conformal” limit of the Ding-Iohara algebra, depending on parameters g, t, for q, ¢
approaching a primitive k-th root of unity and relate the representation theory of this limit to the AGT
correspondence. However, their point of view is completely algebraic, so unfortunately it is not clear
to us how to geometrically construct the action of the conformal limit on the equivariant cohomology
groups.

1.3 Outline

This paper is structured as follows. In Section 2 we briefly recall the relevant combinatorial notions
that we use in this paper. In Section 3 we collect preliminary material on Heisenberg algebras and
affine Lie algebras of type ﬁk_l, giving particular attention to the Frenkel-Kac construction of level
one dominant representations of ;[k and g?[k In Section 4 we review the AGT relations for ' = 2
superconformal abelian quiver gauge theories on R%. In Section 5 we briefly recall the construction
of the orbifold compactification 2}, and of moduli spaces of framed sheaves on 2}, from [14]. Sec-
tion 6 addresses the construction of the action of gl on W; for j = 0,1,...,k — 1: we perform
a vertex algebra construction of the representation by using the Frenkel-Kac theorem. In Section 7
we define the virtual bundle F,, and the vertex operator V,(Z, z), and we characterize it in terms of
vertex operators of an infinite-dimensional Heisenberg algebra b and primary fields of 5[k under the
decomposition g[k =he 5[k, moreover, we geometrically define an infinite system of commuting
operators. In Section 8 we prove our AGT relations, and furthermore provide expressions for our
partition functions in terms of the corresponding partition functions on C? and a part depending only
on sl;. The paper concludes with two Appendices containing some technical details of the construc-
tions from the main text: in Appendix A we give the proof that the vertex operator V ,(¥a1, 7, z) is
a primary field, while in Appendix B we recall the expressions from [14] for the edge factors which
appear in the definition of V (@1, %, z) as well as in the eigenvalues of the integrals of motion.
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2 Combinatorial preliminaries

2.1 Partitions and Young tableaux

A partition of a positive integer n is a nonincreasing sequence of positive numbers A = (A\; > Ao >
-+ > X > 0) such that |\| := 22:1 Ao = n. We call £ = £()) the length of the partition A. Another
description of a partition \ of n uses the notation A = (1™ 22 ... ) where m; = #{a € N|\, = i}
with ) . im; = nand ), m; = £()). On the set of all partitions there is a natural partial ordering
called dominance ordering: For two partitions £ and A, we write 1 < A if and only if || = |\| and

p1+ e <AL+ + A forall g > 1. We write p < A if and only if g < A and p # .

One can associate with a partition ) its Young tableau, which is the set Yy = {(a,b) € N?|1 <
a < l(A),1 < b < A} Then ), is the length of the a-th column of Y); we write |Y)\| = |}
for the weight of the Young tableau Y),. We shall identify a partition A with its Young tableau Y.
For a partition A, the transpose partition X' is the partition whose Young tableau is Yy := {(b,a) €
N?|(a,b) € Y)}.

The elements of a Young tableau Y are called the nodes of Y. For anode s = (a,b) € Y, the
arm length of s is the quantity A(s) := Ay (s) = A, — b and the leg length of s the quantity L(s) :=
Ly (s) = A, —a. The arm colength and leg colength are respectively given by A'(s) := Ay (s) = b—
and L'(s) := L, (s) = a — 1.

2.2 Symmetric functions

Here we recall some preliminaries about the theory of symmetric functions in infinitely many variables
which we shall use later on. Our main reference is [37].

Let IF be a field of characteristic zero. The algebra of symmetric polynomials in N variables is
the subspace Ay y of F[z1, ..., 2] which is invariant under the action of the group of permutations
on on N letters. Then A n is a graded ring: Ap vy = @, A§7N, where A{FLJV is the ring of
homogeneous symmetric polynomials in N variables of degree n (together with the zero polynomial).

For any M > N there are morphisms pysn: Ar pr — Ar, n that map the variables zn41,..., 20
to zero. They preserve the grading, and hence we can define p’y, 5 : AR 5, — Af ; this allows us to
define the inverse limits , 7

A{FL = 121 A%L,N ’
N



and the algebra of symmetric functions in infinitely many variables as Ay := @nzo A%. In the fol-
lowing when no confusion is possible we will denote Ar (resp. Ap) simply by A (resp. A™).

Now we introduce a basis for A. For this, we start by defining a basis in Ax. Let = (u1, ..., fit)
be a partition with £ < IV, and define the polynomial

/J’T(l) /J'T(N)
mu(T1,..., TN g x . ,

TEON

where we set p; = 0 for j = ¢+ 1,..., N. The polynomial m,, is symmetric, and the set of m,, for
all partitions p with |u| < N is a basis of Ay. Then the set of m,,, for all partitions o with || < N
and ), 1; = n, is a basis of A%. Since for M > N > t we have pjf;y(mu(z1,...,20m)) =
my(x1,...,2N), by using the definition of inverse limit we can define the monomial symmetric func-
tions m,,. By varying over the partitions p of n, these functions form a basis for A™.

Next we define the n-th power sum symmetric function p,, as
Prn = M) = Z i -
i

The set consisting of symmetric functions p,, := py, -..py,, for all partitions p = (p1,. .., ), is
another basis of A.

We now set ' = C throughout and we fix a parameter 5 € C (though everything works for any
field extension C C F and 3 € F). Define an inner product (—, —)3 on the vector space A @ Q(5)
with respect to which the basis of power sum symmetric functions p)(x) are orthogonal with the
normalization

(PasPu)s = 0oy 22 BV (2.1
where 6y ,, == [], 9., and
zZ) = H " m;l.
jz1

This is called the Jack inner product.

Definition 2.2. The monic forms of the Jack functions Jy(z;371) € A @ Q(B) for z = (21, 72,...)
are uniquely defined by the following two conditions [37]:

(i) Triangular expansion in the basis m,,(2) of monomial symmetric functions:

Iz 87 )+ D Uau(B)mu(x)  with 1y ,(8) € Q(B) .

H<A

(i1) Orthogonality:

ﬁLS As) +
(Ix: Ju)p = O,
A )\,usg)\ S )+A()

Lemma 2.3. For any integer n > 1 we have

(p1) _n'ZHﬁL +A) T

|)\| n SGYA
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Proof. The assertion follows straightforwardly from [58, Proposition 2.3 and Theorem 5.8] after nor-
malizing our Jack functions: the Jack functions considered in [58] are given by

In=8"MTI [B(L(s)+1) + As)] I,
SEY)

where the normalization factor is computed by using [58, Theorem 5.6]. ]

3 Infinite-dimensional Lie algebras

3.1 Heisenberg algebras

In this section we recall the representation theory of Heisenberg algebras and the affine Lie algebras
sli. Since the Lie algebra gl, coincides with Fid & sli, as a by-product we get the representation
theory of gA[k

Let C C F be a field extension of C. Let £ be a lattice, i.e., a free abelian group of finite rank d
equipped with a symmetric nondegenerate bilinear form (—, —)¢: £ x £ — Z. Fix a basis 71, ...,74
of £.

Definition 3.1. The lattice Heisenberg algebra b ¢ associated with £ is the infinite-dimensional Lie
algebra over F generated by q’,, for m € Z \ {0} and i € {1,...,d}, and the central element ¢

satisfying the relations
{ [g8,.¢] =0 for meZ\{0},ic{l,...,d},
S (3.2)
[q:n?q%] = mdm,—n <727F}/j>2 ¢ for m,ne€ Z\{O} NS {17 .. 7d} :

@

For any element v € £ we define the element q,, € by ¢ by linearity, with qt, = qomi. Set

d d
biec=€EP PFa, and b= P Fai, .

m>0 i=1 m<0 i=1

Let us denote by U(br ¢) (resp. U (bet ¢)) the universal enveloping algebra of by ¢ (resp. b]:Ft o)
i.e., the unital associative algebra over IF generated by bp ¢ (resp. hﬂf o)

We introduce some terminology similar to that used in [25, Section 5.2.5].

Definition 3.3. For v € £, define free bosonic fields as the elements

¢? (2) == Z m 9% m and ¢4 (z) == Z . I
m=1 m=1

in by o[[2]] and by o[z 1], respectively. For c, 8 € F, define the generalized bosonic exponential

V8 5(2) == exp (@@’ (2)) exp (B¢ (2)) =:: exp (ap_(2) + Loy (2)) :

in by ¢[[2, 27 1]}, where the symbol : — : denotes normal ordering with respect to the decomposition
bre = bpo @ h% ¢» 1.€., all negative generators q¥,, are moved to the left of all positive generators
qp, for m > 0. When 3 = —a, we call Vg, _,(2) a normal-ordered bosonic exponential. @

11



Remark 3.4. The bosonic exponentials are vertex operators, i.e., they are uniquely characterized by
their commutation relations in the Heisenberg algebra b ¢: For v,v" € £ one has

/ m v
[q}’m VZ/,g(z)] _ a(v,v ez aﬁ/(z) for m >0,
=B (v,v")g 2™ Vy 5(2) for m<0.

+1

= 1]] can be easily

.. " . +1
The compositions of vertex operators Vi 5 (21) -+~ V(" 5 (zn) inbrellz ..., 2
calculated as

[Ivia=( T (1=2)"""7 ) Tveae s 09
i=1

1<j<i<n i=1

where the factors (1 — 22 )~ B (vivi)e are understood as formal power series in =, A
J J

Remark 3.6. When v = ; fori = 1,...,d, we simply denote ¢, (z) := ¢} (2); if d = 1, we further
simply write ¢4 (z). We use analogous notation for the generalized free boson exponentials. A

Example 3.7. Consider the lattice £ := Z¥ with the symmetric nondegenerate bilinear form (v, w)g =
Zle v; w;. In this case by ¢ is called the Heisenberg algebra of rank k over I, and we denote it by
hE. Itis generated by elements pi,, m € Z\{0},i = 1,...,k, and the central element ¢ satisfying the
relations (3.2) with (y;,v;)¢ = ;5. When k = 1, b ¢ is simply the infinite-dimensional Heisenberg
algebra by over the field F.

Example 3.8. Fix an integer k > 2 and let £ be the root lattice of type Ax_; endowed with the
standard bilinear form (—, —)q (see Remark 3.16 below). Let by o be the lattice Heisenberg algebra
over I associated to ; we call by o the Heisenberg algebra of type Aj_; over F. It can be realized
as the Lie algebra over F generated by q’, form € Z\ {0},i = 1,...,k — 1, and the central element
¢ satisfying the relations

[din,c] =0 for mezZ\{0},i=1,...;k—1,
(@hs @h] =1 6,0 Cij e for meZ\{0},i,j=1,....k—1,
where C' = (Cj;) is the Cartan matrix of type Aj_;.

3.1.1 Virasoro generators

We construct the Viraroso algebra associated with the Heisenberg algebra hr. Define elements

o
1
Lg = E qd—m 9m and L?l =5 E d—m qm+n for n € Z\ {0}
m=1 meZ

in the completion of the enveloping algebra U/ (hr), where we set qo := 0. They satisfy the relations
n
[L?w L?n] = (n - m) L?z+m + E (n2 - 1) 5m+n,0 ¢,

hence ¢ and LY, with n € Z generate a Virasoro algebra Uity over F.

Remark 3.9. It is well-known (see Appendix A) that the generalized bosonic exponential V, 5(2) is

a primary field of the Virasoro algebra Uitr generated by LY with conformal dimension Ao, B) =
—% a (3, i.e., it satisfies the commutation relations

[L?L,Vaﬁ(z)] = 2" (z 0, + Ao, B) (n + 1)) Vap(z).

12



3.1.2 Fock space

We are interested in a special type of representation of a given lattice Heisenberg algebra by ¢ over [F.

Definition 3.10. Let 1 be the trivial representation of b]'F" ¢ (i.e., the one-dimensional F-vector space

with trivial hfg g-action). The Fock space representation of the Heisenberg algebra i ¢ is the induced

representation Fr ¢ := O ¢ Op+ w. @
F,£

The Fock space is an irreducible highest weight representation whereby any element wg € W is a
highest weight vector, i.e., hﬁ ¢ annihilates wo and the elements in I of the form q%,, ---q%,, >wo
generate Fr ¢ forv € £,1>1andm; > 1fori=1,...,1[.

Example 3.11. For the Heisenberg algebra hy, the Fock space Fy is isomorphic to the polynomial

algebra Ap = F [p1, p2, . . .| in the power sum symmetric functions introduced in Section 2.2. In this
realization, the actions of the generators are given for m > 0 by
of
P> fi=pmf, pmbf::ma— and c>fi=f (3.12)
Pm

for any f € Ap.

Example 3.13. The Fock space .7-"{; of the rank k& Heisenberg algebra bf§ can be realized as the tensor
product of k copies of the polynomial algebra Ap:

FE o~ AZE
In this realization, the action of the generators p’  is obvious: each copy of the Heisenberg algebra
generated by p¢ form € Z \ {0} acts on the i-th factor Ap as in Equation (3.12).
3.1.3 Whittaker vectors

We give the definition of Whittaker vector for Heisenberg algebras following [19, Section 3]; in
conformal field theory it has the meaning of a coherent state.

Definition 3.14. Let y: U(hg ¢) — IF be an algebra homomorphism such that X’bf{ # 0,and let V
5 L
be al/(hp ¢)-module. A nonzero vector w € V is called a Whittaker vector of type x if nbw = x(n) w

for all n € U(h o). %)
Remark 3.15. By [19, Proposition 10], if w, w’ are Whittaker vectors of the same type x, then w’ =
Aw for some nonzero A € F. A

3.2 Affine algebra of type A\k,l

Let £ > 2 be an integer and let sl := sl(k, F) denote the finite-dimensional Lie algebra of rank k& — 1
over [F generated in the Chevalley basis by F;, F;, H; fori = 1,..., k — 1 satisfying the relations

[, Fy| = 6i; Hj , [H;, Hj] =0,
[Hi, Ej] = Cy; Ej, [Hi, Fj| = —Cj; Fy

where C' = (Cj;) is the Cartan matrix type Aj_; (see Remark 3.16 below).
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An explicit realization of the generators of slj in the algebra M (k,F) of k x k matrices over F
is given in the following way. Let E; ; denote the k£ x k matrix unit with 1 in the (7, j) entry and 0
everywhere else for i, = 1,..., k. Define

E;i:=FE;;.1, Fi:=FEi; and Hi:=FE;; — E;1i11

fori =1,...,k — 1. One sees immediately that F;, F;, H; satisfy the defining relations for s

Let us denote by t the Lie subalgebra of sl generated by H; fori = 1,...,k — 1 and by n;
(resp. n_) the Lie subalgebra of sl; generated by E; (resp. F;) for7 = 1,...,k — 1. Then there is a
triangular decomposition

sl =n_0Otdny

as a direct sum of vector spaces.
Remark 3.16. Fori =1,... k, define e; € t* by
e; (diag(al, e ,ak)) =aq;.

The elements ; := e; — e; 1 fori = 1,...,k — 1 form a basis of t*. The root lattice £ is the lattice
Q= @fz_ll Zry;. The elements of £ are called roots, and in particular ~; are called the simple roots.
The lattice of positive roots is Q4 := @f:_ll N~;. Since e; corresponds to the i-th coordinate vector
in Z*, there is a description of Q and 9, in Z¥ given by

Q={e—ej|i,j=1,....,k} and Q,={ei—e;|1<i<j<k}.

By setting (7v;,7;)a := 7i(H;) = C;;, we define a nondegenerate symmetric bilinear form (—, —)q
on Q.

The fundamental weights w; of type Ay are the elements of t* defined by w;(H;) = d;; for
i,j =1,...,k — 1. In the standard basis of Z*, they are given explicitly by

) .k
]
W; = E e — — E e
k
=1 =1

fori=1,...,k—1. Let P := @fz_ll Zw; be the weight lattice. Then Q C P, asy; = Zf;ll Cij wj.
The set of dominant weights is B = @fz_ll Nw;. There is a coset decomposition of 3 given by

k—1
= @Q+w), (3.17)
=0

where we set wg := 0.
The coroot lattice is the lattice QY := @1:11 ZH;. A

We now introduce the Kac-Moody algebra s?[k of type Ek,l, first via its canonical generators and
then as a central extension of the loop algebra of slj.

Definition 3.18. The Kac-Moody algebra s?[k of type ﬁk,l over [F is the Lie algebra over [F generated
by e;, fi, h; fori =0,1,..., k — 1 satisfying the relations

lei, [l = 0ij by, [hihj] =0,
[hisej] = Cijej,  [hi, fi] = —Cij f5,

where C = (@J) is the Cartan matrix of the extended Dynkin diagram of type Aj,_;. %,

14



The matrix C is given for k > 3 by

2 -1 0 -1
-1 2 -1 0
O = ( z’j) -1 0 -1 2 0
-1 0 O 2

and for k = 2 by
A ~ 2 =2
C:(ij>:<_2 2)'
Let us denote by t the Lie subalgebra of ;[k generated by h; fori = 0,1,...,k — 1 and by n
(resp. n_) the Lie subalgebra of sl;, generated by e; (resp. f;) fori = 0,1,...,k — 1. Then there is a

triangular decomposition
shy=n_otdn,

as a direct sum of vector spaces.
Now we describe the relation between sl and s?[k Define in s(;, the elements
EO = Ek71 s Fo = El,k and HO = Eng — E171 .
Consider next the loop algebra s}, := s, ® Flt,t1]. Set

ep:=FEy®t, e =FE®1,
for=Fot?!, fi=Fol,

iL()::H()@l, hi =H;®1,

fori =1,...,k — 1. Let us denote by ¢ the central element of sl; given by ¢ = Zf:_ol h;. Then we
can realize sl; as a one-dimensional central extension

0—>Fc—>§[kl>;[k—>0,

where the homomorphism 7 is defined by

T e 6, fi — fi, hi — h;,
for: =0,1,...,k — 1, and the Lie algebra structure of 5A[k is obtained through
M @t™, N@t"] = [M,N] @t"" + m&m _ntr(MN)c (3.19)

for every M, N € sl;, and m,n € Z. Thus the canonical generators of 5A[k. are

eg:=FEy®t, e =FE,®1,
fo=Rot, fi=Fel,
hp:=Hy®1+c¢, h;:=H;®1,

and we can realize t as the one-dimensional extension

0 — Fc — t 25t — 0.

15



Remark 3.20. Let vy := Zf_ll Yi- Fori = 1,...,k — 1, let e; be as in Remark 3.16; then
Yo = ey, —e1. We extend e; from t* to t by setting el( ) = 0. Thenv;(¢) =0fori =0,1,...,k—1.
Thus the root lattice O of sl is the lattice Q = @ ! Zry; = Zryo ® Q. In a similar way, one can

define the lattice of positive roots and a nondegenerate symmetric bilinear form on Q.
Let &g be the element in t* defined by @ (t*) = 0 and y(c) = 1. Define

W; = wj + Wo for i=1,...,k—1.

We call @0,@1, . wk 1 the fundamental weights of type Aj_1. Set ‘B @Z 0 Zw;. Any weight
X = Z Aw,G‘BcanbewrlttenasA A+ ks wo,whereAe‘BandkA—)\() SR s
the level of A A

3.2.1 Highest weight representations

By declaring the degrees of generators dege; = — deg fi=1landdegh; =0for:=0,1,...,k—1,
we endow sl with the principal grading

- @ (5,

neEL

The principal grading of ;[k induces a Z-grading of its universal enveloping algebra U (;[k) over IF,
which is written as
U(siy) =P s
neEL

Setbh :=1t® ny. Let X be a linear form on t. We define a one-dimensional b-module Fus by

npvg =0 and hiva:X(hi)vX for 1=0,1,...,k—1.

Consider the induced ;[k—module

V(X) :=U(sl) @, Fo

u®) TN

Setting V,, := Uy, > v5, we define the principal grading Y( 3\\) =D,z Vn. The sl;-module Y( X)
X).

contains a unique maximal proper graded f?[k—submodule I(

Definition 3.21. The quotient module
V(X)) :=V(X)/I(X)

is called the highest weight representation of s?[k at level k. The nonzero multiples of the image of
v5 in V() are called the highest weight vectors of V(\). @

The principal grading on V( X) induces an N-grading

=P V.

n>0

called the principal grading of V( hy ).
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Definition 3.22. The i-th dominant representation of ;[k at level one is the highest weight represen-
tation V(@) of sl fori = 0,1,...,k — 1. The module V(&y) is also called the basic representation

Ofﬁ[k.
©

Remark 3.23. One can define the Lie algebra QT [;, as the one-dimensional extension
0 — Fc — Q/l\[k g, @F[t,t71] — 0.

Since gl = Fid & s, the representation theory of QT [, is obtained by combining the representation
theory of the Heisenberg algebra hr with that of sl;. For example, all highest weight representations
of gl;, are of the form Fr ® V( \) for some weight A € . A

3.2.2 Whittaker vectors

Let us denote by q’, the element H; ® t™ for i € {1,...,k — 1} and m € Z. By Equation (3.19),
these elements satisfy

[qfn, CI%] =M Optn,0 Cij ¢ and [q,m C] =0,
fori,j € {1,...,k — 1} and m,n € Z. For a root y, we denote by g, the element H-, ® t™ where

H., € tis defined by (H, H,)qvg,r = v(H) forany H € t.

The subalgebra of s[;, generated by gt , fori € {1,...,k—1} andm € Z\{0}, and cis isomorphic
to the Heisenberg algebra hr o. This motivates the following definition of Whittaker vector for sl
(cf. [19, Section 6]).

Definition 3.24. Let x: U(hy a) — T be an algebra homomorphism such that X’b];—g # 0,and let V

beald( s?[k) -module. A nonzero vector w € V is called a Whittaker vector of type x if n>w = x(n) w
for all ) € U(bf ). %)

3.3 Frenkel-Kac construction

Let V be a representation of br o. We say that it is a level one representation if the central element ¢
acts by the identity map. Henceforth we let V be a level one representation of hg o such that for any
v € V there exists an integer m(v) for which

(g, gl )>po=0 (3.25)

if m; >0and ), m; > m(v).

Fix an index j € {0,1,...,k — 1} and consider the coset Q + w;. Denote by F[Q + w;] the
group algebra of Q + w; over F. For a root v € Q we define the generating function V (v, z) €
End(V @ F[Q + wj])[[2, 27 !]] of operators on V @ F[Q + w,] by the bosonic vertex operator

V(v,2) = V] _1(2) exp(log z ¢ +7)

©  _m ()
z z
:eXP(E qum) exp(— E WQ;{@) exp(log 2z ¢ +7),

m=1 m=1
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where exp(log z ¢ + ) is the operator defined by

exp(logz ¢ +7) & (v ® [B +wy]) 1= 220N+ (1 @ [B4 4 +wy)

forv® [+ w;] € V@ F[Q + wj].

Remark 3.26. Here for the operator exp(log z ¢ + 7) we follow the notation in [42, Section 3.2.1]. In
the existing literature, this operator is denoted in various different ways. A

Let Vi,(7) € End(V ® F[Q + wj]) denote the operator defined by the formal Laurent series
expansion V' (y,2) = > 7 Vin(v) 2™,
We define amap e: Q x Q — {1} by

(i, 7;) = -1, j=4,1+1,
Vi) = 1,  otherwise ,

with the properties €(y + 7/, 3) = e(v, ) e(7/, ) and (v, B + B') = e(v, B) e(v, B ).

Theorem 3.27 ([26, Theorem 1]). Let j € {0,1,...,k — 1} and let V be a level one representation
of by q satisfying the condition (3.25). Then the vector space V ® F[Q + wj| carries a level one
sli-module structure given by

(Hi

> 1B + wj]

((i, 8 Q+6ZJ)(U®[ﬁ+wj]),
(a3 > v) @ [B +wy]

Yis B) Vit (i) > (v @ [B 4+ wj])

B, %) Vem—s;; (=) > (v @ [B + wyl)

(ve® ) =
(v @6+ w)
(E ") > (v @ B +wjl)
( )

€

—_—~ o~

(F,ot™)p (v [B+wj]) =€

forie{l,....,k—1} and m € Z\ {0}. If V is the Fock space of by q, then V @ F[Q + wj] is the
J-th dominant representation of slj.

3.3.1 Virasoro operators

Let {m}fz_ll be an orthonormal basis of the vector space Q ®z R. The Virasoro algebra associated
with bp o C faA[k has generators ¢ and Lfl[k for n € Z defined by [26, Section 2.8]

X k—1 oo
L =20 > atmah + Z ,

i=1 m=1

k—1
21 .
Lit=5 > > dlpdne, for neZ\{0}.
i=1 meZ

Note that distinct orthonormal bases of  ®7 R give rise to the same Virasoro algebra Uitp.
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4 AGT relations on R*

4.1 Equivariant cohomology of Hilb"(C?)

In the following we shall give a brief survey of results concerning the equivariant cohomology of the
Hilbert schemes Hilb”(C2) and representations of Heisenberg algebras thereon [43, 29, 47, 60, 36,
55, 44].

Let us consider the action of the torus 7' := (C*)? on the complex affine plane C? given by
(t1,t2) > (x,) = (t1 z,t2y), and the induced T-action on the Hilbert scheme of n points Hilb™ (C?)
which is the fine moduli space parameterizing zero-dimensional subschemes of C? of length n; it is a
smooth quasi-projective variety of dimension 2n. Following [22], the T-fixed points of Hilb"(C?) are
zero-dimensional subschemes of C2 of length n supported at the origin 0 € C? which correspond to
partitions )\ of n. We shall denote by Z) the fixed point in Hilb™(C?)” corresponding to the partition
Aofn.

For ¢ = 1,2 denote by t; the T-modules corresponding to the characters x;: (t1,t2) € T — t; €
C*, and by ¢, the equivariant first Chern class of ¢;. Then H7.(pt; C) = Cley, e2] is the coefficient ring
for the T-equivariant cohomology. The equivariant Chern character of the tangent space to Hilb™ (C?)
at a fixed point Z), is given by

ChT(TZkHllbn(CQ)) — Z (e(L(s)+1) e1—A(s) e2 + e—L(s)51+(A(s)+1) 52) ]
sEY)

The equivariant Euler class is therefore given by
eur (TZAHilb"((CQ)) = (—=1)" eup(N) eu_(N),
where

eur(A) =[] ((L(s)+1)er—A(s)ez)  and  eu_(N) = J[ (L(s)e1—(A(s)+1)e2) .

EIS %N s€Y)

Remark 4.1. By [44, Corollary 3.20], euy (\) is the equivariant Euler class of the nonpositive part
TZSA0 of the tangent space to Hilb™(C?) at the fixed point 7. A

Letzy: {Z)} — Hilb™(C?) be the inclusion morphism and define the class
(Al :=0.(1) € H7"(Hilb™(C?)) . (4.2)
By the projection formula we get
AJU [u] = 65, eur (Tz, Hilb™(C?)) [A] = (=1)" 6y, eup (A) eu_(N) [A] .

Denote
wi= P 2y ¢ Hilb™(C*HT — Hilb™(C?) .

Z\€Hilb™(C2)T
Let v, : Hy (Hilb™(C?)T), — Hj (Hilb"(C?))

loc e the induced Gysin map, where

Hp(—)ioc = Hp (=) ®cle,,e5) Cle1,€2)
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is the localized equivariant cohomology. By the localization theorem, z!n is an isomorphism and its
inverse is given by

1y—1 Z;(A)
(Z"> PA (euT (TZAHilb"(CQD )ZAEHilbn(C2)T

Henceforth we denote Hee ,, := H7(Hilb"™(C?))jqc. Define the bilinear form
<_7 _>chyn : H(Cz,n X H(sz - C(ELEQ) (4.3)

(A,B) — (=1)"p}, (4) (AUB),

where p,, is the projection of Hilb™(C?)7 to a point.

Remark 4.4. Our sign convention in defining the bilinear form is different from the one used e.g. in
[47, 18]. We choose this convention because, under the isomorphism to be introduced later on in
(4.12), the form (4.3) becomes exactly the Jack inner product (2.1). This convention produces various
sign changes compared to previous literature. Hence every time we state that a given result coincides
with what is known in the literature, the reader should keep in mind “up to the sign convention we
choose”. A

Following [36, Section 2.2] we define the distinguished classes

[Oé)\] = [)‘] € H%n(Hﬂbn(Cz))loc

eup(A)
For )\, p partitions of n one has
B eu_(}A)
(ol o)y, = S 49
L(s)er — (A(s)+1)e L(s) B+ A(s) +
_5)‘”1_[ ((s)—|—1 el — A(s)e ’”H 3+1 5+A()
SEY) SEY)
where .
==, (4.6)
€2
Remark 4.7. In [44, Section 3(v)], Nakajima gives a geometric interpretation of the class [, ]. A

By the localization theorem and Equation (4.5), the classes [a)] form a C(e1,¢e2)-basis for the
infinite-dimensional vector space H2 := @nzo Hgs2 ,,- Hence the symmetric bilinear form (4.3) is
nondegenerate. The forms (—, _>Hc2 , define a symmetric bilinear form

<_7_>H<c2 : H(Cz X H(CZ - 6(81782)

by imposing that Hcz ,,, and Hgz ,,, are orthogonal for n; # na. Then (—, _>H<c2 is also nondegen-
erate.
The unique partition of n = 1is A = (1). Let us denote by [a] := [a(y)] the corresponding class.
Then
.|
(lo]. o]}y, = A7

Let us denote by D, and D, respectively the x and y axes of C2. By localization, the corresponding
equivariant cohomology classes in H}((CQ)IOC are given by
(0] (0]

Dzl = o e (1) [a] and [Dylp = e —Ba] .
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4.2 Heisenberg algebra
Following [43, 47], for an integer m > 0 define the Hecke correspondences
Dy(n,m) = {(Z,7") € Hilb"*™(C?) x Hilb"(C?) | Z' C Z , supp(Zz/Tz) = {y} C D, },

where 77,7 are the ideal sheaves corresponding to Z, Z' respectively. Let g1, g2 denote the projec-
tions of Hilb™ 1" (C2) x Hilb" (C?) to the two factors, respectively. Define linear operators p_,,([Dz]r) €
End(Hc2) by

p—m([Da] (¢34 (n,m)lr)

=i
for A € HX(Hilb™(C?))0c. We also define p,y, ([D x]T) € End(HCz) to be the adjoint operator of
p—m([Dyz]r) with respect to the inner product (—, —)m_, on Hce. As the class [Dy]7 spans H%(C?)1c
over the field C(e1, 2), we can define operators pm( ) € End(Hgs2) for every class € Hi(C?)jc.

Theorem 4.8 (see [43, 44]). The linear operators p,,(n), for m € Z\{0} and n € H%(C?)oc, satisfy
the Heisenberg commutation relations

[P (1) 5 Pr(m2)] = M 6, (11, 772>HC2’1 id and [pm(n), id] =

The vector space H2 becomes the Fock space of the Heisenberg algebra bch1 modelled on Hg2 ; =
H(C?)1oc with the unit |0) in H(Hilb?(C2))10c as highest weight vector:

Remark 4.9. Since [D]r = [a], we have p, ([a]) = pim([Da]1)- A
Henceforth we denote by h2 the Heisenberg algebra th2,1’ and we define
Pm = pm([Dalr)  for meZ\{0}, (4.10)
so that one has the nonzero commutation relations
[P—m: ] = m 57"

Since [D,]r generates H; ((C2)10C over C(e1, e2), the operators p,, generate hc2.
Let A = (11 2™2 ... ) be a partition. Define py := [[, p"';. Then

(p2l0), puyo>>HC2 = Oy 20 57V

Let us denote by Ag the ring of symmetric functions in infinitely many variables Ac(c, ,) over the
field C(eq, e2), equiped with the Jack inner product (2.1).

Theorem 4.11 (see [43, 36, 18]). There exists a C(ey,e3)-linear isomorphism
¢: Hee — Ag 4.12)
preserving bilinear forms such that
d(pr0)) =pa(z)  and  P(len]) = a(z;871).
Via the isomorphism ¢, the operators p,, act on Ag as multiplication by p_, for m < 0 and as

m 31 apimform > 0.
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4.2.1 Whittaker vectors

We characterize a particular class of Whittaker vectors (cf. Definition 3.14) which will be useful in
our studies of gauge theories.

Proposition 4.13. Let 1) € C(e1,€2). In the completed Fock space [],,<o Hez ,,, every vector of the
Sform

G(n) == exp(np-1)|0)

is a Whittaker vector of type X, where the algebra homomorphism x,: U (b&) — C(e1,e9) is
defined by

Xn(p1)=nB""  and  xy(pn) =0  for n>1.

Proof. The statement follows from the formal expansion

— 7"
Z 7 (p-1)"0) (4.14)

with respect to the vector |0), together with the relation p,,|0) = 0 for m > 0 and the identity

P (P—1)" =18 Oy (p=1)" "+ (p-1)" P
inU(he2) form > 1. O

4.3 Vertex operators

Let T, = C* and H}, (pt C) = C[u]. Let us denote by Og2(u) the trivial line bundle on C? on
which T}, acts by scahng the fibers. In [18], Carlsson and Okounkov define a vertex operator V(L, z)
for any smooth quasi-projective surface X and any line bundle £ on X. Here we shall describe only
V(Oc2(u), 2); see [18] for a complete description of such types of vertex operators.

Let Z,, C Hilb"(C?) x C? be the universal subscheme, whose fiber over a point Z € Hilb"(C?)
is the subscheme Z C C? itself. Consider

Z;:=p;(0z,) € K(Hib™(C?) x Hilb"™(C?) x C*)  for i=1,2,
where p;; denotes the projection to the i-th and j-th factors. Define the virtual vector bundle
En"™ =pio, (2Y + 22— ZY - 25) - p5(Oc2(p))) € K(Hilb™ (C?) x Hilb"*(C?)) ,

where ps is the projection to C2. The fibre of E}V" over (Z1, Z3) € Hilb™ (CHT x Hilb"2(CH)T
is given by
Ezl7n2‘(Z1722) = X(O(C2 ) O(CQ(IU‘)) - X(IZ1 ; ZZQ @ OCQ(M)) ;

where x(E, F) := Z?:o (—1)! Ext‘(E, F) for any pair of coherent sheaves F, F' on C2, while its
rank is
rk (EZ“"?) =ni+ng.

Define the operator V(O¢2(p), z) € End(Hg2)[[2, 271]] by its matrix elements

)" (V(Oc2(p), 2)Ar, Az)y
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— 2= eur (EZLTLQ) Up’{(Al) UpS(AQ) , (4.15)

/Hilbnl (C2) xHilb"2 (C?)

where A; € H(Hilb™ (C?))). and p; is the projection from Hilb™ (C?) x Hilb"2(C?) to the i-th
factor for 7 = 1, 2. By [18, Lemma 6], the matrix elements (4.15) in the fixed point basis are given by

(V(Oc2(), )Ml Dal)y , = (-1l eng (BT ) (416)
= (_1)|)\2| ZIAQI_')\lI mYApY)\Q (517527/1’) )
where
my,vs(e1,62,0) := [ (a— Lys(s1)e1 + (Ayi(s1) + 1) £2) 4.17)
s1€Y7
x I (a+ (Lyi(s2) + 1)1 — Ay, (s2) €2)
s2€Yo

for a pair of Young tableaux Y7, Y5 and a € C(eq,e2). In gauge theory this factorized expression for
the matrix elements represents the contribution of the bifundamental hypermultiplet.

We shall now describe the operator V(Ogz (1), z) in terms of the operators p,,, defined in Equation
(4.10) for m € Z \ {0}. In our setting, [18, Theorem 1] assumes the following form.

Theorem 4.18. The operator V(Ocz2 (1), z) is a vertex operator in Heisenberg operators given by the
generalized bosonic exponential associated with the Heisenberg algebra Y2 as

V(Oc2(),2) =V_ s wterten (2) - 4.19)

g’ £9

4.4 Integrals of motion

Let V" be the pushforward of E;™ with respect to the projection of the product Hilb™(C?) x
Hilb"(C?) to the second factor. It is a T-equivariant vector bundle on Hilb"(C?) of rank n, which we
shall call the natural bundle over Hilb™(C?). The T-equivariant Chern character of V" at the fixed
point Z) is given by

chT vn |Z Z e L(s)er—Al(s) e
sEY)
Remark 4.20. The vector bundle V" can equivalently be defined as the pushforward with respect to

the projection Hilb™(C?) x C? — Hilb"(C?) of the structure sheaf of the universal subscheme Z,,.
In the literature V'™ is also called the tautological sheaf and denoted ol (cf. [34, 35, 54, 44)). A

Let us denote by V' the natural bundle over [, -, Hilb™(C?). The operators of multiplication
by It := 1k (V) and I), := (c,—1)r (V) for p > 2 on ]~ Hcz, have even degrees, are self-
adjoint with respect to the inner product on [ ] -, He2 ,,, and commute with each other; they can thus

be simultaneously diagonalized in the fixed point basis [\] of [1,>0 Hez,, (see [54], and also [44,
Section 4] where our operator p,,, is denoted P, (e2) for m € Z \ {0}). For example, one has

Lo =N ad  LoN=-Y (L(s)e+A(s)e) . @2D)
SEY)
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As a consequence, the operators of multiplication by I,, for p > 1 can be written in terms of the
Heisenberg operators (4.10) as elements of a commutative subalgebra of U (hc2). For example, we
have

I, :ﬂ Z Pm Pm ,
m=1
I2 =£&1 <§ Z (p—mp—npm—i-n +p—m—npnpm> - % Z (m_ 1)p—mpm) .
m,n=1 m=1

Note that the energy operator I coincides with the Virasoro generator Lg from Section 3.1.1, while
the operator I is equal to €1 i 71, where 05" is the bosonized Hamiltonian of the quantum trigono-
metric Calogero-Sutherland model with infinitely many particles and coupling constant 371,

4.5 N = 2 gauge theory

The Nekrasov partition function for pure N' = 2 U(1) gauge theory on R* is given by the generating
function [50, 13]

Ze2(e1,€9;q) = q"” / Hilb™(C?
e =3 a [ ),

C

= 3 (—a)" (b (C)]r, [Hilb"(C)}r)y,
n=0

where q € C* with |q| < 1. By the localization theorem we obtain

L g \W 1
Zea(er,e059) = ) ( 55) 11 ((L(s) + 1) B+ A(s)) (L(s) B+ (A(s) + 1))

A SGY)\

as in [13, Equation (3.16)], where the sum runs over all partitions A.

Remark 4.22. By [48, Equation (4.7)], the partition function can be summed explicitly and written in
the closed form

Zea(e1,62:q) = exp (i ) . (4.23)
€1 &9

A

4.5.1 Gaiotto state

In [27], Gaiotto considers the inducing state of the (completed) Verma module of the Virasoro algebra.
It has the property that it is a Whittaker vector for the Verma module, and the norm of its g-deformation
coincides with the Nekrasov partition function of pure N' = 2 SU(2) gauge theory on R*. Here we
consider the analogous vector for U (1) gauge theory on R*.

Following [56], we define the Gaiotto state to be the sum of all fundamental classes

G:=>  [HIb™(C?)],

n>0
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in the completed Fock space [[,,~ Hcz ,,. We also introduce the weighted Gaiotto state as the formal
power series

Gq:=Y_ q" [Hib"(C*)], € T q"Hee,, .

n>0 n20

Consider the bilinear form

<_7_>HC2,Q : H an(CQm X H anCQm — C(€17€2)[[q]]

n>0 n>0
defined by
[o¢] o0
< > Q" 0, Y " Vn> => q" / MU =Y (=)™ (1, V) H -
n>0 n>0 Hez,a 7= Hilb™ (C2) n=0

It follows immediately that the norm of the weighted Gaiotto state is the Nekrasov partition function
for V' = 2 U(1) gauge theory on R*:

Ze2(e1,€2;9) = <Gq7Gq>HC2,q .

By Proposition 4.13 we have the following result.

Proposition 4.24. The Gaiotto state G is a Whittaker vector of type x, where the algebra homomor-
phism x: U( 52) — C(e1,e2) is defined by

1
X(p1) = —— and X(pn) =0 for n>1.

€1
Proof. Let n € C(e1,e2). By using the formal expansion (4.14) and the isomorphism ¢, we can
write ¢(G(n)) in terms of powers p}. By Lemma 2.3 and simple algebraic manipulations we can then
rewrite the vector G(n) as

G(n) = (nez)" [Hilb™(C?)],,

n>0

and the result follows. U

4.6 Quiver gauge theories

We now add matter fields to the ' = 2 gauge theory on R*. We consider the most general N’ = 2
superconformal quiver gauge theory with gauge group U (1)"*! for » > 0, following the general ADE
classification of [52, Chapter 3].

Let Q = (Qo, Q1) be a quiver, i.e., an oriented graph with a finite set of vertices Qo, a finite set of
edges Q1 C Qo X Qp, and two projection maps s, t : Q1 =2 Qp which assign to each oriented edge its
source and target vertex respectively. Representations of the quiver encode the matter field content
of the gauge theory. Fix a vector (n,)yeq, € N of integers labelled by the nodes of the quiver Q,
and consider the product of Hilbert schemes [],,q, Hilb™ (C?). The vertices v € Qq label U(1)
gauge groups and m,, > 0 (resp. m, > 0) fundamental (resp. antifundamental) hypermultiplets
of masses p, s = 1,...,m, (tesp. 5, § = 1,...,m,) which correspond to the T-equivariant
vector bundles V¢ (resp. VZ%) of rank n,, on Hilb™ (C?) obtained by pushforward of E!¢""

s
)
Ny,

(resp. E ¢ ") with respect to the projection of Hilb™ (C?) x Hilb™ (C?) to the second (resp. first)
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factor. The edges e € Q; label U(1) x U(1) bifundamental hypermultiplets of masses . which
correspond to the vector bundles EZZ(S)’nt(e) of rank ng () + nyg(e) on Hilb"s( (C?) x Hilb™( (C?);
if the edge e is a vertex loop, i.e., s(e) = t(e), then the restriction of E,,>”""*) to the diagonal of
Hilb"s(e) (C2) x Hilb"s(e) (C?) describes an adjoint hypermultiplet of mass y.. The total matter field
content of the A = 2 quiver gauge theory associated to Q in the sector labelled by (n,,),eq, € N is

thus described by the bundle on ] Hilb™ (C?) given by

veEQo
(n0) s
Ny Ny ValZ * lls(e) Mt(e)
M (52 ) @pv(@‘/ @ Vng) ® P piE :
VEQo s=1 e€Q1

where p,, is the projection of [ [, . Hilb™ (C?) to the v-th factor and p, the projection to Hilb™s(e) (C2)x
Hilb"s() (C?).

For each vertex v € Qq, the degree of the Euler class of the pushforward of this bundle to the v-th
factor is the integer

dy := dime Hilb™ (C2) — rk (MEH P

Hilb"“((CQ))
:nv(Q—mv—mU—#{e€Q1|S(6):’U}—#{€€Q1‘t(6):'U}) .

The N' = 2 quiver gauge theory is said to be conformal if d,, = 0 for all v € Qq; it is asymptotically
free if d,, > 0. Note that with this definition the pure ' = 2 gauge theory of Section 4.5 is asymp-
totically free. As explained in [52, Chapter 3], N' = 2 asymptotically free quiver gauge theories can
be recovered from conformal theories, so in the following we restrict our attention to superconformal
quiver gauge theories.

Introduce coupling constants g, € C* with |q,,| < 1 at each vertex v € Qg, and let 7}, be the
maximal torus of the total flavour symmetry group

Gr = [[ GL(my,C) x GL(m,,C) x [] €

VEQo e€Q1

with H7, (pt C) = C[(pe), (u2), (i2%)]. Then the quiver gauge theory partition function is defined by
the generatlng function

2%, (e1,62, 1) 1= " / M)
c2(€1,62, p4;Q) (nué:NQO q — eurx, ( (Nu)v(Uv)7(Ue))
veQy
S qn/ [T #i( T evr (Vi) TT enr (V)
(nv)€NRo vg)o Hilb™ (C2) yeqq s=1 s=1

se’nte
X HpeeuT () ())7
e€qr

where Q™ := [],cq, dv"- By the localization theorem, we obtain

Moy

Moy B
[T my,.(e1.e2,15) 1 myyo (€1, 62, /85 + €1+ €2)
s5=1

Zh(en e, ma) =Y (- [ =

(Av) vEQo

mka 7ka (617 627 0)
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X H MY s(e),Y, e>(€17€27ue) 4.25)
e€r

|A"

where g := av | for a collection of partitions AV associated to the vertices of the uiver, and
UEQO p q

my (1,62, a) == H (a—L'(s)er — A'(s)e2)

seY
for a Young tableau Y and a € C(eq,e3).
The conformal constraint
my + My + #{e € ‘ s(e)=v}+#{ecy ‘t(e) =v} =2 (4.26)

for each v € Qg severely restricts the possible quivers in the abelian gauge theory. It is easy to check
that the only admissible quivers in the ADE classification of [52, Chapter 3] are the linear (or chain)
quivers of the finite-dimensional A,.-type Dynkin diagram and the cyclic (or necklace) quivers of the
affine Er—type extended Dynkin diagram for some r > 0'. We consider in detail each case in turn.

4.7 A\,. theories

For the cyclic quivers of type A,

with 7+ 1 vertices and arrows, one has m,, = m, = 0 by Equation (4.26). We label the vertices Qg by

v =0,1,...,r with counterclockwise orientation and read modulo 7 + 1, and similarly for the edges
e = (v,v + 1) € Q;. The partition function for the N' = 2 quiver gauge theory of type A, reads as
T
1 MYy0.Y, 041 (€15 €25 Ho)
285 (e1,00,130) = o p— : (4.27)
Cc2 ( 1 2 l’l' ) ; H mY)\'u Y)\'u (61,62, O)
where the sum is over all 7 + I-vectors of partitions A = (A%, A!,... A") with A**! := X0 and

>\U
Cl)\ = H:) 0 q!u l

4.7.1 Conformal blocks
We will relate the partition function (4.27) to the trace of vertex operators V(Ogc2 (pir), 2, ). We shall
also denote by h the Heisenberg algebra 2 to simplify the presentation.

Proposition 4.28. The partition function of the Er-theory on R* is given by

r
A )
ZéQT(‘glaEQv M q) = TrH(CQ qLO H V(O(C2 (,u'u)a z'U)
v=0

independently of zog € C*, where q :==qoq1---qQrand z, :== 29q1---quforv=1,...,r

"Here the Ao-type Dynkin diagram is the trivial quiver consisting of a single vertex with no arrows, and the A\o—type
Dynkin diagram is the quiver consisting of a single vertex with a vertex edge loop.
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Proof. By Equation (4.21), the Virasoro operator Lg acts in H¢2 as

b

0 iz,

=nidg
C4,n Cz,n ’

and so the trace of products of Ext vertex operators V(Ogc2 (i), 2y, ) is given by the sum of their matrix
elements over the fixed point basis as

r O(C2 ,Uv) v)[)‘v]v P‘U—HDH

Trm,, qL HV(’)Cz (o), 20) = Z q"° Z H . [)\U]>H Ry

v=0 neNr+l X:|A?|=n, v=0

By Equation (4.16) we obtain

Try c2 qL H V O(C2 ,Uv Z no H "U nv_”erl

v=0 nGNTJrl

reurp (BT ‘(ZAU,ZAUH))

<2 1l eur (Tz,,Hilb™ (C2))

X:|AY|=n, v=0

_ d MYyv,Y, 011 (e1,€2 o)
- Z (_q)n Z H (51,52,0) )

neNr+1 A |)\U =n, v=0 mYAv Yyv

and the result follows. O

Remark 4.29. Proposition 4.28 shows that the partition function of the A\r—theory coincides with the
conformal block of the Heisenberg algebra h2 on the elliptic curve with nome q and +1 punctures at
20,21, - - -, 2r; We can set zg = 1 without loss of generality. The conformal dimension of the primary
field inserted at the v-th puncture is

Lo (o + €1+ €2)

Apyier,e2) = 512

This elliptic curve is the Seiberg-Witten curve of the N' = 2 U (1)"*! quiver gauge theory on R*.
A

By using the same arguments as in the proof of [18, Corollary 1], an explicit formula for the
trace in this case can be obtained using Equation (4.19) and we arrive at the explicit evaluation of the
partition function. In the following 7(q) := qi [1;2; (1 — g™) denotes the Dedekind function.

Proposition 4.30.

'
73 1 b (pvterteg) 1

Zl(eve,mia) = ] (0 n(aw)” 2 q2in(q)
v=0

A similar formula for the U(1)"*! quiver gauge theory partition function is conjectured in [3,
Appendix C.2].
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4.7.2 EO theory

The degenerate case r = 0 of the XT quiver gauge theory corresponds to the quiver consisting of a
single node with a vertex edge loop

(e]

and is known as the N' = 2* gauge theory; it describes a single adjoint matter hypermultiplet of mass
p in the U(1) N/ = 2 gauge theory on R*. Then the quiver gauge theory partition function is the
Nekrasov partition function for " = 2* gauge theory [50, 13] and is given by

i, L ((L(s) +1)e; — A(s)ea + ,u) (L(s) e1 — (A(s) +1)eg — ,u)
Zevenma) =) a ] (L(s) + 1) e1 — A(s)e3) (L(s)e1 — (A(s) + 1) 2)

A SEY)
as in [13, Equation (3.26)].
By Proposition 4.30, we have

_nlpterten) 4

1 1
Z80(e1,e0,159) = (q 21 9(q)) 12 : (4.31)

A similar formula is written in [62, Equation (2.28)]. In the case of an antidiagonal torus action, i.e.,
€1 = —é&g, this result coincides with the formula derived in [51, Equation (6.12)]. We can then rewrite
Proposition 4.28 in the following way.

Corollary 4.32.
r N [T n(av)

2 (er,e0,mia) = [ 268 (er, 82, s qu) =2
fnbed n(a)

4.8 A, theories
Consider now the linear quivers of type A,

[ ] O O [

with 7+ 1 vertices and r arrows, where the solid nodes indicate the insertion of a single fundamental or
antifundamental hypermultiplet. In this case we label vertices Qg from left toright withv =0,1,... 7
and edges Q; with e = (v,v + 1); for definiteness we take m, = 0, so that myg = m, = 1 by the
conformal constraints (4.26). The partition function for the A" = 2 quiver gauge theory of type A, for
r > 1 reads as

r—1
mY)\o (617 €2, /"LO) H mYAv7Y)\u+1 (617 €2, M?H—l) myyr (517 €2, ,U'r+1)
r =0
Z(E:42 (81)82)#‘;(]) = Z(_q))\ . r
A

IT my,o vio(€1,€2,0)
v=0

(4.33)
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4.8.1 Conformal blocks

We will express the partition function (4.33) as a particular matrix element of Ext vertex operators.
Proposition 4.34. The partition function of the A,-theory on R* is given by

r—+1
25 (ereaomia) = (100, TT V (Oe (). 20)10))
v=0

c2
independently of zog € C*, where z, := z9qoq1 - qu_1forv=1,...,r+ 1
Proof. Arguing as in the proof of Proposition 4.28, we write

r+1

(l0), [T v (e (), 2)10)),,

r—

(1) <V(OC2 (Mv+1)7 Z’U+1)[)\U+1] ) [)‘UDHCQ

= > > (V(Oc ko)) N, 10)),, = 3
RENTHL A: |\ |=ny IT (], P‘UDHCQ

v=0

X <V(OC2(,U7~+1)7Z7“+1)|0>’ [)‘TDH 9 )

C

and by Equation (4.16) and the orthogonality relation (4.5) the result then follows. U

Remark 4.35. Proposition 4.34 expresses the partition function of the A,-theory as a conformal block
of the Heisenberg algebra f2 on the Riemann sphere with r + 4 punctures at 0o, 29, 21, - - - , Zr+1, 0;
again we can set zp = 1 without loss of generality. The conformal dimension of the primary field at
the insertion point z,, is A(u,;€1,€2), while at 0o, 0 they are given respectively by A(fioc 0;€1,€2).

where the masses jio, o obey
r+1

ﬂoo+/lo=€1+€2+2uu.

v=0

The Seiberg-Witten curve of the A" = 2 U(1)"*! quiver gauge theory on R* is a branched cover of
this (r + 2)-punctured Riemann sphere, ramified over the points co, 0. A

Using the vertex operator representation, we can again get a closed formula for the combinatorial
expansion (4.33).

Proposition 4.36.

A byt (Boterten)
Zoi(enenma)= [ (1-auii---aw) e
0<v<v’ <r+1

Proof. Using Equation (3.5) to express the product of vertex operators in Proposition 4.34 in normal
ordered form, we can write

r+1 5 _ pyr (poterten)

/
[[VEuz)m= [ (1-2) ==
v=0 0<v<v/<r+1 v
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r+1 00

I I P

v=0 m=1

since p,,,|0) = 0 for all m > 0. Since p,, is the adjoint operator of p_,, with respect to the scalar
product on Hz, we have (|0}, (p—m)™|0)) 5 , = 0forallm,n > 1 and the result follows. O
C

A similar formula for the U(1)"*! quiver gauge theory partition function is conjectured in [3,
Appendix C.1].

4.8.2 A theory

The degenerate limit » = 0 of the A, quiver gauge theory is built on the trivial quiver consisting of a
single vertex with no arrows
[ ]

and mg = 2 fundamental matter fields by Equation (4.26). Then the quiver gauge theory partition
function is the Nekrasov partition function for A/ = 2 gauge theory with two fundamental matter
hypermultiplets of masses g, 1 [50, 13] which is given by

L/(s) B — A'(s) + fio) (L'(s) B — A'(s) + fin)
((L(s) +1) B+ A(s)) (L(s) B+ A(s) + 1)

Zég(sl,EQ,Mo,MSQ) :Z(_q)IM H (

A SGY)\

as in [13, Equation (3.22)], where fip = po/e2 and fi; = p1/e2. By Proposition 4.34 this partition
function computes the four-point conformal block for the Heisenberg algebra f2 on the Riemann
sphere with primary field insertions at co, 1, q, 0, and by Proposition 4.36 the combinatorial sum can
be evaluated explicitly with the result

_ p1 (potegiteg)

365(517627%7#1;(1) =(1-q) c1e2 . (4.37)

A similar expression is written in [62, Equation (2.27)]. In the antidiagonal limit 3 = 1, this formula
coincides with the partition function expression derived in [38, Equation (49)].

5 Moduli spaces of framed sheaves

5.1 Orbifold compactification of X

In this subsection we recall the construction of the orbifold compactification of the minimal resolution
of C?/Z;, from [14, Section 3] and describe the main results that we will use in this paper. For
background to the theory of root and toric stacks used in the construction, see [14, Section 2], and to
the theory of framed sheaves on (projective) Deligne-Mumford stacks, see [15].

Fix an integer ¥ > 2 and denote by uy the group of k-th roots of unity in C. A choice of a
primitive k-th root of unity w defines an isomorphism of groups u; =~ Zj. We define an action of
pr =~ Zy on C? as wi (z,y) := (wr,w y). The quotient C2/Zy, is a normal affine toric surface.
The origin is the only singular point of C2/Z, and is a particular case of a rational double point or
du Val singularity [21, Definition 10.4.10].
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Let ¢: X — C? /Zj, be the minimal resolution of the singularity of C? /Zy; it is a smooth

toric surface with k torus-fixed points p1, ..., pr and k + 1 torus-invariant divisors Dy, D1, ..., Dy
which are smooth projective curves of genus zero. For any ¢ = 1,...,k the divisors D;_; and D;
intersect at the point p;. Moreover, D1, ..., D;_; are the irreducible components of the exceptional

divisor golzl(()). By the McKay correspondence, there is a one-to-one correspondence between the
irreducible representations of u; and the divisors Dy, ..., D;_1 [21, Corollary 10.3.11]. By [21,
Equation (10.4.3)], the intersection matrix (D; - D;)1<; j<k—1 is given by minus the Cartan matrix C
of type Ap_1,i.e., one has

-2 1 0

1 =2 0
(Di Dj)rcijarr = —C= :

0 0 —2

The surface X, is an ALE space of type Ap_1.

Let U; be the torus-invariant affine open subset of X which is a neighbourhood of ‘the torus-
fixed point p; for i = 1,..., k. Its coordinate ring is given by C[U;] := C[T? " Ty ¢, T{~' T3] for
¢t =1,..., k. By imposing the change of variables 77 = t'f and Th =t ti_k, we have

C[U;] = C[th—H 1 ed=i ¢izkyi] (5.1

Define ' ‘ ‘
Xo(t,te) = tF 7 d=0 and  xb(ty,te) = R
(2)

After identifying characters of T" with one-dimensional T-modules, let ¢~ denote the equivariant first

Chern class ofxé- fort=1,...,kand j = 1,2. Then
sgi)(sl,sg):(k—i+1)61—(i—1)52 and sg)(sl,sg):—(k:—i)sl+i52.

One can compactify the ALE space X, to a normal projective toric surface X}, by adding a torus-
invariant divisor Do, ~ P! such that for £ = 2 the surface X5 coincides with the second Hirzebruch
surface Fo. For k > 3 the surface X, is singular, but one can associate with X}, its canonical toric
stack Z,*" which is a two-dimensional projective toric orbifold with Deligne-Mumford torus 7" and
coarse moduli space w;*": 2,7 — Xj. By canonical we mean that the locus over which et
is not an isomorphism has non-positive dimension; for & = 2 one has 25" ~ [F,. Consider the
one-dimensional, torus-invariant, integral closed substack D 1= (W,‘éan)_l(Doo)red C 2", By
performing the k-th root construction on .2;°*" along D to extend the automorphism group of a
generic point of 7% by u, we obtain a two-dimensional projective toric orbifold .2}, with Deligne-
Mumford torus 7" and coarse moduli space 73, : 2, — Xj. The surface X}, is isomorphic to the open

subset 2% \ P of Zk, where Yoo := W;l(Doo)red. Let 9; := lel(Di)red be the divisors in 2,

corresponding to D; for ¢ = 1,...,k — 1. The classes
k—1 N
a (Cil)w P
j=1
are integral for ¢ = 1, ...,k — 1, where the inverse of the Cartan matrix C' is given by

(C—l)ij _ Z(k - ])

f < 7.
’ or 1<
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Denote by R; the associated line bundles on Z%; the restrictions of R; to X}, are precisely the tauto-
logical line bundles of Kronheimer and Nakajima [32].

Proposition 5.2 ([14, Proposition 3.25]). The Picard group Pic(Z})) of 2 is freely generated over
Z by O, (D) and R; withi =1,..., k — 1.

The divisor Z,, can be characterized as a toric Deligne-Mumford stack with Deligne-Mumford
torus C* x Ay, and coarse moduli space 1y : Do — Doo.

Proposition 5.3 ([14, Proposition 3.27]). The divisor P, is isomorphic as a toric Deligne-Mumford
stack to the global toric quotient stack
[CZ \ {0}]

C* x
where the group action is given in [14, Equation (3.28)].

Corollary 5.4 ([14, Corollary 3.29]). The Picard group Pic(P) is isomorphic to 7. & Zy. It is
generated by the line bundles L1 and Lo corresponding respectively to the characters

x1: (tw) €eC* xpup — t€C* and xz: (t,w) €C* X pp — weC*.
For j =0,1,...,k — 1 define the line bundles

£§®j for even k ,
2
2

L for odd & .

Proposition 5.5 ([14, Corollary 3.34]). The restrictions of the tautological line bundles R to Do
are given by
le%o ~ Og.(j) -

Remark 5.6. In [14] the line bundles O4__(j) are the line bundles O4__ (s, j) for s = 0. Indeed, one
can prove that the degree of Og__ (j) is zero. Moreover, O4__ (0, j) can be endowed with a unitary flat
connection associated with the j-th irreducible unitary representation p; of Zy, for j = 0,1,...,k—1
(cf. [23, Remark 6.5]). A

5.2 Rank one framed sheaves

Definition 5.7. Fix j € {0,1,...,k — 1}. A rank one (P, Og,_, (j))-framed sheaf on Z}, is a pair
(€, pg), where & is a torsion-free sheaf on 2}, of rank one which is locally free in a neighbourhood of
Do, and g : € ‘ Do = Og__(4) is an isomorphism. We call ¢¢ a framing of €. A morphism between
(Do, Og (7))-framed sheaves (£, ¢g) and (G, ¢g) of rank one is a morphism f: & — G such that

pgo f }@oo = ¢¢. @
Remark 5.8. By [14, Remark 4.3], the Picard group of %} is isomorphic to the second singular
cohomology group of 2}, with integral coefficients via the first Chern class map c;. Thus fixing the
determinant line bundle of a coherent sheaf £ on 2}, is equivalent to fixing its first Chern class. A

Given a vector i@ = (u1,...,up_1) € ZF~!, we denote by R¥ the line bundle ®f:_11 R and
by Ry the trivial line bundle O 4, .
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Lemma 5.9 ([14, Lemma 4.4]). Let (£, ¢¢) be a rank one (P, O (j))-framed sheaf on Z. Then
the determinant det(E) of £ is of the form RY, where the vector @i € ZF~" satisfies the condition

k—1
> iuj=j modk. (5.10)
=1

Remark 5.11. Set ¢ := C~'4ii. Then Equation (5.10) implies the relations

kvi=—-1j modk

for! = 1,...,k — 1. Note that a component v; is integral if and only if every component of ¥ is
integral. We subdivide the vectors i € Z*~! according to Equation (5.10) as

Llj = {l_[ € Zk-1

k—1
diu; =7 modk’}.
i=1

Define now a bijective map by identifying a vector & € ZF—1 with Zf;ll u;c1(R;) = Zf:_ll U; W; as

k—1
P ﬁEZk_l — Zuiwiem.
i=1
It is natural to split this map according to the coset decomposition (3.17) as
¢_1(Q + UJj) = Llj

which means that ¢(@) for @ € 4, is naturally written as a sum of the fundamental weight w; and an
element ~y;z of the root lattice 9, which is given by

k-1 k-1 k-1
Yo=Y ( ("~ (c™)? ) Vi = (Uz’ - (C_l)”) i€ Q.
i=1  I=1 i=1
We write
Y= w‘uj U — Q4w (5.12)

A

Following [14, Section 4], let M, n, j) be the fine moduli space parameterizing (Z~, Og.__(j))-
framed sheaves of rank one on 2, with determinant line bundle RY and second Chern class n € Z;
the vector @ belongs to ;. Let pg, : Z) x M(u,n,j) — 2} be the projection. As explained in
[14, Remark 4.7], by “fine” one means that there exists a universal framed sheaf (E, ¢g), where € is
a coherent sheaf on M(, n, j) x 2}, which is flat over M(4, n, j), and ¢g: € — p%y. (Og.(j)) is
a morphism such that its restriction to M (@, n, j) X P is an isomorphism; the fibre over [(€, ¢¢)] €
M(t,n,j) is itself the (P, Oy (j))-framed sheaf (£, pg) on Z}. In the following we shall call £
the universal sheaf.

Theorem 5.13 ([14, Theorem 4.13]). The moduli space M (i, n, j) is a smooth quasi-projective va-
riety of dimension 2n. The Zariski tangent space of M(ii,n, j) at a point [(£, ¢¢)] is Ext} (€, ®
02, (=Z))-
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As explained in [14, Section 4.3], the Hilbert scheme of n points Hilb™ (X}) of X} is isomorphic
to M(u, n, j) for any @ € ;. For this, let ¢ : X}, — 2}, be the inclusion morphism. If Z is a point
of Hilb™(X},) and i/ € ZF~!, then the coherent sheaf £ := 1,(Zz) ® R Y is a rank one torsion-
free sheaf on .2}, with a framing ¢¢ induced by the canonical isomorphism R® =Y |5 = 04 (5)
such that (£, ¢¢) is a rank one (%, Oy, (j))-framed sheaf with determinant line bundle R¥, where
@ := ej—CY, and second Chern class n. Thus Z induces a point [(€, ¢g)] in M (@, n, 7). This defines
an inclusion morphism

"Zﬁmqj : Hllbn(Xk) — M(U, Tl,j)

which is an isomorphism of fine moduli spaces by [14, Proposition 4.16].

Remark 5.14. In [33] it is shown that the Hilbert scheme of points Hilb" (X}) is isomorphic to a
Nakajima quiver variety of type Aj_1 with suitable dimension vectors. Thus M|, n, j) is a quiver
variety. A

5.3 Equivariant cohomology

We define a T-action on M (@, n, 7) in the following way (cf. [14, Section 4.6]). For (t1,t2) € T let
Fl4, +,) be the automorphism of 2}, induced by the torus action; then the T-action is given by

(t17t2) > [(87(Z)g)] = [((F(;ll,tg))*(g)7 (z):?)] )

where ¢ is the composition of isomorphisms

. (F ', ) (¢e)
G2 (Fh) e, —22 0

here the last arrow is given by the 7T-equivariant structure induced on Og__(j) by restriction of the
torus action of 2}, to Zo.. Note that the T-action on X}, naturally lifts to Hilb™(X}) and the isomor-
phism 7z ,, ; is equivariant with respect to these torus actions.

Proposition 5.15 ([14, Proposition 4.22]). For a T-fixed point [(€,¢¢)] € M(ii,n, )T the underly-
ing sheaf is of the form & = 1,(Zz) @ RY, where Ty is the ideal sheaf of a T-fixed zero-dimensional
subscheme Z of Xy.

Remark 5.16. Let [(€,$g)] be a T-fixed point of M(ii,n,j), with & = 1,(Zz) ® R% The T-
fixed subscheme Z of X, of length n is a disjoint union of 7T'-fixed subschemes Z; fori = 1,... k
supported at the T-fixed points p; with Zle length,, (Z;) = n. Put n; = length, (Z;). Since
p; is the T-fixed point of the smooth affine toric surface U; ~ C?, as explained in Section 4.1 the
T-fixed subscheme Z; € Hilb™ (U;) corresponds to a Young tableau Y of weight Y| = n; for
t =1,..., k. Thus the T-fixed point Z corresponds to a k-tuple of Young tableaux Y = (Yl,...,Yh)
with |V := Zle |Y?| = n. Hence we can parametrize the point [(£, ¢¢)] by the pair (Y, @) which
we call the combinatorial datum of [(E, ¢¢)]. A

(F(?ll,m))*O%o (J) — Oa,.(j);

Consider the T-equivariant cohomology of the moduli spaces M|, n, j) and set
Wﬁ7n)j = Hikj (M (67 n’ ‘7)) lOC :
We endow W ,, ; with the nondegenerate C(e1, £2)-valued bilinear form
n ! ! -1
<A7 B>Wﬁyn,j = (_1) pﬁ',n,j (Zﬂ,’,nyj) (A U B) 9
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where pg , ; is the projection from M, n, j) to a point and v 5, j: M (, n,j)T — M(i,n,j) is
the inclusion of the fixed-point locus. Thus for @ € 4; we define

Waj = Wany (5.17)
n>0
and the total equivariant cohomology
W= B D Vo,
ﬁ:Gﬂj n>0

which is an infinite-dimensional vector space over the field C(e1, £2) endowed with the nondegenerate
C(e1, e2)-valued bilinear form (—, —)w; induced by the symmetric bilinear forms (—, —)w, , .-

Let us denote by [?, @] the equivariant cohomology class, defined similarly to (4.2), associated
with the T'-fixed point [(£, ¢¢)] with combinatorial datum (Y, @ ). By the localization theorem, the
classes [Y, @] with 4 € {; form a C(e1, £2)-basis of W;.

6 Representations of a[k

6.1 Overview

The results collected so far imply the following result.
Proposition 6.1. There is an isomorphism

U W; @ @ Hi(Hilb™ (X)) .
'H:Gﬂj n>0

~ (P Hr(HIb" (X0)),, ) @ Cler, 22)[84]

n>0

-, ( D H;(Hﬂb"(xk))loc) ® Cler,e)[Q +wj], (62)
n>0

where the first arrow is induced by the morphisms ©; . j while the last arrow is induced by the map 1);
introduced in (5.12). There is also an isomorphism

k—1 k—1
V=P v, W= P @ Hi(HiIb(XR)),,, @ Cle1,62)[Q +w]
j=0 j=0 n>0

where W := @?;3 W;.

In this section we first study the equivariant cohomology of Hilb" (X} ) and construct over it an
action of the sum (identifying central elements) b (e, c,) @ O, c,),0- Then we use the Frenkel-Kac

construction (Theorem 3.27) to obtain an action of gl = (., -,) Dslyon W; forj =0,1,..., k—1.
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6.2 Equivariant cohomology of Hilb" (X})

In this subsection we derive some results concerning the equivariant cohomology of the Hilbert
schemes Hilb™ (X}) by generalizing similar results of [55, Section 2] (see also [39, Section 2]).

As discussed in Remark 5.16, a T-fixed point Z € Hilb™ (X},) corresponds to a k-tuple (Z1, ..., Zj)
where Z; is a T-fixed point of Hilb™(U;) for i = 1,...,k with Zle n; = n, or equivalently to a
k-tuple Y = (Y1,...,Y*) of Young tableaux with |Y]| := Zle |Y?| = n. The following result is
straightforward to prove.

Lemma 6.3. Let Z be a T-fixed point of Hilb" (X},). Then there is a T-equivariant isomorphism
T7Hilb"( @ Tz, Hilb™ (U

where Z = |_|f:1 Z; and n; is the length of Z; at p; fori =1, ... k.

By Lemma 6.3 we get
k
chy (TZHib™ (X)) = > chy (T Hilb™ (U;)) .
=1

By using the description (5.1) of the coordinate ring C[U;] of U;, one computes the equivariant Chern
characters

chip (T, Hilb™ (U7)) = (eE@TD’=AE e | o —L AW L) |
se€Y

From now on we identify a torus-fixed point Z of Hilb" (X} ) with its k-tuple Y of Young tableaux.
LetY = (Y!,...,Y") be a torus-fixed point. Define

cup(Y) :=

[T ((£s)+ 1)l = As) )

sEY?

H ( — (A(s) +1) Egi)) )

':h z:h

I
—

Then the equivariant Euler class of the tangent bundle at the fixed point Y is given by

eur (TpHilb™ (X;)) = (—=1)" eur(Y) eu_(Y).

~—

6.2.1 Equivariant basis I: Torus-fixed points

LetY be a k-tuple of Young tableaux corresponding to a fixed point in Hilb" (X},) and [}7] the equiv-
ariant cohomology class defined similarly to (4.2). By the projection formula we get

[V]U[Y'] = 6p 3, eup (TEHID™ (X)) [Y] = (=1)" 0p 3, euy (V) eu (Y)[Y] .
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Denote
mi= @ oy HID(Xp)T — Hilb™(X}) .
Y eHilb"(X;,)T

In analogy to Equation (4.3), define the bilinear form

(=, —)m, : Hy x H,, — C(e1,¢2), (6.4)
(4,B) — (=1)"ph (1) (AU B)

n

where H,, := H7}.(Hilb™ (X}))1oc-
As in Section 4.1, for any class [Y] € HA"(Hilb"™(X})) we define a distinguished class
Y
[ag] = [ ]4 € H7"(Hilb™(Xy))
eut (Y

loc *

Then by the same computation as in Equation (4.5) we get

(loy], [og )y, =0y 3

where analogously to (4.6) we defined

€
G; = ——L
1 E;Z)
Note that whenn = 1, Y is just a fixed point p; € XZ with¢ =1,..., k. Thus we have

eup(p)=c) =(k—i+1)er—(i—1)e; and  eu_(p) =—c) = (k—i)ey —ies,

and therefore

B = euy (pi)
" eu_(p)
If fori =1,...,k we define [o;] := [o,], then we get

(laal, [ag])y, = 87" 0ij € Cler,ea)

By the localization theorem and Equation (6.5), the classes [ay:] with Y| = n form a C(ey, e3)-
linear basis of Hl,,. Hence the bilinear form (6.4) is nondegenerate; it extends to give a nondegenerate
symmetric bilinear form (—, —)p on the total equivariant cohomology H := @nzo H,, of the Hilbert

schemes of points on Xj.

Remark 6.6. Leti € {1,...,k}. By the localization theorem, the C(e1,e2)-linear subspace of H
generated by all classes [Y] associated to fixed points Y = (Y'!,...  Y*) such that Y7 = () for every
j €{1,...,k} with j # i is isomorphic to

P i (1" (V) g0 0, Cler e5) - 6.7)

m>0

A
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) Note that C [Egi), ag)] = Cley, e2] and C(E&i), Egi)) = C(e1,e2). Analogously to what we did for
C#, we can thus define

Hy,m := Hp (Hb™(U)),,,  and  Hy, = D Hym

m>0

loc

By the localization theorem, there exists a C(ey, £2)-linear isomorphism

k
Q:H = ) Hy, . (6.8)
i=1
In particular, for a fixed point ¥ = (Y'1,...,Y*) we have

Q: [a?] — [ay1] @ -+ ® [ayr]

The isomorphism € interwines the bilinear forms (—, —)y and Hle (—,—)i, where (—, —); is the
symmetric bilinear form on Hy, defined analogously to (4.3). In a similar way, there is a C(ey,e2)-
linear isomorphism

k
O Hy = @ Hy,, - 6.9)
i=1
In this case Q: [oy] — (0,...,[e],...,0), where the class [;] on the left-hand side belongs to

H; = H}(Xk)ioc while on the right-hand side it belongs to Hy, ; as defined in Section 4.1. The
isomorphism {2, also intertwines the symmetric bilinear forms.
6.2.2 Equivariant basis II: Torus-invariant divisors

Let [D;]7 be the class in H; = H7(X})ioc given by the T-invariant divisor D; fori = 0,1,... k.
Fori=1,...,k — 1, we have

o — [pi] [pit1] _ il | o] '
Dilr = @, Dy eur(Ty D) EORNCT R Biloa] + [oia] - (6.10)

Thus for¢,7 = 1,...,k — 1 we obtain the pairings

2, 1=y,
([Dilr, [Dj)r)y, =3 —1, li—jl=1, (6.11)
0, otherwise .

By applying the localization theorem to [Dg|p and [Dy]r we further obtain

Dol =2 =B o) ana Dy = 2 - B

By using these expressions, one can straightforwardly obtain the pairings

ﬁl_lv ZZO? Bka Z:ka
{[Do]r, [DZ-]T>H1 ={ -1, i=1, and {[Dilr, [D,»]T>H1 ={ -1, i=k-1,
0, otherwise 0, otherwise .
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Now we can relate the classes [o;] for ¢ = 1,.. ., k to the classes [D;]r for j = 0,1, ..., k. By using
Equation (6.10), for 7 = 2, ..., k one obtains

[ai] = Z_: < l:[ 5s> [Dj]r + [Dialr - (6.12)
J=0  s=j+1

Since euy (p;) = eu_(p;_1) forl =2,... k, we get
i—1
: _ eug(pj+1)
H ﬂS - el ( . ) M
s=j+1 —\Pi-1

By using the definition of [ay] and Equation (6.12) for i = k we obtain

k—1

B Dir = oy = 3 St @)y

If we formally put eu (pgy1) := eu_(pg), we can reformulate this equation as

k
Y euy(pj1) [Dj]lr =0, (6.13)

and in particular for all i = 0,1, ...,k we have

Remark 6.14. If the action is antidiagonal, i.e.,t = t; = ¢, 1 Equation (6.13) implies that Z?:o [Djlr =
0. A

As the classes [a1],. .., [ax] form a C(e1,e2)-linear basis of H;, by Equations (6.12) and (6.13)
the classes

{[Dolr,[Dlr,...,[Dr—a]lr}  and  {[Dily,[Da]r,...,[Dilr} (6.15)
are also C(e1, e2)-linear bases for H;. Under the isomorphism €2, of Equation (6.9), we have
Q- [Dz]T — —0; (0, ,0, [ai],O,... ,0) + (0, ,0, [042‘+1],07--- ,0)

fori=1,...,k — 1, together with a similar description for [Dy]r and [Dy]r.

6.3 Heisenberg algebras

Let m be a positive integer and Y a torus-invariant closed curve in Xy. Define the correspondences
Yom :={(Z,2") € Hilb"™™(X}) x Hilb™(X},) | Z' € Z, supp(Zz/Tz) = {y} C Y} .

Let ¢; and g2 be the projections of Hilb"™™(X}) x Hilb™(X}) to the two factors respectively.
We define the linear operator p_,,,([Y]r): H — H which acts on A € H,, as p_,,([Y]r)(4) =
i (¢3(A) U [Yomr) € Hppr. This definition is well-posed because the restriction of g1 to Y, is
proper. Since the bilinear form (—, —) is nondegenerate on H, we can define p,,([Y]r) to be the
adjoint operator of p_,,([Y]r). By using one of the two bases in (6.15), we extend by linearity in «
to obtain the linear operator p,, () for every v € Hy = H7.(Xk)1oc-

40



Theorem 6.16 (see [55, 391). The linear operators p,,(cv), where m € Z\ {0} and o € H}(Xy)10c,
satisfy the Heisenberg commutation relations

[P (@), #0(8)] = MOy (B, id  and  [pm(@)yid] =0.

The vector space H is the Fock space of the Heisenberg algebra bm, modelled on H; = H7 (X} )10c
with highest weight vector the unit element |0) in HO(Hilb%(X}))10c-

6.3.1 Heisenberg algebra of rank &

Leti € {1,...,k}. Consider the Heisenberg algebra h; over C(1,e2) generated by the operators

%

Pl = pom(l])  and oy, = pp([ed])
for m € Z~¢. By Theorem 6.16, the commutation relations are
[P:}UPZL] = M O, —n 0ij ([ai] ) [%’DH id =m0, 0y 52-_1 id .

Since {[au],. .., [ax]} is a C(e1,e2)-linear basis of H;, the Heisenberg algebra by, is generated by
pi fori=1,...,kand m € Z \ {0}.

Let Hy;, be the C(e1, €2)-linear subspace of H introduced in Section 6.2.1. Then by Theorem 4.8
Hy, is the Fock space for the Heisenberg algebra h; for any i € {1,...,k}; therefore the C(e1, £2)-
vector space Hy, is generated by the elements p|0) where pi := [[;5; (p ;)™ for a partition A =
(1™12m2 ... One can show that -

(P10, PLI0)) g, = O 2n B

On the algebra Ac(c, .,) of symmetric functions over the field C(e1,e2) we introduce the Jack
inner product (2.1) with parameter ;. We shall denote with A, the algebra Ac(., ,) endowed with
the symmetric bilinear form (—, —)g,. Thus by the isomorphism (6.7) and Theorem 4.11 there exists
an isomorphism of C(e1, £2)-vector spaces

®i: Hy, — Ag,,  p3l0) — pa,
which intertwines the symmetric bilinear forms (—, —); and (—, —)3,. For m > 0 the operator p*
acts as multiplication by p,,, on Ag, while its adjoint p;,, with respect to the symmetric bilinear form
(=, —);actsasm B3; ! apim.

By Theorem 4.11 we can also determine how ®; acts on the C(e1, £2)-linear basis {[a]} of Hy,,
where Y = (Y,...,Y*) is a fixed point such that Y7 = () for every j € {1,..., k} with j # i.

Proposition 6.17. Let Y = (Y,... Y*) be a fixed point such that Y7 = 0 for every j € {1,...,k}
with j # 1. Then

i([op]) = Jn (@1 67)
where Yy, := Y?.

Define Az = ®f:1 A, endowed with the symmetric bilinear form (p, ¢) 5= Hle (pi, qi) g, for
p=p1® - Qprandg=q1 ® -+ q in Ag. For a k-tuple of Young tableaux Y, define in U (b, )

the operators py; = Hle pgz We have thus proven the following result.
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Theorem 6.18. There exists a C(e1,2)-linear isomorphism

k
@:z@@i:H%Ag

i=1

preserving bilinear forms such that
©(ppl0) =py, @ @py, and @ ([ag]) = I (@00 @ @ Iy (0351

Via the isomorphism ®, the operators pt, act on A 5 as multiplication by p_,, on the i-th factor for

m < 0 and as the derivation m [3; ! apim on the i-th factor for m > 0.

6.3.2 Lattice Heisenberg algebra of type A;_{

Let us now define ‘ ‘
9 = p-m([Dilr)  and  qp, == pu([Dil7)

form € Zsgandi = 1,...,k — 1. By Equation (6.11) the operators g, satisfy the commutation
relations

[qin,q,j@] =M Opm,—n Cj; id for i,j=1,....k—1, mneZ\{0},

where C' = (Cj;) is the Cartan matrix of the Dynkin diagram of type Aj_;. Let £ C H7}(X})10c be
the Z-lattice generated by the classes [D1]r, ..., [Dg—1]r with the symmetric bilinear form given by
the Cartan matrix C'. Then the lattice Heisenberg algebra hc (., .,) ¢ associated with £ over C(e1, €2),
which has generators ¢, form € Z\ {0} and i = 1,...,k — 1, is isomorphic to the Heisenberg
algebra he(c, c,) q of type A1 over C(e1,2) (cf. Example 3.8).

Let .
E:=)a;[Dilr (6.19)
i=0
where a; € C(e1,e2) withi =0, 1, ..., k satisfy the relations
2aj—aj_1—aj+1:0, jzl,...,k—l and (IoEQ-l-(lkEl;éO. (620)
The first condition ensures that ([D;]r, E)i, = 0 fori = 1,...,k — 1 while the second condition

implies that {|D1]|p, ..., [Dr_1|7, E'} is a C(e1, eo)-linear basis of H (X1 )10c. By (6.20) one has
p ) ) ) ) T y
k= (E,E)yy, = agﬂl_l —apa] — Qg Ag_1 +aiﬁk .

From now on we set a; = ¢ in Equation (6.19) for ¢« = 0,1, ..., k, which is consistent with the con-
ditions in Equation (6.20). This implies that x = k 3. In the following we normalize the equivariant
cohomology class E such that (F, E)y, = 1; we denote the normalized class with the same symbol.

Define p_,,, := p_,n(E) and p,,, := p(E) for m € Z~q. Then the operators g, and p,, satisfy
the commutation relations

[din, qh] = M bm,—n Cijid for i,j=1,....k—1, m,neZ\ {0},
(g%, ] =0 for i=1,....,k—1,mneZ\{0},
[P pn] =M _pid  for m,ne€Z\{0}.
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Let £ C H}.(Xy)10c be the Z-lattice generated by the classes [D]r, ..., [Dg_1]7 and E. Then the
operators q’, and p, for m,n € Z\ {0} and 1 < i < k — 1 define the lattice Heisenberg alge-
bra b, ), associated with £ over C(e1,e2). In particular, he., o, ¢ is the sum (identifying
central elements) of, respectively, the Heisenberg algebra (., .,)q of type A1 over C(e1,e2)
and the Heisenberg algebra hc(c, .,) over C(e1,e2) generated by pp, for m € Z \ {0}. Since
{[Di]r, .-, [Dr—1]r} U{E} is a C(e1, e2)-linear basis of HF(Xy)ioc, We have (e, p),00 = by -
Hence H is the Fock space of (., c,),¢/. In what follows we omit the symbol C(e1,2) from the
notation for the Heisenberg algebras generated over the field C(g1, 2).

Remark 6.21. By Equation (6.10), for/ = 1,...,k — 1 one has

ah, = —Bpl, +plit, (6.22)
k

k
1 1 1
b= ~kerer ) = > P (6.23)
i=1 €2

([XK], [Xk])y, =1 €2

6.4 Dominant representation of gA[k on W;

In the following we omit the dependence of the Lie algebras on the field C(g1,e2) to simplify the
presentation.
Proposition 6.24. Let j € {0,1,...,k — 1}. There is an action of g?[k on W; under which W; is

the j-th dominant representation of é\[k at level one, i.e., the highest weight representation of 5 [;, with
fundamental weight &; of type Aj_1.

Proof. The vector space H is an irreducible highest weight representation of the sum (identifying
central elements) f) & hg of the Heisenberg algebra h and the lattice Heisenberg algebra ho of type
Ay generated over the field C(e1, e2), respectively, by the operators p,, and g, for m € Z \ {0}
and¢ = 1,...,k — 1. We apply the Frenkel-Kac construction (Theorem 3.27) to the representation
ha — End(H) to obtain a level one representation

sl — End (H® C(e1,62)[Q +wy]) .

We can extend the representation of b from H to H® C(e1, £2)[Q + w;] by letting it act as the identity
on the group algebra of Q + w;. Thus we get a level one representation of gl;, with

gl — End (H®C(e1,22)[Q +w)]) -
Thanks to the isomorphism ¥ introduced in (6.2), this gives a level one representation of QT [, with
gl — End(W;).

Since H is the Fock space of h @ hg, the module H ® C(ey,€2)[Q + wj] is isomorphic to the j-th
dominant representation Fc(., .,y ® V(W; ) of QT[k (cf. Theorem 3.27). Hence to complete the proof
it is enough to note that the class [, e;] corresponding to the fixed point (R, ¢%,) in M(e;,0, j) is
sent via ¥; to |0) ® [w;], which is the highest weight vector of H ® C(e1,€2)[Q + wj]. O
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Remark 6.25. Proposition 6.24 is analogous to a previous result derived for Nakajima quiver varieties
(see e.g. [45, Section 10] and [57, Section 5.1]). A

Let us introduce the Virasoro operators of g[k by (cf. Sections 3.1.1 and 3.3.1)

R 0 k=1 oo
Lo=L{+L3" =Y pombm+ > > q%, al+ Z :
m=1 i=1 m=1
k—
L, :=L) + L5[k_ Zp m Pman + = Z qumq%_i_n for n#0,
mEZ i=1 meZ

where {7 f;ll is an orthonormal basis of the vector space £ ®z R and we set py := 0. Note that
{n:}¥=! U {E} is an orthonormal basis of the vector space C(e1,2)* o HZ(X)ioc, 50 after an
orthonormal change of basis and a suitable normalization one can rewrite the operators L, in the form

k [e's) k—1
Lo=Y" 6 3 bbb+ 3 2 ()7
=1 m=1 i=1

k
L= ;z ) pmpm+n+zqoqn for n 0.
=1

meZ
m#0,—n

Proposition 6.26. Let j € {0,1,...,k — 1}, @ € Y; and n € N. Then
n 1= 1) s
Lo|y, = (n+37-CF)idw,,; .

where ¥ = C .

Proof. By Equation (4.21), wehave > oc_, pt pl b[¥Y] = g7 Y [Y]for [Y] = [(0,...,Y, ... 0)]
inHy, and ! € {1,..., k}. Then by using the isomorphism Q 1ntr0duced in (6.8) and the isomorphism
V¥ introduced in (6.2) we get

(éﬂz g pl_mplm)‘w =nidw,, ; -

u,n,j

On the other hand, since {m} 1 is an orthonormal basis of Q ®z R we get

k-1 ) E—1 E—1 )
(S = (8 o B o e oy
where 7 := O~ 4. -
Since
Lov [0, @] = 37 C0[0, ] and L,>[0,4]=0 for n>0

we have the following result.
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Corollary 6.27. W ; is a highest weight representation of the Virasoro algebra ‘Uit associated with

gly, which is generated by the operators L,, and ¢ with highest weight vector [(),4] and conformal
dimension

1 - —
Ag=350-CV.
Moreover, the energy eigenspace decomposition of the representation Wy ; is given by (5.17).

Proposition 6.28. Let j € {0,1,...,k — 1}. The weight decomposition of W; as a g/;\[k-module is

given by
W= Wa; .

ﬁeuj

Proof. For j = 0,1,...,k — 1 and for any element A ® [z + w;] € H® C(e1,£2)[Q + w;] with
@ € ;, we have

k—1

ho> (A® b +wil) = (1= Y w) (A® [ +wy))

=1

~

hiv> (A® [z +wj]) = ui (A® [y

1
+
(S

<

=
S
=
-~

Il
—_
oyl

|
—

Under the g[k—action, Wy ; decomposes as
Wi = Fe(er.en) @ V(©i)rg »

where V(@W;) == {w € V() | hipw = (&;+)(h;) w} for any weight X. The assertion now follows
by showing that for a weight A, the vector space V(W;), is nonzero if and only if A = ~; for some
i € 4. For this, let £ ¥ := Hfz_ll & for & € C* with |§;| < 1 and any vector ¢ = (vy,...,Vk_1),

and set h = (h1,...,hk—1). Then it is enough to note that the trace of the operator qlo §C’lh is
given by
Lo #C~'h lgov go
Tr, g €0 = 37 3 qrdnen g
ﬁeu]- n=0

and the right-hand side is exactly the character of the j-th dominant representation of gA[k by [14,
Section 5.3]. |

6.4.1 Whittaker vectors

Consider now the completed total equivariant cohomology
o= I1 IT W
ﬁEﬂj n>0

We can extend the isomorphism (6.2) to

B Wy = He ([ Clere) tuatw)),
Yz €Q
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where H := [1,>0 H7(Hilb™(Xj))1oc is the completed total equivariant cohomology of the Hilbert

schemes of points on X}. In the following we drop the explicit symbols T j from the notation in order
to simplify the presentation, and we denote

W)= 3 10,4,

ﬁeuj

Proposition 6.29. Fix i € C(eq, 52)’“. In the completed total equivariant cohomology Wj the vector
k .
G;(7f) := exp ( > mipy ) jw;)
i=1

is a Whittaker vector of type X, where x: U(h™ & hg) — C(eq,e2) is defined by

Xﬁ(qll):nZ-Flﬁz_-q-ll_nl and Xﬁ(qzn)zo fOl" m>17i:17"'7k5—17

1 i
Xii(p1) = Z - and Xi(Pm) =0 for m>1.
(X, (X)), = &V

Proof. Let ﬁ-\HUi = [1,>0 H7(Hilb"(U;))10c be the completed total equivariant cohomology of the
Hilbert scheme Hilb"(U;) for i = 1,..., k, and define G(n;) := exp (n; p"1 ) |0) € ﬁyi. By using
Theorem 6.18 and the completed versions of the isomorphisms (6.8) and (6.2), we can rewrite the
vector G;(17) as

Gi(7) =G(m) @ @ Gn) @ Z (va + wj) -
aey;

By Proposition 4.13, G(n;) for i = 1,...,k is a Whittaker vector for the Heisenberg algebra b; of
type x;, where ' '
xi(p) =m Bt and  xi(pt,):=0 for m>1.

Again by Theorem 6.18, each b; acts trivially on Hy, for [ # 4 and it is easy to see that G;(77) is
a Whittaker vector for the Heisenberg algebra by, of type xj, where x7: U (bﬁl) — C(e1,e9) is
defined by x7(p,) := xi(p;,) fori =1,... ,kand m € Z\ {0}. Then by Remark 6.21, G;(77) is a
Whittaker vector for g[k of type x7 with x7: U(h+ & b)) — C(e1,2) defined for every m > 0 by

Yi(ah) = (i) — B Xi(phn) = Sma (i1 52-111 — i)

k k
1 ~ i 7
Xiq(Pm) ==/ —ke1e2 Z @ Xi(Pr) = 0ma v —keie Z % :

i=1 €2 i=1 €1
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7 Chiral vertex operators for gl,

7.1 Ext-bundles and bifundamental hypermultiplets

In this section we construct and study the natural generalizations of the Ext vertex operators from
Section 4.3 for the moduli spaces M (i, n, j).

Forn e N,j € {0,1,...,k—1} and @ € Y;, let £ ,, ; denote the universal sheaf on M (@, n, j) x
2. Define

Ei =53(Ea,nij;) € K(M(tr,na;51) x M(tz, ng; j2) x Zi) for i=1,2,

where p;; is the projection of M (i1, n1; 1) x M(tz, n2; j2) X £ onto the product of the i-th and
j-th factors. Denote by p3 the projection of the same product onto 2.

Let T}, = C* and H}, (pt; C) = Clu|. Denote by O 2, (1) the trivial line bundle on 2}, on which
T}, acts by scaling the fibers.

Definition 7.1 ([14, Definition 4.17]). The Carlsson-Okounkov bundle is the element
EZhnhjuﬁz,nz,jz P p12*( — g\l/ -&, .pg‘((f)%k (1) ® (f)%k(__@m)))
in the K-theory K(M(Ul,nl;jl) X M(Ug,ng;jQ)). Q

By [14, Section 4.5], the fibre of Et"1712:12:32 over ([(€, ¢¢)], [(E', der)]) in M (i1, 13 j1) ¥
M(tiz, n2; j2) is given by

7 b 7' ;" b 7' — 1 /
Ezl n1,j1;d2,n2 32‘([(8@5)] E b)) = Ext (5, E®0g, (1) ® O%k(—@oo)) .
One can compute the dimension of this vector space by a straightforward generalization of the dimen-

sion computations of [14, Appendix A] to get the rank
rk (B2 ) = g ng 4+ Ly - Cliar — o Jon (k= i)

where ¥y := C (i — 1) and jo; € {0,1,...,k — 1} is the equivalence class modulo k of jo — j1.

Let W := @;:é W, endowed with the nondegenerate C(e, €2)-valued bilinear form (—, —)w
induced by the symmetric bilinear forms (—, — )y, . Define the operator V,(Z, z) € End(W )[[z* !, ot

..., 1]] by its matrix elements

9

(1) (Vu(, 2)Ar, Ag)yy 1= 22 T80~ An g0

x / eur (Eﬁ17n17j1§ﬁ27n27j2) UPT(Al) Up;(AQ) . (72
M(t1,n1351) X M(td2,n2;52)

where A; € Hp.(M(u;,n4; ji))oc and p; is the projection from M (@, n1;j1) x M(iz, no; j2) to

the i-th factor for i« = 1,2. The extra isospin parameters & := (z1,...,x_1) weigh the sl;-action,
and we abbreviated £V = Hf;ll x] for a vector ¥ = (v1,...,vk_1). By the computations of [14,

Section 4.7], the matrix elements (7.2) in the fixed point basis are given by
(Vu(@, 2)[Y1, 1], [Yo, T2 ])y
_( 1)222 1 2 1$21€UT(EN111222|

([(817¢51 )] ) [(€2y¢52 )]))
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(4)

= (_1)|Y2| SYal=1[+Ag,— H Myi v 51 755)7,“ (Ta1)i €}

“1 if'UZl

(Uzl)z 1 622))

k—1
< T 48,5 ), a.3)

where [(£1, ¢g, )] and [(E2, Pg, )] are the T-fixed points corresponding respectively to the combinato-
rial data (Y7, @) and (Y2, 12), and we use the convention (U21)g = (¥21 ) = 0. Here my, y, is defined

in (4.17), while 67(3") is the edge contribution defined in Appendix B. This factorized expression for
the matrix elements represents the contribution of the U (1) x U (1) bifundamental hypermultiplet for
N = 2 quiver gauge theories on the ALE space Xj,.

7.2 Vertex operators and primary fields

In this subsection we factorize the operators V ,(, z) defined in (7.2) under the decomposition g/;\[k =
ho ;[k as tensor products of generalized bosonic exponentials associated to the Heisenberg algebra h
from Definition 3.3 with primary fields of the Virasoro algebra associated to the affine Lie algebra s:\[k
from Section 3.3.1.

Forl=1,2fix j; € {0,1,...,k — 1} and respectively u; € ;,. Set

k—1

Vo1 1= Z (T21); vi = Vj, (Uz) — ¥y, (d1) € Q@72 Q.

i=1

Note that yo1 = vz, — Vi, + wj, — wj, . We define the maps

exp (721) : H® Cle1,€2)[Q +wj,] — H® C(er,€2)[Q +wp)
v®[ﬁ+wj1] — v®[ﬁ+7ﬁ2_7ﬁ1+wj2]7

and exp (logz ¢+ 721) : Heo Cler,e2)[Q + wj,] — H® C(eq,€2)[Q + wjs,], given by

1
exp (log z c+721 ) > (V@ [B4wj,]) := 22 O asgetO20A+wi) 080 (0@ [B+yg, —va, +wj,|) -

Note that the operator exp (log z ¢ — 721) exp (v21) € End(H ® C(e1,22)[Q + wj,|)[[z, 27 1] is
given by

exp (logz ¢ — 721 ) exp (721 ) > (v ® [B + wjy])

= 772 heasse—tenftein)aee (y @ (B4 w;,]) . (74)

In the following we shall suppress the explicit isomorphism ¥ from Theorem 6.1 in our formulas in
order to simplify the presentation.

We will now rewrite the operator V,,(Z, z) in terms of chiral vertex operators in Hom(Wg,.;,, Wy, .. )
[, 2 1,. ,zi 1 ]] between two highest weight representations of the Virasoro algebra associ-
ated w1th sly.. For this, let us define the vertex operator V (71, &, z) of Hom (W, , W, )[[z=1, 27,

xk 1]] by
k
V,(Ta1, %, 2) = T ﬁ(l) (65),55),/1) Vfil(z) exp (log 2 ¢+ Y21 ) , (7.5)

v21
1

~
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where V]*',(z) is the normal-ordered bosonic exponential associated with the Heisenberg algebra

ha-

Theorem 7.6. Under the decomposition gly, = b @ sly, the operator V (&, z) is given in terms of
products of vertex operators as

V(@ 2) =V u preytey (2)

_\/—ksl e’ \/—keyeg

k—1
® > Y VulOn,7,2) 222720 exp (logzc — 721 ) exp (v21) |y,
J1,J2=0 ety dael, .

where \_/'M(1721, ¥, 2) is a primary field of the Virasoro algebra generated by L5 and ¢ with conformal
dimension Ag,_z, = % g1 - CVsq, Le., for any n € Z we have

[Li[k , Vu(l_fgl, T, Z)] =" (Z 0, + % Va1 - C'Uq n)vu(l_fgl, z, Z) . (7.7)

Proof. By using the isomorphism ¥ and Equation (4.16) we get

k—1
Vu(f,z):\ll_lo( 3 I Tl | I ERRECIN

J1,72=0 Gujl o Eu]'2 n=1

X H V (Ou, (1 — (T21)s 6@ — (U21)i—1 65”) L 2) @ (Y, (d2) @y, (T1)") ) oW
i=1

where Oy, (1) is the trivial line bundle on U; ~ C? with an action of T,, which rescales the fibers,
and 1), (1)* denotes the dual vector to %;, (%) in the dual vector space C(e1,£2)[Q + wj,]*. By
Theorem 4.18 we get an expression determined by the operators p¢, form € Z\ {0} andi=1,...,k
as

V (Op, (1 — (Bn)iel) = (Ta1)i-1€4) | 2)

— (2) — (1) o0 m
4 p—(Uar)igy” — (Va1)i—1 €5 2™
= exp ( ggi) mE_l - p—m)

ptertes — (Tn)ie) 0) & z=m

o eXp( 2 — (21)i—1 &9 Z %P:n)

€9 m=1

(%)

By using Equations (6.22) and (6.23), we can rewrite : [[F_, V (Ov, (= ()i sli @

—(1721)2'_1 62 ) s Z) :

in terms of Heisenberg operators g, and p,,, for/ = 1,...,k — 1 and m € Z\ {0}, and the first as-
sertion now follows. The proof of Equation (7.7) is somewhat lengthy and can be found in Appendix
A. O

Remark 7.8. In the following we will denote by V{} J2(#, z) the restriction of the vertex operator
V,.(Z, z) to Hom(W;,, W, ) [[z%1, af L. ,a:f_ll]] A
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7.3 Integrals of motion

Let V%™ be the pushforward of Eg’"’j s with respect to the projection of the product M (i, n, j) %
M(i,n, j) to the second factor. It is a T-equivariant vector bundle on M(i, n, j) of rank n + & (¥
C¥ — 7 j (k — 7)), which we shall call the natural bundle over M (i, n, j). The T-equivariant Chern

character of V%™ at a fixed point [(£, ¢¢)] with combinatorial datum (Y, ) is given by (cf. [14,
Section 4.7])

chy (V™| o) Z ST e it D el —(im1+47,(s) e +Z L (7,5

i=1 seY?

where the edge contributions L%”) (eﬁ”) ; eg")) are defined in Appendix B.

Let us denote by V7 the natural bundle over Hﬁ'eu [0 M(i,n, j), and consider the operators

of multiplication by Iy := rk (V?) and I, := (cp—1)7(V?) for p > 2 on [[; T, [1.50 Wan,;. For
example, one has

k
Le[Yil=-) > ((vi + Lii(s)) e + (vie1 + AYi(s)) %z)) Y, ]
i=1 seY?
k—1 .
+ >4 (5511)755”))[1] Y, al,
n=1

where the quantities Zé”) (egn) , 5%"))[1] are defined in Appendix B. Note that, by Proposition 6.26, the

operator I coincides (up to a constant shift) with the Virasoro operator L for a[k. By using the
description in Section 4.4, these operators can be written partly in terms of the Heisenberg operators
p,, of by, and the sl;, generators gy = h;; one has

Il—z@zp’mpm+ Z Qkﬂkz—j)id,

1222651)(31 Z (p mP npm+n+p m npnpm)
=1 m,n=1
-1« i
_52 Z(m_l)pfmpm>
m=1
n Z 652) ((C—l)z] B — (C—l)l* J) Z P, Pl q% + Ly,
i=1 j=1 m=1
where L is the operator defined by Ly > [Y, @] := Zk_l Zg )( (n ),eg"))m [V, @] and we set

(Cfl)Oj =0= (Cfl)kj'
Following [7], here we shall identify a quantum integrable system for each Heisenberg subalgebra

b of gl;.. Then each integral of motion associated to the Heisenberg algebra by, is a sum of integrals of
motion of k£ non-interacting Calogero-Sutherland models from Section 4.4 with prescribed couplings;
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in particular the Hamiltonian is given by k& copies of one-component bosonized Calogero-Sutherland
Hamiltonians as Zf:l egi) 0% . This infinite system of commuting operators is diagonalized in
the fixed-point basis [}7, @]. This simultaneous eigenbasis also factorizes the primary operators from
Theorem 7.6. The remaining v-dependent parts of the eigenvalues are instead interpreted as particular
matrix elements of our geometrically defined vertex operators V ,(Z, z) in highest weight vectors of
gA [, as we discuss in Appendix B.

Remark 7.9. By Remark 5.14, the moduli spaces M(i,n,j) are Nakajima quiver varieties of type

Ag_1. The descriptions of the integrable systems corresponding to quiver varieties are detailed in
[40, 57]. A

8 N = 2 quiver gauge theories on X,

8.1 N = 2 gauge theory

In this subsection we fix j € {0,1,...,k — 1} corresponding to a fixed holonomy at infinity. The
instanton partition function for the pure N' = 2 U(1) gauge theory on the ALE space X is the
generating function (cf. [14, Section 5.1])

o)
g udtd Lz.0% = .
ZXk(€17€2;q7£)j = Z é-v Z qn+2UCU / L [M(U,nyj)]T
176le71 n=0 M(u,n,])
kvk_lkzjmodk
> 1
loo—lz 2o—12
— Z Z unC ugC u(_q)n<[,/\/l(u7n,])]T, [M(u’n’])]T>Wj’
ueci; n=0

where q € C* with |q| < 1, and the fugacities £ := (£1,...,&,_1) € (C*)F~1 with || < 1 can be
interpreted as coordinates on the maximal torus of the Lie group SL(k, C).

In general, as described in [14, Section 5.1], the partition functions factorize into products of
the corresponding instanton partition functions over the affine toric subsets U; ~ C? of X} and
are weighted by the edge contributions 61(7") which appear in the equivariant Euler classes of the
Carlsson-Okounkov bundle from Section 7.1 (see Appendix B). The edge contributions for the rank
one N = 2 gauge theory on X}, are roughly speaking the equivariant Euler classes of the vector space
HY (2%, 02, (—Ps)), which are zero by the computation of the rank of the natural bundle in [14,
Appendix A], hence the edge contribution is always equal to one. We thus obtain a factorization in
terms of Nekrasov partition functions for the pure A" = 2 gauge theory on R* given by

k
- lgc-lg 7Cc-1g ) (@
Zx,(e1,€2:0,€ ), = PO EEE R | | Zeo (e, e810)
uei; =1
Let us denote by
~ = sl 1. -
X“7(a,¢) = Try(g,) gl d g h 8.1)

the character of the j-th dominant highest weight representation of ;[k at level one, with weight
the j-th fundamental weight &; of type Ay for j = 0,1,...,k — 1; here { := Zf;ll z; H; and
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x; = e?™Zifori=1,...,k—1, while h = (h1,...,hk_1). Setting &; = e 2mi(2zi—zi—1—2i+1) for

t=1,...,k —1with zg = z; = 0, by explicit computation of the character we get [14, Section 5.3]
I8 nd ]. lao-1g 201
X(a,0) = =g >, O EEeT,
n@)* =

where q21 nQ) =12, (1—-¢V) = Trre., o) ng is the character of the Fock space represen-

n=1

tation of the Heisenberg algebra . By Equation (4.23) and the identity
k

1 1
8.2)
RE e

we obtain explicitly

—

Zx, (61762;%&?)]- = ()" X% (q,() exp (

/{:5152) '

8.1.1 Gaiotto state

Following Section 4.5.1, we define the Gaiotto state G; to be the sum, in the completed total equiv-
ariant cohomology W, of all fundamental classes

6= 3 Y M)
ueid; n>0
We also define the weighted Gaiotto state

)i= 3 Do a OO (M, )]

aell; n>0

=T IL o= e W,

uei; n>0

in the completion

If we endow Wj (q7 5 ) with the scalar product

— —

laoc-1g 2~ «— «— nt+igc-lg 2c g
<Z an—l-QuC u§C Nitn » Z an—l— u-C U€C Vun>W(q£)

uei; n>0 uey; n>0

= Z Z q%ﬁ.cflg (—q)" gota <7717,n77/17,n>wﬂ

u,n,j

then it is straightforward to see that the norm of the weighted Gaiotto state is the instanton partition
function for the N = 2 U(1) gauge theory on Xj;:

ZXk(€1752;qvg)j:<Gj(qvg)7 (q €)> qg)

Proposition 8.3. The Gaiotto state is a Whittaker vector for g[k of type x, where the algebra homo-
morphism x: U(H+ @ hagl ) a) — Cle1,e2) is defined by

X(@,) =0 for m>0,i=1,...k-1,

X(pm) = 5m,1 <[Xk']; [Xk]>]HI1 fO?‘ m > 0.
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Proof. We first note that under the isomorphism ¥ ; defined in (6.2) the fundamental class [M (i, n, j)|7
is sent to [Hilb" (X} )]r ® (vz + w;). Hence under the isomorphism (6.8) the Gaiotto state becomes

k k

=X [HIb"(U)], ® > (a+w) € @Hy, ® I Clere2)(va+w;) -
n>0 =

=1 UEL[ = ﬁGﬂj

By Proposnlon 4. 24 > >0 [Hilb™(U;)]r is the Whittaker vector G/(7;) for the Heisenberg algebra b;

with n; = ( ) . It follows that G is the Whittaker vector G;(77) for g[k as in Proposition 6.29
with 77 = (771, .. 777k) of type x Where

k
X(@%) = 0ma (i1 B —mi)  and  X(Pm) = Oma vV —keren Z %
i=1 €1

By computing explicitly the quantities on the right-hand sides of these equations, one gets the asser-
tion. U

8.2 Quiver gauge theories

As we did in Section 4.6, we will now add matter to the N' = 2 gauge theory and consider N' = 2
superconformal quiver gauge theories on the ALE space X, with gauge group U(1)"*! for r > 0; we
shall follow [16], where superconformal quiver gauge theories on the ALE space X, are introduced.

For a quiver Q = (Qo, Q1) we fix vectors of integers (i, 1y, Ju )veg, representing the topolog-
ical numbers of the moduli spaces M (i, n,, j,) at the vertices Qo with u,, € i; , n, € N, and
Ju € {0,1,...,k — 1}. The fundamental (resp. antifundamental) hypermultiplets of masses (2,
s=1,...,my, (resp. ,a;, §=1,...,m,) at the nodes v € Qg correspond to the 7- equivariant vector
bundles V Ty mo,jo (resp. Vu“’n“’] ”) on M (i, ny, j,,) obtained by pushforward of E““’"“’] vitlo,sju

uv 7nU7]’U7uU7

(resp. E vy Wlth respect to the projection of M (y, 1y, jo) X M(Uy, 0y, Ju) to the
second (resp first) factor. The bifundamental hypermultiplets of masses i at the edges e € Q; corre-
spond to the vector bundles E, S(e)’ ma(e) Ja(e) (o) Mee) Te(e) oy M(1, Us(e)s s (e)s ] s(e)) X M (T (e), Ny (e)s Je(e) )3

for vertex loops with s(e) = t(e) the restriction of E, S(e) Ta(e) Ja(e)ila(e) M) To() g e diagonal of
n

M (g (eys Ns(e)s Ts(e)) X M(Us(e), Ns(e)s Is(e)) descnbes an adjoint hypermultiplet of mass .. The to-
tal matter field content of the NV = 2 quiver gauge theory on X}, associated to Q in the sector labelled
by (@y, M, Ju)veq, 1S thus described by the bundle on Hueao M (i, ny, Jyy) given by

M(uv sy :]v)

(;%)7(ﬁé),(ue) = @ pv( @ Vu“’n“’]“ @ @ V“vﬁnvﬂqu)

v€EQo
* s(e)) s(e))]s(e)aut(e)7”1:(&)7]1:(&)
® @ riE: 7
e€q:

where p,, is the projection of Hveao M (i, ny, jy) to the v-th factor while p, is the projection to the
product M (tg(e), Ns(e), Js(e)) X M (Te(e)s e(e)s Je(e) )-

The degree of the Euler class of the hypermultiplet bundle M EZ” ’)"(”L’] 1)1)(“6) is given by

(uv,nv, v) (uv,nu, v)
deg eu (M50 ) ; dim M(idy, o, jo) = 1k (M50 ) )
vEQo
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= Z 21, — Z (mv+mv) (nv‘F%ﬁv'Cﬁv_ﬁjv(k_jv))

VEQo vEQo

-3 ( () Fs(e) T 5 Ta(e) Cls(e) +5 Te(e) Cle(e) = Ta(e) Cle(e) = 35 Je(e)s(e) (k‘—jt(e)s(e))) :

ecQy

where 7, := C~1 . Using (4.26) the degree becomes

(Uv,niu v X
deg eu (M(uu (uj ZQ: d(
veEQo

where we defined

dyf*(T0) = g ju (k= ju) (2 — #{e € Q[ s(e )—U}—#{GEQllt(E)ZU})

+ﬁ( D drew (= dee) + D duse) ( j”s(e)))

ecQy e€cQ1
s(e)=v t(e)=v
- 1711 ¢ Cgv + % Z 6@ ' Cgt(e) + % Z 771) : Cgs(e)
ecr e€r
s(e)=v t(e)=v

for each vertex v € Qg; here ¥,, := (ﬁv, (Tg(e))ecqr : s(e)=vs (Us(e))ecqs :t(e):u)' By analogy with the
case of gauge theories on R* (see Section 4.6), we say that the ' = 2 quiver gauge theory on X}, is
conformal if d:X* (%,,) = 0 for all v € Qo; this is formally the requirement of vanishing beta-function
for the running of the v-th gauge coupling constant. For any vertex v € Qq, define the set of conformal
fractional instanton charges by

st = L, e 4, | dY* () =0} . (8.4)

The conformal constraint is always trivially satisfied by any ,, for the A\O—theory, while for the Ag-
theory the set of conformal fractional instantons charges reduces to

| — — —1-_ 1 - .
UM ={des|a-Cri=1jk—j)}.
Note that in this case, this is a restriction on the conformal dimension Ay = % (wj,wj)ae,q of the

highest weight representation W ; of the Virasoro algebra.

Introduce topological couplings q,, € C* with |q,| < 1 and &, = ((€)1s-- -, (&o)r—1) € (CF)FT
with |(§,);| < 1 at each vertex v € Q. With notation as in Section 4.6, the quiver gauge theory
partition function on Xy, is then defined by the generating function

3 E £Cla 1z -1z
Zg(k(flaEQanaﬁ)j = €C uw q’n+2uC 4
(CHSTEED (nv)EN
(uv7nv,]u)
X/ eurxT (M )
g M(@o,n0,jv) w (15),(75) (e )
velp

— Z Z qn+2u - ﬁé’C‘lﬁ

(i euconf) (ny,)€ENR0
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’ /H Mty ,m0,50) H pv( H eUT uv’n“’-jv H euT uuan’J“))

vEQQ veo
S € nS rJs(e U. e n € ). e
< [[ vt eur (E () <e>J<>t<>t<)Jt<))7
ecq
la.o-1qd No+2 @yp-C~ iy 2 -1z o —1 .
where qPt2 #C¢7 4 .— Hveqo qu 2 dec v = HUGQO §UC “v By applying the

localization theorem, and using Equations (4.25) and (7.3), we obtain a factorization in terms of ' =
2 quiver gauge theory partition functions on R* weighted by edge contributions. For the fundamental
and antifundamental matter fields, the relevant edge contributions Eg) are the equivariant Euler classes

of HY(Z4, Riv @ 02, (—%)) for v € Qo; by [14, Section 5] this vector space is zero if and only
if 4, € il;:“f and the corresponding edge contribution is equal to one. Thus only the arrows of the
quiver yield edge contributions and the partition function is given by

2% (e1,62,m50, £ =11 q% Wivoi)aose d>oogcH 1 H IT ¢ 1(7 e, ue)

vEQo (gveu§onf) n=1 e€Q1
v

H E1 7527“()(])7

where U, 1= U(,) — Ug(e); the shifted masses are

(1) o= s = (@)i el = (5,)i1 Y

—
.
=

forveQp,s=1,...,myand¢=1,... k, and similarly for (ﬂi) , Whereas

pe = e — (Ue)i E&i) — (Te)i-1 Eéi)

foreeQandi=1,...,k.

In the remainder of this section we consider in detail each of the admissible quivers in turn.

8.3 A\r theories

With the conventions of Section 4.7, the instanton partition function for the N =2U(1) ! quiver
gauge theory of type A, on the ALE space X}, reads as

k—1
Ltwi win 201z
2y (e ea, 0.6 ), H qF remlase g getta T H o e )
n=1 v=0

(i, egsont)
H 61 752 7“() Q), (85)

wheregcflﬂ = [T 51) Yiv with @ Uyi1 := Ug, while uq(j) =y — (Tyo41)i

with Ty 41 1= Upg1 — Uy

Egi) - (Uv,v+1)i71 Eg)
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8.3.1 Conformal blocks

We will relate the partition function (8.5) to the trace of vertex operators ijfU’J vt (%, 2,) from Section
7, analogously to what we did in Section 4.7, and hence interpret it as a torus (r + 1)-point conformal
block. For this, we fix vertices v,v’ € {0, 1,...,r} and introduce the conformal restriction operators
65"{)‘; : W — W which are defined by their matrix elements in the fixed point basis of the vector space
W by

1 if ue il;gnf ,u' e il;’ff;’flf ,

. (8.6)
0 otherwise .

(68l o [V, @], [Y', T ])y = {
Suitable insertions of this operator restrict the first Chern classes i, € i;, in the way required by
the superconformal constraints of the quiver gauge theory and the constrained conformal dimensions
of the associated Virasoro algebras at the nodes of the Xr—type quivers. Using Proposition 6.26 and
Proposition 6.28, by performing analogous manipulations to those used in the proof of Proposition
4.28 we arrive at the following result.

Proposition 8.7. The partition function of the Er-theory on Xy, is given by

T
A\T. ~ L _;C_lﬁ 'U7 v g f
Zy(e1,e2,159,€ ) ; = Trwy, 970 € LI Vieie (@, 20) 65004

v=0

independently of zg € C* and Ty € (C*)k~1, where q := qoq1 - - - g1, (5)2 = i (&1)
2y = 2091+ Qu, and (Ty); := (Z0); (&1)i- - (&o)iforv=1,....,randi=1,... k— 1.

By combining Theorem 7.6 and Proposition 8.7, it follows that the quiver gauge theory partition
function completely factorizes under the isomorphism of Proposition 6.24 into partition functions
associated to the affine algebras b and slj.

Corollary 8.8. Let V,,(v51,7, ) be the vertex operator in Hom(W,,, W;,) [z, a7, .. . z: Y]]
given by

Vu(U21,%,2) := ZRa— A V. (Ta1, %, 2) exp (log Zc— 721) exp (721 ) . (8.9)
Then

i S i 1141 1
23 (e1,02,1,0,€ ) ; = 285 (1,20, 13 9)F q73 1 7F) pp(q) !

-~ T
L% ZC-1h - -
X TI'V(@J.O) q 0 5 H Z VMU(UU,U+17$U7'Z’U) |W

v=0 (i, eusont)

’EU 7j1]
Proof. By Theorem 7.6 and Proposition 6.24 we get

T T
Lo £C'h josdiot1 (7 f L
TerO q 0 6 H Vii)]v+1 (xua zv) (Sf)(,)lr)l+l = TI'_’]-‘C(51762) q 0 H Vi 1233} Hutegteg (zv)
=0 v=0 \/—ksl 52’\/—k51 €9

~ r
L' Zo-1p — conf
x Tryga,) a0 €90 ] 2 V@) |y, 0%

v=0 Eilju o Gil]'

v+1
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Then by using the same arguments as in the proof of [18, Corollary 1] one gets

T T
b 1 _ b (puteiten) g _
Tr]-'c(q,ez) qLO H V_ po puterten (ZU) = H (qv 24 77(%)) Feies q24 TI(Q) .
v=0 \/71681 62’\/7’681 €9 =0
The result now follows from Proposition 4.30. U

8.3.2 ﬁo theory

For the N' = 2* gauge theory on X}, similar arguments to those of Section 8.1 show that the edge
contributions are also equal to one in this case. In this instance the gauge theory is automatically
conformal without further restriction of the first Chern classes @ € il;. Then the instanton partition
function for U(1) gauge theory on the ALE space X with a single adjoint hypermultiplet of mass
 can be written in a factorized form in terms of the Nekrasov partition function for N* = 2* gauge
theory on R* given by

k
A - -1 @i~ Ao (1) _(
20 (1,20, 30,6 ), = m(@)F X7 (a,C) [T 288 (1,0, i) -
i=1
In this case Proposition 8.7 may be stated in a factorized form under the decomposition of Theorem
7.6 in terms of characters of h C gl, and gl as

i > 1.5,/ = b
2 (e1,00,50,€ ) = n(@)* " X% (q,{) Tras g™ Vop e (1)
—keyeg \/—kepeg

By using the identities (4.31) and (8.2), we obtain explicitly

k _ p(pterter)

Z9 (e e ma ), =af 0@ 1@ (a.0) (aFn(@) rae

Remark 8.10. Note that H is not the Fock space of h, as we have

b L —1\k-1 b
TI'H qLO V_ u pterten (1) = (q 24 n(q) 1) TI'].‘C(ELQ) qLO V_ u pteqteg (1) .
\/71951 62,\/7]66162 \/71661 627\/7]€6162

8.4 A, theories

With the conventions of Section 4.8, the instanton partition function for the A" = 2 U(1)" ™! quiver
gauge theory of type A, on the ALE space X}, reads as

l o k—1 r—1
24 (21,82, 50, 5 H gz (7o ranze >oog¢ a 11 11 ng?v+l(e§"),e§"),uv+1)
(Tueusont) n=1 v=0

H (0,0 u®:q) . 8.11)
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8.4.1 Conformal blocks

By performing analogous manipulations to those used in the proof of Proposition 4.34, we can express
the partition function (8.11) as a particular matrix element of vertex operators and hence interpret it
as an (7 + 4)-point conformal block on the sphere. For this, let

conf H 5conf @

Proposition 8.12. The partition function of the A,.-theory on X}, is given by
Ay c
2y (162,150, )

.
= <’0>00nf7 Vi (Zo, 20) ( H Vﬁi;mv (T, 2v) 55(51{71;) Vi (fr+1azr+1)‘0>conf>w
v=1

independently of zo € C* and o € (CHE=1 where 2, := 29 qo a1 - - - Qu and (Z,); = (Z0)i (€0)i (€1):
< (p—1)iforv=1,...;r+landi=1,... .k — 1.

Again, combining Theorem 7.6 and Proposition 8.12 yields a completely factorized form for the
quiver gauge theory partition function under the isomorphism of Proposition 6.24. In the following
we denote V := @?;3 V(@j).

Corollary 8.13. Let V,,(¥51, %, z) be the vertex operator in Hom(W,,, W;,)[[z*1, a7, .. . 2 Y]]

given by (8.9). Then

=

24 (e1,62, 50, S) 205 (e1, 62, 1;0)

<’0 Conf ( Z Z VMO (UOI 07:1;0720 ‘Wﬂo Jo )

]0,30—0 ) E}JJO ,uo Eilj(/)

r
X H Z VILU (ﬁv—l,vafv7zv) |Wiu o

v=1 (i, eusonf)
k—1

X ( Z Z Vi (Ur41/ 415 Trg1, Zr41) |Wﬂ et )|0>conf>v
T W

Jr+1:d741=0 ﬁr+1€ujr+17ﬁ?+1€ufi+1

Proof. The proof follows that of Corollary 8.8, and by repeating the proof of Proposition 4.36 to
compute

T+l Hyt (Buter+en)

O> ’ H V? Bu Hytejteg (Zu)|0> = H (1—qv+1 cee qul)i kepea
v=0

\/_k€1 527\/_1“51 €2 >'7:C(51752) 0<v<v'<r+1
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8.4.2 Aj theory

For the N/ = 2 superconformal gauge theory on X}, with two fundamental hypermultiplets of masses
Lo, i1, the set ﬂgonf coincides with the rank one limit of the more general conformal charge sets

obtained in [14, Section 5.4]. Analogously to Equation (8.1), let us define the restricted g[k characters

Lg[k % id —»h 5qopf

Xconf(q C) - Trv(aj) q

1
q§ (wj,wj) Q®7Q

2606'

= ~¢(conf conf
ueilj EL[

Then the instanton partition function is given by the factorization

k

Z}é: (517527M07N1;q7g)j = W(Q)k_l ngnf(q75) H Zéo (532)755)7N07N17 ) .
=1

In this instance Proposition 8.12 factorizes under the decomposition of Theorem 7.6 as

Z)I?-Z (517527:“17/’62; q75>]

== k=1 Qj ; <O V £14€ 1 V £1+€ 0 > .
n(q) Xconf(q7<) 0), _\/7:2152’?:@55;( ) _\/7:;62/\1/1;2-6; (a)]0) H

By Equation (4.37) we then obtain explicitly

_ 1 (uotegteo)

A — _ Bl —
230 (er, 22, 10,113 9,€ ) = (@) T X (a,C) (L—a) Feres

A Virasoro primary fields

In this appendix we prove Theorem 7.6. We need to show that the vertex operator V ,(¥a1, 7, 2) is
a primary field of the Virasoro algebra generated by L' and c¢. We begin with the following result

establishing the commutation relations between the Virasoro operators L2 introduced in Section
3.3.1 and the normal-ordered bosonic exponentials V]*!, (z) associated with the Heisenberg algebra

ba.
Lemma A.1. Forn # 0 we have

k—1
5 1
(L3, VP2 (2)] = (28 5 - O (n+1) + Y (31), (ah— 27" q;)) VIR (2)
=1

(L, VIR (2)] = 20, VI2,(2) .

Proof. Let {n;}*~ be an orthonormal basis of the vector space Q®7R. By the commutation relations
(3.2), we easily get

(L%, qi] = —maqy,,, (A.2)
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forn,m € Zandj=1,...,k—1.Fixavector ¥ € R¥ land forj =1,...,k — 1 define

Aé(z)_ = v 9" (2) = v; Z — q . and Aé(z) = —v; 7 (2) = —v; Z — qm .

Using the commutation relations (A.2), we get

[Ls[k AJ =v; Z 2 =, gozjm(z) ]
N ) oo
[sz[kv A%(Z)+] = Uj Z_m qzj—i-m = 'U] 904— n( ) .
m=1

For n < 0 the operator gpijm(z) is a series in the Heisenberg operators q?j with [ < 0, thus it commutes
with AZ(z)_. For n > 0, using again the relations (3.2) we get

[A(2)-, o2 n(2)] = v

(9% 0" ] =—(n—1)v;2"c. (A.3)

Analogously, for n > 0 the operators A‘Z—‘}a(z)_l'_ and gpzj’n(z) commute, while for n < 0 we have

[A3(2)4, ()] = (n+ 1) vy 2"

Now we compute the commutator

00 -1
1 ; ’i = y ] —f—
(L3 exp (Al(z) )] = o> AR Lok, AY(2) -] Ap(x)
=1 =0
o) 1 -1 )
—uy 3 S ARG (2) A ()
=1 i=0

For n < 0 we get simply [Lf:[’f,exp (AL(2)-)] = v; ©" .(2) exp (AL(2)-), while for n > 0 we can
apply (A.3) iteratively to obtain

(L84, exp (A%(2) )] = (v; " (2) = Lo (n— 1) 2" ) exp (A%(2)_) .

Noting that

) n .
| o (¢20(2) = 3 2al,) exp (Ak(:))  n>0
Sl 9, exp (A%,(Z)_) — N t= 1_ , '
v (g&_ﬂn(z) - tZ:O z tqnﬂrt) exp (AL(2)-) n<0
and substituting in the previous expressions we finally get

n—1 .
" (z 0, +v; S,Z:o 275 q) — 3 0]2 (n— 1)) exp (AL(2)-) n >0

(L% exp (43(2))] = S |
" (z 0, —wv; Y, 2° qu) exp (AL(z)-) n<0
s=1
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Repeating these computations for the operator A7(z), we get analogous relations

n

R z"(z@ U]Zzsn’)exp(A]()) n>0
[t exp (A%(2)+)] = T ‘
2" (z 9, +v; > 2qr + %UJQ (n+ 1)) exp (AL(2)+) n <0
s=0
Now set
k—1 k—1
Ap(z)- =) Al(z)- and  Ap(z)y =) A(z)+
j=1 j=1

= Z <exp (A%(z)_) e [Lgk,exp(Aé(z)_)] -+ exp (Ag_l(z)_) exp (Ag(2)+)

+ exp (Ag(2)—) exp (AX(2)4) - - [Lf@[’“,exp (A%(z)”] -+ exp (Ag_l(z)Jr)) .
Fix n < 0. Using the commutation relations computed before and noting that the Heisenberg operator

qry commutes with the vertex operators exp (AL(z)_) and exp (AL(z)4) for | # j and any m €
Z \ {0}, we obtain

(L, exp (An(2)-) exp (An(2)4)]

k—1 k—1 -n
= 2" (z 0.+ =-(n+1) U]2 — Z v; Z 2 q_]t) (exp (Ag(2)-) exp (A (z)+))
j=1 j=1 =1
k—1 —n—1
+ Vj €xp (AU(Z)_) ( Z St q773 > exp (A (Z)+)
=1 t=0

Since the Heisenberg operators qzjt for ¢ > 0 also commute with exp (A%(z)_), we thus find
[L;[k exp (A~(z)_) exp (Az(2)+)]

= 2" (z@ +-(n+1) kz::iv? kz_:ivj —z™" m))(exp (Az(2)-) exp (Ag(z)Jr)) .
” ” (A4)

For n > 0 we arrive at the similar expression

[L;[k exp (A~(z)_) exp (Az(2)+)]
k—1 k—1 n

|
—

— (z@ —=(n-1) Z UJQ + v Lt ’71) (exp (Ag(z)_) exp (Ag(z)+))
Jj=1 j= t=0
S e () (3 =) e (Ae(e)).
Jj=1 t=1
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but this time the operators q;” for ¢ > 0 do not commute with exp (Afj;(z)_). Since

[ﬂ _,E ztn’}:—nvjc,

we get
n
[exp AJ , Z z7¢ m] = —nvj exp (Af};(z)_)
and thus we arrive again at Equation (A.4). For n = 0 we obtain

[Lg[’“,exp (Ag(z)_) exp (Ag(z)+)] =z 8Z<exp (Ag(z)_) exp (Ag(z)Jr)) .

Finally, to get the assertion it is sufficient to note that if D = (d;;) is the change of basis matrix
k— .

such that y; = ijll dijn; with d;; € R, then V*! | (2) = exp (Apsy, (2)-) exp (Apg,, (2)+). and

moreover

k—1 k—1

Z DU21 Z U1 2727

]:1 =1
k—1 ) k—1 k=1
' (D7721)j = < ' (D1721>j D (D1721)j n; >Q®ZR = g1 - C'ay .
Jj=1 7j=1 7j=1

O

Remark A.5. A similar (but simpler) calculation shows that the vertex operators V, 3(z) are primary
fields in the sense stated in Remark 3.9. A

The proof of Theorem 7.6 is now completed once we establish the following commutation rela-
tions.

Lemma A.6. For any n € 7 we have

[L’;[k,vu(i_}él, z, Z)] =2z" (Z 0, + % U1 - C'Ugy n)\_/u(ﬁgl, Z, z).
Proof. To get the assertion, it is enough to derive the commutation relations

ol 1
[Lfl[’v,exp (logz ¢+ 21 )] =z" (z 0, + 51721 - Oy

= > (%), (ah— =" a%) ) exp (log 2 ¢+ 921 .

(L5, exp (log 2 ¢ +721)] = 20 exp (log 2 ¢ + 721 )
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B Edge contributions

In this appendix we begin by listing the edge contributions

L0 (e, )

to the T-equivariant Chern character of the natural bundle V%™ on M (i, n; j) which were derived
in [14, Appendix C]. For this, we first introduce some notation. Let j € {0,1,...,k — 1} be the
equivalence class of kv_1 modulo k. Set (C~1)™ = 0forn € {1,...,k — 1} and (C~1)*J = 0.
We also set §:= C~1(d — e;) if j > 0 and §:= ¥if j = 0; then 5 € Z*~1. We denote by |z| € Z
the integer part and by {x} := x — |x| € [0, 1) the fractional part of a rational number z.

If s, > 0foreveryn =1,...,k — 1, consider the equation
Cnn o (. n—1 1 ~ n—1 . n—1 e
TZ —1 <v—z spep)‘Cen+§ (v—z spep)-C(v—Z spep>—(C ) =0, (B.1)
p=1 p=1 p=1

and define the set
St :={i e N|i < s, isasolution of Equation (B.1)} .

Let d;f := min(S;") if S;F # 0 and d;} := s,, otherwise.

When s, <Oforn=1,...,k — 1 consider the equation
C n—1 1 n—1 n—1
o i3 ) et (15 s (e 5 ) 0)) =0,
p=1 p=1 p=1

and define the set
S, = {i e N|i < —s, is a solution of Equation (B.2)} .

Let d, := min(S, ) if S, # 0 and d;; := —s,, otherwise. Let m be the smallest integer n €
{1,...,k — 1} such that S;| or S;; is nonempty; if all of these sets are empty, let m := k — 1.

Then for fixedn =1, ..., m we set:
m For v, — (C~H™ > 0:
o For 8,j — vt + ()" 4 2(v, — (C~) —df) > 0:
v —(CTN™M—1 2046, j—vnprH(C I

L. s") = Y > (x1)

i=vp —(C— )i —d;} =0

I +(c—Hntly
l+|_ n,j n+41 5 J

(x3)

e For2 <4, — vpy1 + (C7H" I 4 2(v, — (C7H)™) < 24;F:

L, 57)
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‘snvjfvn‘i*l‘*(cil)n‘#l‘j . . )
I‘ 2 J_l 2i—(dn,j—vn41+(CTH)" )1 én,j*vn+1+(cfl)n+1,ﬂ'J
- 2

- > > () ()™
i=vp—(C—1)i —df J=1
2(0n—(C71)™)46n,j—vn41+(CT "I -2 2i46n,j—vngrH(C )M | S mmpr (@t )
- > >
i_—|_5"Yj7v"+1<;(071)"+1“7J 7=0
e Ford, ; — vp1 + (C7H"HI <2 - 2(v, — (C1)):
B e o)
vp—(C™HM 1 —2i—3y, jFUn1—(CTH)" I 1 . Lf 5n,j*“n+1+(c_1)"+1’jJ .
= > > (x?) : (xz) 7
i=v, —(C—1)ni —df Jj=1
m Forv, — (C~H)™ =0: L%") (6%"), 65”)) =0.
m For v, — (C~H)™ < 0:
e For 8, ; — U1 + (C7H)"TI 4 20, —2(C~ 1Y < 2 —2d;:
£ 7, )
—vpH(C™ ™I 20— (8, j—Vnp1H(CTH)M I | Sny—vagat(@THntla »
== > > (x1) L : J (xs)™
i=1—v,+(C~1)ni—d;, Jj=1
e For2 —2d, <0, — vpt1 + (C7H"TH 4 20, —2(C~1W < 0:
P )
Sn,j=vngrt(@THm I . C1yn41.j
L 2 J =208 j—vaqpr H(CTH) _,+Lan,j—vn+1+<c*1>"+1~fJ .
= > > (1) : (x3)’
i=1—v,H(C~ )M —dy =0
7vn+(C_1)"j 2i7(6n,j7vn+1+(C_1)"+1’-7‘)71 ) Sy j—vmpr (€L )
1 > > o) T

=1

) [ r(Cc—1yn+1,j
Z:L n,j—Vntl 2( ) J+1

e For 6, j — vpy1 + (C—Yntbhi > 9y, 4+ 2(C~1)nd:

_’Un"r(cfl)nj _21'_;'_6")],_,Un+1+(cfl)n+1,j

Lén) (5gn)35(2n ) _ Z

i=1—v,+(C~1)"i—d, j=0
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Forn=m+1,...,k—1 WCSCtL%n)(Eg n) Eén)) = 0. Note that for any fixed n € {1,...,k — 1},
df = 0 implies Lén) (Egn), Egn)) =0.
The edge factors Eg;f (Egn) , Egn), u) which contribute to the T-equivariant Euler class of the Carlsson-

Okounkov bundle Eﬁ“”l’jl;ﬁ?’"m? on M(uy,n1;71) X M(ta,ng;j2) are then obtained in the fol-
lowing way. We replace ¢ in the above by 751 and j by jop. If

D
LE () = mie
i=1
with 7; = 0, £ 1, then
D
ES;Z(E 52 ,,u HN*’%
=1

Explicit formulas are written in [14, Section 4.7].

The contribution of Lg:z (egn),eg")) to the p-th equivariant Chern class (c,)r (Vj) is gotten by
extracting the monomial terms of total degree p in €1,€2. In particular, the contribution to the first
Chern class is given by

(n)((n) _(m)y _ 0 0
Ly (51 €9 )[1]— (51 921 61:0+€2 D2,

Example B.3. Let k = 2. Then jo; € {0,1}, while {va1} = 161/, and [vo1| = voy — (C71)1721,
Since m =1, df = |v21] and d; = —|vg2; |, and we get

( L'Uglj—l 2i+2{1}21}

11 I (u—l—isl —|—j€2) for vy | >0,
i=0 =0

€U21 (517 €2, ,U) = 1 for I.U21J =0,

—|v21| 2i—2{v21}-1

4 1:[1 (1 + (2{va1} —i)er —jez) for [var] <O.

For {v2; } = 0 these formulas coincide with the blowup factors obtained in [28] up to a redefinition
of the equivariant parameters (see also [20]). Moreover, for |vg; | > 0 they can be easily written in
the form

5@21(517527,&) = H (M+(i_1)51+(j_1)52)

,j>1,i4j<2|va1 |
i+j=0 mod 2

with & = 5 and €2 = 5 + &2, which coincide with the blowup factors of [10, 11, 7] (similarly for
|va1] < 0 and/or {ve} = %). In [7] it is stated that these edge factors can be represented as suitable

matrix elements of primary fields from Theorem 7.6 in highest weight states of gT lh=h 5A[2 at level
one; the proof makes use of the Frenkel-Kac construction and the Dotsenko-Fateev integrals of [24].
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