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Understanding the dynamics of spread of infectious diseases between individuals is essential for fore-
casting the evolution of an epidemic outbreak or for defining intervention policies. The problem is
addressed by many approaches including stochastic and deterministic models formulated at diverse
scales (individuals, populations) and different levels of detail. Here we consider discrete-time SIR (sus-
ceptible–infectious–removed) dynamics propagated on contact networks. We derive a novel set of
‘discrete-time moment equations’ for the probability of the system states at the level of individual nodes
and pairs of nodes. These equations form a set which we close by introducing appropriate approxima-
tions of the joint probabilities appearing in them. For the example case of SIR processes, we formulate
two types of model, one assuming statistical independence at the level of individuals and one at the level
of pairs. From the pair-based model we then derive a model at the level of the population which captures
the behavior of epidemics on homogeneous random networks. With respect to their continuous-time
counterparts, the models include a larger number of possible transitions from one state to another and
joint probabilities with a larger number of individuals. The approach is validated through numerical
simulation over different network topologies.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Epidemic modeling is a continuously evolving field that is
increasingly important for understanding the spread of infectious
diseases, investigating outbreak scenarios, and identifying pre-
vention and control policies (Pastor-Satorras et al., 2015; Fu et al.,
2013). For example, mathematical models of the 2014 West Africa
Ebola outbreak have provided valuable quantitative analysis for
assessing the risk of international virus diffusion, the impact of
travel restrictions, and the effectiveness of intervention strategies
(Gomes et al., 2014; Poletto et al., 2014; Merler et al., 2015).
Ltd. This is an open access article u
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Early models of the spread of infectious diseases were based on
deterministic ordinary differential equations (Anderson et al.,
1992; Heesterbeek, 2000) using the assumption of homogeneous
mixing between individuals in the population (that is, any two
individuals are equally likely to interact at any time, Pastor-
Satorras et al., 2015), and provided a description of the epi-
demics at the level of the population. With the introduction of
complex networks (Newman, 2003; Boccaletti et al., 2006) into
epidemics models, the hypothesis of homogeneous mixing was
removed by explicitly incorporating the heterogeneity of the
interaction pattern among individuals (Pastor-Satorras and Ves-
pignani, 2001; Lloyd and May, 2001). These models and the related
theoretical approaches to understanding their critical properties
(Moreno et al., 2002; Newman, 2002; Barthélemy et al., 2004)
have been widely studied. The investigation of network-based
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approaches has led to the development of microsimulation mod-
els, able to track billions of individuals, and used to perform sto-
chastic simulations of entire populations at the scale of single
individuals, by explicitly taking into account the spatial structures
and individual heterogeneity that can be inferred from the analysis
of available datasets on the structure of human interactions, their
mobility and contact patterns (Merler et al., 2011; Gomes et al.,
2014).

In parallel to stochastic simulation methods, deterministic
representations of epidemic dynamics on networks have also been
developed. In scenarios where infection is treated as spreading
from individual to individual via a network of contacts, pair
approximation methods have proved to be a valuable extension to
the classic mean-field methods. These methods have been inves-
tigated both at the population level (Matsuda et al., 1992; Keeling,
1999) and at the individual node level (Sharkey, 2008, 2011).
Insights into the relationship between microscopic stochastic
dynamics and mean-field descriptions are gained through the
analysis of these models (Sharkey, 2008).

Although most of the mean-field or pair approximation models
are based on continuous time, a few works have dealt with their
discrete-time counterpart (Wang et al., 2003; Gómez et al., 2010;
Valdano et al., 2015). On the other hand, stochastic discrete-time
epidemic models are widely used (Pastor-Satorras et al., 2015;
Frasca et al., 2006; Buscarino et al., 2008, 2014), especially in data-
driven approaches where information is available at discrete
sample times. Consequently, developing deterministic versions of
discrete-time models may offer a relevant complementary
approach. Furthermore, the dynamics of discrete-time models is
typically far richer in behavior than their analogous continuous-
time counterparts.

In previous works on deterministic discrete-time models,
Markov chains have been employed to model SI (susceptible–
infectious) or SIS (susceptible–infectious–susceptible) processes
on static contact networks (Wang et al., 2003; Gómez et al., 2010),
and then extended to deal with the case of temporal networks in
Valdano et al. (2015). However, these works investigate epidemic
processes under the assumption of stationarity and also assume
the absence of correlations between individual infection prob-
abilities. In our work, we derive the ‘discrete-time moment
equations' for the probability of the states of an SIR process. A
novel feature of these discrete-time equations is that, unlike a
standard continuous-time BBGKY-type hierarchy of moment
equations, they are expressed in terms of joint probabilities whose
degree is governed by the network structure itself via the degrees
of individual nodes. To close these equations we introduce
appropriate approximations of the joint probabilities that appear.
We do this with two different assumptions on statistical inde-
pendence: one at the level of individuals and one at the level of
pairs. We then derive models at the level of the population from
the individual-based and pair-based ones by making appropriate
homogeneity assumptions (Sharkey, 2008). We validate the
approach through numerical evaluation and compare the results
with stochastic simulation.
2. Individual-based model

We consider an undirected network G¼ ðN ;LÞ with N nodes
and L edges. Two nodes i; jAN are connected only if ði; jÞAL, and
self-loops are not allowed, that is, ði; iÞ=2L.

Each node of the network represents an individual and a link is
a contact between two individuals. In this framework, we consider
the terms ‘individuals’ and ‘nodes’ to be synonymous. The network
is also represented by its adjacency matrix G, where Gij ¼ 1 if there
is contact from individual j to individual i, and Gij ¼ 0 otherwise.
We focus on the discrete-time SIR model, where each node/
individual may assume one of the three possible states denoted as
S, I, and R. A susceptible individual may become infected if con-
tacted by an infectious individual with a probability given by Tij. In
the case where the transmission rate across each link per unit time
is the same and equal to τ, then Tij ¼ τGij. An infected individual
recovers from the disease with probability γ per unit time.

We denote the probability that the i-th individual is in the
susceptible, infectious or recovered state at time t by 〈Si〉t , 〈Ii〉t and
〈Ri〉t , respectively. Additionally, for convenience we also introduce
the uninfected state U as a state in which the agent is either sus-
ceptible or recovered, and denote the probability that the i-th
individual is in this state by 〈Ui〉t (by definition 〈Ui〉t ¼ 〈Si〉tþ 〈Ri〉t).
The discrete-time equations governing the evolution of the state
probabilities are:

〈Si〉tþ1 ¼ 〈Si〉t�ΠSi-Ii

〈Ii〉tþ1 ¼ 〈Ii〉tþΠSi-Ii �Π Ii-Ri
ð1Þ

where ΠSi-Ii represents the probability that the i-th individual in
the state S becomes infectious and Π Ii-Ri

the probability that the
i-th individual in the state I recovers from the disease.

To develop expressions for these terms, we need to introduce
the subset N iDN containing the node i and all its first neighbors,
and the subset LiDL containing all of the arcs connecting i to one
of its first neighbors. Let us assume that the cardinality of N i is m,
so in addition to i there are another m�1 elements in N i. To keep
the notation simple, let us define a new labelling of the nodes in
N i such that J1 ¼ i and the other nodes are J2; J3; J4;…; Jm. With
these definitions, the probability ΠSi-Ii reads:

ΠSi-Ii ¼ 〈SiIJ2UJ3UJ4…UJm 〉t ½1�ð1�TiJ2 Þ�
þ 〈SiUJ2 IJ3UJ4…UJm 〉t ½1�ð1�TiJ3 Þ�þ⋯
þ 〈SiUJ2UJ3UJ4…IJm 〉t ½1�ð1�TiJm Þ�
þ 〈SiIJ2 IJ3UJ4…UJm 〉t ½1�ð1�TiJ2 Þð1�TiJ3 Þ�
þ 〈SiIJ2UJ3 IJ4…UJm 〉t ½1�ð1�TiJ2 Þð1�TiJ4 Þ�þ⋯

þ 〈SiIJ2 IJ3…IJm 〉t 1� ∏
m

h ¼ 2
ð1�TiJh Þ

" #
ð2Þ

where iAf1;2;…;Ng. We note that ΠSi-Ii is a function of the
probabilities of the different possible states of the nodes of N i⧹fig
given that node i itself is susceptible. Each term on the right-hand
side of (2) expresses the joint probability of the states of m indi-
viduals multiplied by the probability that, given that state, i gets
infected over the next time step. For example, the term 〈SiIJ2UJ3…
UJm 〉t represents the probability that individual i is susceptible, J2 is
infected, and all the others are uninfected. Under this condition, i
can be infected only through contact with J2. In fact, the term ð1
�TiJ2 Þ represents the probability that i does not get infected
through the link with J2 and ½1�ð1�TiJ2 Þ� the probability that it
does. Similarly, when contacts with more than one infected indi-
viduals are possible, for instance, if 〈SiIJ2 IJ3UJ4…UJm 〉ta0, then ð1
�TiJ2 Þð1�TiJ3 Þ is the probability that i does not get infected
through the link with J2 or through the link with J3, and ½1�ð1�
TiJ2 Þð1�TiJ3 Þ� is the probability that it does.

By contrast the recovery probability Π Ii-Ri
does not depend on

the state of the neighbors, and is expressed by:

Π Ii-Ri
¼ γ〈Ii〉t : ð3Þ

Eq. (1) is exact, but not closed. We propose to close it either at
the level of individuals or at the level of pairs. The first case is dealt
with in this section, while the second one is discussed in Section 3.
In the first case, we assume statistical independence at the level of
the individual probabilities; that is, we approximate the m-node
state (or m-state) probability as:

〈AiBJ2CJ3DJ4…MJm 〉� 〈Ai〉〈BJ2 〉〈CJ3 〉〈DJ4 〉…〈MJm 〉 ð4Þ



Fig. 1. Possible states and transitions in the pair-based model for a SIR process.
Note that, for example, 〈IiSj〉¼ 〈SjIi〉 when comparing with Eq. (9).
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where Ai, BJ2 , CJ3 , DJ4 ,…,MJm denote the state of nodes i, J2, J3, J4,…,
Jm, respectively. Under this assumption, ΠSi-Ii may be approxi-
mated as:

ΠSi-Ii � 〈Si〉t 1� ∏
m

h ¼ 2
ð1�TiJh 〈IJh 〉tÞ

" #
: ð5Þ

We can show this by writing the right-hand side as:

〈Si〉t 1� ∏
m

h ¼ 2
ð1�TiJh 〈IJh 〉tÞ

" #
¼ 〈Si〉t

X
h

TiJh 〈IJh 〉t�
X
h;l

T iJh TiJl 〈IJh 〉t〈IJl 〉t

"

þ⋯�ð�1Þm∏
h
TiJh 〈IJh 〉t

#
ð6Þ

where all the sums and products are from h¼2 to h¼m.
Similarly, Eq. (2) may be rewritten by first approximating the

term 〈SiIJ2 IJ3…IJm 〉t ½1�∏m
h ¼ 2ð1�TiJh Þ� as:

〈SiIJ2 IJ3…IJm 〉t 1� ∏
m

h ¼ 2
ð1�TiJh Þ

" #

� 〈Si〉t〈IJ2 〉t〈IJ3 〉t…〈IJm 〉t
X
h

TiJh �
X
h;l

TiJh TiJl þ⋯�ð�1Þm∏
h
TiJh

" #
:

ð7Þ
By suitably regrouping the terms in the right-hand side of Eq.

(2) under the assumption of statistical independence (Eq. (4)) and
taking into account that 〈UJh 〉tþ 〈IJh 〉t ¼ 1; 8 Jh, we obtain:

ΠSi-Ii � 〈Si〉t〈IJ2 〉t〈UJ3 〉t…〈UJm 〉tTiJ2 þ 〈Si〉t〈IJ2 〉t〈IJ3 〉t…〈UJm 〉tTiJ2 þ⋯
þ 〈Si〉t〈IJ2 〉t〈UJ3 〉t…〈IJm 〉tTiJ2 þ⋯þ 〈Si〉t〈IJ2 〉t〈IJ3 〉t…〈IJm 〉tTiJ2 þ⋯

þ 〈Si〉t〈IJ2 〉t〈IJ3 〉t〈UJ4 〉t…〈UJm 〉tTiJ2TiJ3 þ 〈Si〉t〈IJ2 〉t〈IJ3 〉t〈IJ4 〉t…〈UJm 〉tTiJ2TiJ3

þ⋯þ 〈Si〉t〈IJ2 〉t〈IJ3 〉t〈UJ4 〉t…〈IJm 〉tTiJ2TiJ3 þ⋯
þ 〈Si〉t〈IJ2 〉t〈IJ3 〉t〈IJ4 〉t…〈IJm 〉tTiJ2TiJ3 þ⋯
�ð�1Þm〈Si〉t〈IJ2 〉t〈IJ3 〉t…〈IJm 〉tTiJ2TiJ3…TiJm ¼ 〈Si〉t〈IJ2 〉tTiJ2 þ⋯

þ 〈Si〉t〈IJ2 〉t〈IJ3 〉tTiJ2TiJ3 þ⋯�ð�1Þm〈Si〉t〈IJ2 〉t〈IJ3 〉t…〈IJm 〉tTiJ2TiJ3…TiJm

¼ 〈Si〉t
X
h

TiJh 〈IJh 〉t�
X
h;l

T iJh TiJl 〈IJh 〉t〈IJl 〉tþ…�ð�1Þm∏
h
TiJh 〈IJh 〉t

" #

ð8Þ
which is the same as Eq. (6), thereby obtaining Eq. (5).

We note that, under the hypothesis of statistical independence,
the expression for the infection term (5) is analogous to that found
in Wang et al. (2003) and Gómez et al. (2010) for stationary
probabilities in an SI/SIS process.
3. Pair-based model

In this section, we write the ‘moment equations’ for a discrete-
time SIR process at the level of pairs. If we inspect the dynamics of
the state probabilities in an SIR process, as in Eqs. (1), we recog-
nize that recovery happens at the level of the individual who
recovers from the disease with a probability independent from the
states of the other individuals, while infection takes place with a
probability that also depends on the states of the contacts of the
individual. The different nature of the two processes is mirrored in
the expressions for the transition probabilities Π Ii-Ri

and ΠSi-Ii ,
the first being only a function of 〈Ii〉t and the second of joint
probabilities of the states of m individuals. To close the system, an
approximation is needed for these joint probabilities, and the
accuracy of the model depends on the validity of this approx-
imation. In Section 2, we assumed statistical independence at the
level of individuals in order to generate a closure. Here we shall
avoid this assumption and instead consider statistical indepen-
dence at the level of pairs. This still results in a significant
dimensional reduction of the system while incorporating a more
detailed description than the individual-based model. With this
approach we would expect to derive a more accurate model due to
the incorporation of pairwise correlations; indeed, studies focus-
ing on the continuous-time case (Keeling, 1999; Sharkey, 2008;
House and Keeling, 2010) have provided evidence of an improved
description.

To provide a description at the level of pairs, we need dynamic
variables representing pair probabilities. In particular, for an SIR
process the following variables have to be taken into account:
〈SiSj〉t , 〈SiIj〉t , 〈IiIj〉t , 〈RiSj〉t , 〈RiIj〉t , and 〈RiRj〉t for each link of the
network; that is, ði; jÞAL. The pair variables are shown in Fig. 1
along with the possible transitions among them. Based on this
diagram, we derive the complete moment equations for the pair
dynamics in the SIR model as:

〈SiSj〉tþ1 ¼ 〈SiSj〉t�ΠSiSj-IiSj �ΠSiSj-SiIj �ΠSiSj-Ii Ij

〈SiIj〉tþ1 ¼ 〈SiIj〉tþΠSiSj-SiIj �ΠSiIj-SiRj
�ΠSiIj-Ii Ij �ΠSiIj-IiRj

〈IiIj〉tþ1 ¼ 〈IiIj〉tþΠSiSj-Ii Ij þΠSiIj-Ii Ij þΠ IiSj-Ii Ij �Π Ii Ij-RiIj

�Π Ii Ij-IiRj
�Π Ii Ij-RiRj

〈RiSj〉tþ1 ¼ 〈RiSj〉tþΠ IiSj-RiSj �ΠRiSj-RiIj

〈RiIj〉tþ1 ¼ 〈RiIj〉tþΠRiSj-RiIj þΠ Ii Ij-RiIj þΠ IiSj-RiIj �ΠRiIj-RiRj

〈RiRj〉tþ1 ¼ 〈RiRj〉tþΠ IiRj-RiRj
þΠRiIj-RiRj

þΠ Ii Ij-RiRj
ð9Þ

where ði; jÞAL and the termsΠAiBj-A0
iB

0
j
represent the transition from

the ðAi;BjÞ state to the ðA0
i;B

0
jÞ state. To form expressions for these

terms, we introduce two subsets: N ði;jÞDN and Sði;jÞDL. The subset
N ði;jÞDN contains all vertices which are first neighbors of node i or j
or of both; that is N ði;jÞ ¼ fh : ði;hÞAL or ðh; jÞALg. Let us denote the
cardinality of N ði;jÞ by m, so that beyond i and j there are another
m�2 elements inN ði;jÞ. We label the nodes according to a new index
J1; J2;…; Jm such that J1 ¼ i, J2 ¼ j and J3;…; Jm are the other nodes in
N ði;jÞ. The subgraph Sði;jÞ contains all the edges of L among the nodes
in N ði;jÞ.

Here, we give the expression for ΠSiSj-IiSj , while the other
terms are detailed in Appendix A. Given the above definitions,
ΠSiSj-IiSj reads:

ΠSiSj-IiSj ¼ 〈SiSjIJ3UJ4UJ5…UJm 〉t ½1�ð1�TiJ3 Þ�½1�TjJ3 �
þ 〈SiSjUJ3 IJ4UJ5…UJm 〉t ½1�ð1�TiJ4 Þ�½1�TjJ4 �þ⋯

þ 〈SiSjIJ3 IJ4UJ5…UJm 〉t ½1�ð1�TiJ3 Þð1�TiJ4 Þ�½ð1�TjJ3 Þð1�TjJ4 Þ�
þ 〈SiSjUJ3 IJ4 IJ5…UJm 〉t ½1�ð1�TiJ4 Þð1�TiJ5 Þ�½ð1�TjJ4 Þð1�TjJ5 Þ�þ⋯

þ 〈SiSjIJ3 IJ4 IJ5…UJm 〉t ½1�ð1�TiJ3 Þð1�TiJ4 Þð1�TiJ5 Þ�½ð1�TjJ3 Þð1�TjJ4 Þ

�ð1�TjJ5 Þ�þ⋯þ 〈SiSjIJ3 IJ4 IJ5…IJm 〉t 1� ∏
m

h ¼ 3
ð1�TiJh Þ

" #
∏
m

h ¼ 3
ð1�TjJh Þ

" #
:

ð10Þ
Note that since the transition is from SiSj to IiSj, node i has to be

infected while at the same time agent j has not to be infected, so
that, for instance, when only J3 is in the infective state, the prob-
ability 〈SiSjIJ3UJ4UJ5…UJm 〉t has to be multiplied by the probability
that J3 infects i; that is, ½1�ð1�TiJ3 Þ�, and by the probability that J3
does not infect j, that is, ½1�TjJ3 �. It is not important to distinguish
a priori if J3 is a neighbor of i or of j because if there is no contact
between J3 and j (or i), then TjJ3 ¼ 0 (TiJ3 ¼ 0).
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4. Closure for the pair-based model

The selection of the closure for pair-based models is a critical
step. In a recent paper (Pellis et al., 2015) the quality of several
closures is investigated in relation to their application to network
motifs as well as to larger topologies. We refer the reader to that
paper for a detailed discussion and here observe that none of the
closure approximations outperform the others on all of the pos-
sible case studies. The analysis by Pellis et al. (2015) is developed
in the context of continuous-time models, where only triple
probabilities appear in the master equations. Here the problem is
complicated by the presence of m-tuple probabilities in Eqs. (9)
(see Eq. (10) and Appendix A for the terms in this equation). This
requires the use of a new closure, extending the previous
approaches to m-state probabilities.

Let us first consider the requirements for our closure approx-
imation. To illustrate this, we consider a closed triangle made of
three nodes (labeled 1, 2 and 3), and calculate the increment of the
probability of being infected for node 2; that is Δ〈I2〉¼
〈I2〉tþ1� 〈I2〉t . From the expression for the infectious probability for
individual nodes (Eqs. (1) and (2)) we derive:

Δ〈I2〉¼ΠS2-I2 �Π I2-R2 ¼ ð〈S2I1S3〉tþ 〈S2I1R3〉tþ〈S2S1I3〉t

þ 〈S2R1I3〉tÞτþ 〈S2I1I3〉tð1�ð1�τÞ2Þ� 〈I2〉tγ: ð11Þ
On the other hand, from the equations at the pair level (9) we

get:

Δ〈I2〉¼ 〈S1I2〉tþ1þ 〈I1I2〉tþ1þ〈R1I2〉tþ1� 〈S1I2〉t� 〈I1I2〉t� 〈R1I2〉t
¼ ð〈S1S2I3〉tþ 〈I1S2S3〉tþ 〈I1S2R3〉tþ 〈R1S2I3〉tÞτ
þ 〈I1S2I3〉tð1�ð1�τÞ2Þ�ð〈S1I2S3〉tþ 〈S1I2R3〉tþ 〈S1I2I3〉tÞγ
� 〈I1I2〉tγ� 〈R1I2〉tγ: ð12Þ

Clearly, the two expressions (11) and (12) must be equivalent.
However, to close the system at the level of pairs we need to
approximate triplet probabilities (and higher-order joint prob-
abilities) in terms of pair and singlet probabilities. In doing this, we
risk making the two expressions inconsistent. While we could
permit this, designing a closure with this consistency is arguably
aesthetically preferable (House and Keeling, 2010; Rogers, 2011).

Let us focus on triplets and suppose that we approximate 〈AiBj

Ck〉 by a function of the pair and individual states; that is:

〈AiBjCk〉� Fð〈AiBj〉; 〈BjCk〉; 〈AiCk〉; 〈Ai〉; 〈Bj〉; 〈Ck〉Þ ð13Þ
where we have dropped the time subscript. For the purposes of
brevity, let us also indicate Fð〈AiBj〉; 〈BjCk〉; 〈AiCk〉; 〈Ai〉; 〈Bj〉; 〈Ck〉Þ by F
ðAiBjCkÞ in what follows.

Now, the two expressions (11) and (12) coincide if the follow-
ing conditions on the approximating function hold:

FðS1I2S3ÞþFðS1I2I3ÞþFðS1I2R3Þ ¼ 〈S1I2〉 ð14Þ
and

FðA1B2C3Þ ¼ FðB2A1C3Þ: ð15Þ
In particular, the first one indicates that the closure agrees with

the marginals it is constructed from; that is
P

C3
FðA1B2C3Þ ¼ 〈A1B2〉

(where the summation is over all possible states for node 3;
C3AfS3; I3;R3g). The second one indicates that the closure is
symmetric with respect to its first two arguments.

In the more general case, when m-state probabilities have to be
approximated on arbitrary graphs, we want the closure to be
consistent with its marginals:X
C3 ;D4 ;…;Mm

FðAiBjC3D4…MmÞ ¼ 〈AiBj〉: ð16Þ

The other sufficient condition is that it is symmetric in all of its
arguments. Note that this is not a necessary condition as the
specific example illustrated.
The closure introduced in this paper builds on the existing ones
for triplets. In particular, in the literature on population level
epidemiological models, a common closure approximation in
terms of pairs approximates 〈AiBjCk〉 by

〈AiBjCk〉�
〈AiBj〉〈AiCk〉〈BjCk〉

〈Ai〉〈Bj〉〈Ck〉
ð17Þ

if i and k are connected (closed triplet Kirkwood, 1935; Keeling,
1999), or by

〈AiBjCk〉�
〈AiBj〉〈BjCk〉

〈Bj〉
ð18Þ

if i and k are not connected. Both of these closures can be sub-
sumed within a more general framework for approximating m-
states (Sharkey and Wilkinson, 2015, Eq. (14)):

〈AiBjCJ3DJ4…MJm 〉� yðSði;jÞ;Ai;Bj;CJ3 ;DJ4 ;…;MJm Þ ð19Þ
where

yðSði;jÞ;Ai;Bj;CJ3 ;DJ4 ;…;MJm Þ ¼
∏ðh;lÞA Sði;jÞ 〈HJhLJl 〉

〈Ai〉k
S
i �1〈Bj〉

kSj �1〈CJ3 〉
kSJ3 �1…〈MJm 〉

kSJm �1

ð20Þ
and where kSJh is the degree of node Jh in the subgraph Sði;jÞ.

However, we observe that yðSði;jÞ;Ai;Bj;CJ3 ;DJ4 ;…;MJm Þ does not
satisfy the property (16). For this reason, following House and
Keeling (2010) and Rogers (2011) we introduce the following
‘improved pairwise closure' approximation:

YðSði;jÞ;Ai;Bj;CJ3 ;…;MJn Þ ¼ 〈AiBj〉
yðS ði;jÞ;Ai;Bj;CJ3 ;…;MJm ÞP

CJ3
;DJ4

;…;MJm
yðS ði;jÞ;Ai;Bj;CJ3 ;…;MJm Þ

ð21Þ
where S ði;jÞ ¼ Sði;jÞ⧹ði; jÞ.

It is easy to verify that YðSði;jÞ;Ai;Bj;CJ3 ;…;MJn Þ satisfies the
condition (16). Furthermore, if there are no edges between the
nodes J3; J4;…; Jm in Sði;jÞ, then YðSði;jÞ;Ai;Bj;CJ3 ;…;MJn Þ coincides
with yðSði;jÞ;Ai;Bj;CJ3 ;…;MJn Þ.
5. Numerical simulations

In this section, the behavior of the individual-based and pair-
based discrete-time moment closure models are compared with
stochastic simulations on static, undirected network topologies. As
an example of an arbitrary, random topology, we consider an
Erdös–Renyi (ER) undirected network with N¼100 nodes. The
network is constructed by connecting each pair of nodes with a
probability p¼0.03 (and checking that the final network is
strongly connected), which leads to an average node degree of
approximately 〈k〉� pN¼ 3. Epidemic spreading on this network
was simulated by initiating the same individual in the infective
state for the individual-based and pair-based models, and for
stochastic simulation of the underlying stochastic SIR model.
Simulations are initiated from a single infective because this is
where discrepancies are expected to be greatest (Sharkey, 2011).
For each set of parameters, 1000 stochastic simulations were run.
Fig. 2 illustrates the time series of the number of infective indi-
viduals I(t) generated by the two deterministic models and by
stochastic simulations for τ¼ 0:3 and γ ¼ 0:15. For the determi-
nistic models, we obtain the approximate expected number of
infective by using the fact that, in the absence of approximation,
the expected number of infective is IðtÞ ¼Pi〈Ii〉t . For stochastic
simulations, the average number of infective individuals over the
realizations of the stochastic process is shown.

The pair-based model offers a prediction which is in good
agreement with the average behavior of the stochastic simulations
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of the epidemics, while the individual-based model significantly
overestimates the number of infective individuals. In general, the
performance of the deterministic models depends on the given
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Fig. 3. The normalized size of the recovered population, R1=N, is shown as a
function of τ for fixed γ (γ ¼ 0:4) for an ER network with N¼100 nodes. Error bars
indicate the 10th and 90th percentiles of stochastic simulations.
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Fig. 4. Comparison between stochastic simulations (averaged over 1000 runs), individ
τ¼ 0:3, γ ¼ 0:15: (a) a tree network with k¼3; (b) a triangular lattice. Error bars indicate
magnification showing the small discrepancy between pair-based model and stochastic
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Fig. 2. Comparison between stochastic simulations (averaged over 1000 runs),
individual-based model and pair-based model for a ER network with N¼100,
p¼0.03, τ¼ 0:3, γ ¼ 0:15. Error bars indicate the 10th and 90th percentiles of sto-
chastic simulations.
values used for simulating the epidemic process; that is, of the
per-contact infection and recovery probabilities. This is clearly
visible in Fig. 3, showing the final size of the recovered population
normalized by the number of individuals, R1=N, as a function of τ
for fixed γ. For both low and large values of τ, the final size of the
recovered population is accurately estimated by both the
individual-based and pair-based models, while the largest errors
are observed for intermediate values of τ, where the variability of
the stochastic simulations is greater and the phenomenon of epi-
demic fade-out is still significant. In this region of parameter
space, the pair-based model significantly outperforms the
individual-based one. We also note that the pair-based model
captures the transition in Fig. 3 suggesting that it makes a rea-
sonably accurate estimation of the epidemic threshold, while the
error in the individual-based one is larger.

We now discuss the performance of the deterministic models
on two other topologies. The first of these is a tree with N¼100
nodes and an average node degree equal to 〈k〉� 3. The compar-
ison between the three models is illustrated in Fig. 4(a) and clearly
shows how the pair-based model accurately predicts the average
evolution of the stochastic simulations, while the individual-based
model fails to do this. This finding is in line with the results of
Sharkey (2008), Pellis et al. (2015) and Sharkey et al. (2015).
However, while pair-based closures for continuous-time SIR epi-
demic models on trees are exact (Sharkey and Wilkinson, 2015;
Sharkey et al., 2015), the closure expression (21) is not since it can
have infectious nodes on the denominator; this explains the small
discrepancy between the stochastic simulations and the prediction
offered by the pair-based model that can be observed in Fig. 4(a).
Note that this is also true of expression (20) which is equivalent to
(21) on a tree.

The other structure we consider (a triangular lattice, Fig. 4(b))
represents an attempt at a worst-case scenario where many cycles
of all sizes are present. Fig. 4(b) shows a significant difference
between the trend of the stochastic simulations and that of the
deterministic prediction. Although the individual-based model
could be argued to be a better qualitative representation of the
time evolution with regard to this figure, the pair-based model
gives a better representation of the initial phases of the infectious
time series. Furthermore, it still performs much better in terms of
predicting the final epidemic size; in fact, we have found R1=N¼
0:9730 on average for the stochastic simulations, R1=N¼ 0:9995
for the individual-based model, and R1=N¼ 0:9708 for the pair-
based model.
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ual-based model and pair-based model for two network topologies with N¼100,
the 10th and 90th percentiles of stochastic simulations. The inset in panel (a) is a
simulations in the tree network.
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Fig. 5. Comparison between stochastic simulations (averaged over 1000 runs) and
prediction offered by the MF and PA population models for a k-regular random
graph with N¼100 nodes. The parameters for the epidemic have been fixed as
τ¼ 0:4 and γ ¼ 0:15. Error bars indicate the 10th and 90th percentiles of stochastic
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6. Population models

In this section, we derive models at the population level by
starting from the individual- and pair-based models and assuming
some simplifying hypotheses. In particular, we consider idealized
k-regular random graphs without cycles (recognizing that, in
practice, finite versions of these do not exist). We then assume
homogeneity in the states of nodes and links (Sharkey, 2008):

〈Si〉t ¼ 〈S〉t ¼
½S�t
N

〈Ii〉t ¼ 〈I〉t ¼ ½I�t
N

〈Ri〉t ¼ 〈R〉t ¼
½R�t
N

〈SiIj〉t ¼ 〈SI〉t ¼ ½SI�t
Nk

ð22Þ

where ½S�t , ½I�t , and ½R�t represent the fraction of the population in
the S, I or R state. We have:

〈S〉tþ1 ¼ 〈S〉t�ΠSi-Ii

〈I〉tþ1 ¼ 〈I〉tþΠSi-Ii �Π Ii-Ri : ð23Þ

From the individual-based model we obtain a model at the
population level by applying homogeneity in the states of nodes.
Specifically, we apply expressions (22) in Eq. (5). If we indicate the
per time step probability of transmission across an SI link by τ,
then Eq. (5) becomes:

ΠSi-Ii � 〈S〉t ½1�ð1�τ〈I〉tÞk�: ð24Þ
while for the recovery probability we have:

Π I-R ¼ γ〈I〉t : ð25Þ
For reference, we shall refer to this as the mean-field (MF)
population model.

For the population model derived from the pair-based model,
in the following referred to as the pair-approximation (PA) popu-
lation model, we consider again Eqs. (23) but now rewrite ΠSi-Ii
starting from Eq. (2). If we drop the subscripts in the expression of
the joint probability and indicate again the per time step prob-
ability of transmission across an SI link with τ, then Eq. (2)
becomes:

ΠS-I ¼ 〈SIUUU…U〉t 1� 1�τð Þ½ � k

1

� �
þ 〈SIIUU…U〉t 1�ð1�τÞ2

h i k

2

� �
þ 〈SIIIU…U〉t 1�ð1�τÞ3
h i k

3

� �
þ⋯þ 〈SIIII…I〉t 1�ð1�τÞk

h i k

k

� �
ð26Þ

and where in this case, the recovery probability is also given by
Eq. (25).

In the hypothesis of a large k-regular random network that to
first approximation contains no triangular loops (in the more
general case, where a significant fraction of closed triangles
appears, the approach discussed in Keeling (1999) for continuous-
time models can be followed), the closure discussed in Section 4 is
written as:

〈SI1…IqUqþ1…Uk〉¼
〈SI〉q〈SU〉k�q

〈S〉k�1
: ð27Þ

and so

ΠS-I ¼
Xk
q ¼ 1

〈SI〉q〈SU〉k�q

〈S〉k�1
½1�ð1�τÞq�

k

q

 !
ð28Þ

The equations for 〈SS〉, 〈SI〉, 〈II〉, 〈RS〉, 〈RI〉 and 〈RR〉 read as:

〈SS〉tþ1 ¼ 〈SS〉t�ΠSS-IS�ΠSS-SI�ΠSS-II

〈SI〉tþ1 ¼ 〈SI〉tþΠSS-SI�ΠSI-SR�ΠSI-II�ΠSI-IR

〈II〉tþ1 ¼ 〈II〉tþΠSS-IIþΠSI-IIþΠ IS-II�Π II-RI�Π II-IR�Π II-RR

〈RS〉tþ1 ¼ 〈RS〉tþΠ IS-RS�ΠRS-RI

〈RI〉tþ1 ¼ 〈RI〉tþΠRS-RIþΠ II-RIþΠ IS-RI�ΠRI-RR

〈RR〉tþ1 ¼ 〈RR〉tþΠ IR-RRþΠRI-RRþΠ II-RR: ð29Þ
By using ΠSS-SI ¼ΠSS-IS , Π IS-II ¼ΠSI-II , Π II-IR ¼Π II-RI ,
Π IS-RS ¼ΠSI-SR, Π IS-RI ¼ΠSI-IR and Π IR-RR ¼ΠRI-RR we can
simplify this to:

〈SS〉tþ1 ¼ 〈SS〉t�2ΠSS-IS�ΠSS-II

〈SI〉tþ1 ¼ 〈SI〉tþΠSS-SI�Π IS-RS�ΠSI-II�Π IS-RI

〈II〉tþ1 ¼ 〈II〉tþΠSS-IIþ2ΠSI-II�2Π II-RI�Π II-RR

〈RS〉tþ1 ¼ 〈RS〉tþΠ IS-RS�ΠRS-RI

〈RI〉tþ1 ¼ 〈RI〉tþΠRS-RIþΠ II-RIþΠSI-IR�ΠRI-RR

〈RR〉tþ1 ¼ 〈RR〉tþ2ΠRI-RRþΠ II-RR ð30Þ
where

ΠSS-SI ¼ 〈SS〉
X2k�2

q ¼ 1

〈SI〉q〈SU〉2k�2�q

〈S〉2k�2

Xminðq;k�1Þ

h ¼ maxð0;q�kþ1Þ
½1�ð1�τÞq�h�ð1�τÞh

� k�1
h

� � k�1
q�h

 !

ΠSS-II ¼ 〈SS〉
X2k�2

q ¼ 1

〈SI〉q〈SU〉2k�2�q

〈S〉2k�2

Xminðq;k�1Þ

h ¼ maxð0;q�kþ1Þ
½1�ð1�τÞq�h�½1

�ð1�τÞh� k�1
h

� � k�1
q�h

 !

Π IS-RS ¼ 〈SI〉
Xk�1

q ¼ 0

〈SI〉q〈SU〉k�1�q

〈S〉k�1
γð1�τÞqþ1 k�1

q

 !

ΠSI-II ¼ 〈SI〉
Xk�1

q ¼ 0

〈SI〉q〈SU〉k�1�q

〈S〉k�1
ð1�γÞ½1�ð1�τÞqþ1�

k�1
q

 !

ΠSI-IR ¼ 〈SI〉
Xk�1

q ¼ 0

〈SI〉q〈SU〉k�1�q

〈S〉k�1
γ½1�ð1�τÞqþ1�

k�1
q

 !

Π II-RI ¼ 〈II〉γð1�γÞ
Π II-RR ¼ 〈II〉γ2

ΠRS-RI ¼ 〈RS〉
Xk�1

q ¼ 1

〈SI〉q〈SU〉k�1�q

〈S〉k�1
½1�ð1�τÞq�

k�1
q

 !

ΠRI-RR ¼ 〈RI〉γ: ð31Þ
These expressions are derived in Appendix B.
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To validate the two population models, we consider a k-regular
random graph with degree distribution PðkÞ ¼ δðk�3Þ. In Fig. 5 the
behavior of stochastic simulations is compared with the prediction
offered by the population models. Fig. 5 clearly shows that,
although not perfect, for the considered network the system
behavior may be captured by a description at the level of the
population based on pair-approximation. This description
improves as the number of initially infected individuals is
increased, thereby reducing the probability of stochastic fade-out.
On the contrary, the prediction offered by the MF population
model does not adequately capture the epidemic behavior.
7. Conclusions

In this work, we have derived the first and second order
discrete-time moment equations for a class of SIR epidemic
dynamics on networks. These equations are closed with the
introduction of appropriate approximations of the joint prob-
abilities appearing in them. While the second order pair-level
equations are novel, we demonstrated that the first order equa-
tions are equivalent to discrete-time models which exist in the
literature (Wang et al., 2003; Gomez et al., 2010) yielding a new
perspective on these models. A significant difference with respect
to the continuous-time counterpart of these models is that the
number of possible transitions between the states is larger. Addi-
tionally, the order of the terms appearing in the equations for
singlet states depends on the node degree rather than being at the
level of pairs as in a standard BBGKY hierarchy. To close the sys-
tem, we have thus introduced closure approximations for m-tuple
probabilities either by assuming statistical independence at the
level of individuals or at the level of pairs.

The deterministic models were compared with stochastic
simulations over several contact network topologies. We found
that the pair-based model is very accurate on tree networks,
although, unlike its continuous-time counterpart (Sharkey et al.,
2015), it is not exact. We also found that, similar to the
continuous-time case, an abundance of short cycles in the network
tends to increase the inaccuracy of the model. This is due to the
cycles in the network breaking the statistical independence
assumptions upon which the closures are based. Generally we
found that the pair-based model provides a more precise predic-
tion of the epidemic evolution than the individual-based model.

The models introduced may be helpful to gain insights into the
evolution of the epidemic dynamics at the level of individuals for
discrete-time processes, since they provide a deterministic
description of the infection probability for each individual. They
can also be used to ground the derivation of mean field models on
statistical assumptions at the microscopic scale. We presented two
examples of this, one where we derived a population-level model
(equivalent to that discussed in Buscarino et al, 2008) starting
from the individual-based model and one where we derived a
population-level model starting from the pair-based model. These
models are obtained via homogeneity assumptions on the indivi-
dual characteristics and network structure. The pair-level model is
valid for an idealized k-regular graph with no cycles (of course, in
practice we could only generate approximate finite versions of
such graphs).

Finally, we note that the analysis was restricted to static
undirected networks. Further work should be able to adapt these
models to describe epidemic processes on time-varying contact
networks.
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Appendix A. Transition terms for the pair-based model

In this Appendix, the expressions for the transition terms
appearing in the pair-based model (9) are derived.

Similar to ΠSiSj-IiSj , the term ΠSiSj-SiIj is given by:

ΠSiSj-SiIj ¼ 〈SiSjIJ3UJ4UJ5…UJm 〉t ½1�ð1�TjJ3 Þ�½1�TiJ3 �
þ 〈SiSjUJ3 IJ4UJ5…UJm 〉t ½1�ð1�TjJ4 Þ�½1�TiJ4 �þ⋯

þ 〈SiSjIJ3 IJ4UJ5…UJm 〉t ½1�ð1�TjJ3 Þð1�TjJ4 Þ�½ð1�TiJ3 Þð1�TiJ4 Þ�

þ 〈SiSjUJ3 IJ4 IJ5…UJm 〉t ½1�ð1�TjJ4 Þð1�TjJ5 Þ�½ð1�TiJ4 Þð1�TiJ5 Þ�

þ⋯þ〈SiSjIJ3 IJ4 IJ5…UJm 〉t ½1�ð1�TjJ3 Þð1�TjJ4 Þð1�TjJ5 Þ�½ð1�TiJ3 Þ

�ð1�TiJ4 Þð1�TiJ5 Þ�þ⋯þ〈SiSjIJ3 IJ4 IJ5…IJm 〉t 1� ∏
m

h ¼ 3
ð1�TjJh Þ

" #

� ∏
m

h ¼ 3
ð1�TiJh Þ

" #
: ðA:1Þ

To write the term ΠSiSj-Ii Ij , we have to take into account that
now both i and j have to be infected, so that:

ΠSiSj-Ii Ij ¼ 〈SiSjIJ3UJ4UJ5…UJm 〉t ½1�ð1�TiJ3 Þ�½1�ð1�TjJ3 Þ�
þ 〈SiSjUJ3 IJ4UJ5…UJm 〉t ½1�ð1�TiJ4 Þ�½1�ð1�TjJ4 Þ�
þ⋯þ 〈SiSjIJ3 IJ4UJ5…UJm 〉t ½1�ð1�TiJ3 Þð1�TiJ4 Þ�½1�ð1�TjJ3 Þð1�TjJ4 Þ�

þ 〈SiSjUJ3 IJ4 IJ5…UJm 〉t ½1�ð1�TiJ4 Þð1�TiJ5 Þ�½1�ð1�TjJ4 Þð1�TjJ5 Þ�
þ⋯þ 〈SiSjIJ3 IJ4 IJ5…UJm 〉t ½1�ð1�TiJ3 Þð1�TiJ4 Þ
�ð1�TiJ5 Þ�½1�ð1�TjJ3 Þð1�TjJ4 Þð1�TjJ5 Þ�þ⋯þ〈SiSjIJ3 IJ4 IJ5…IJm 〉t

� 1� ∏
m

h ¼ 3
ð1�TiJh Þ

" #
1� ∏

m

h ¼ 3
ð1�TjJh Þ

" #
: ðA:2Þ

The transition from SiIj to SiRj occurs if i is not infected and j
gets recovered, so that

ΠSiIj-SiRj
¼ 〈SiIjUJ3UJ4UJ5…UJm 〉tγð1�TijÞ
þ 〈SiIjIJ3UJ4UJ5…UJm 〉tγð1�TijÞð1�TiJ3 Þ
þ 〈SiIjUJ3 IJ4UJ5…UJm 〉tγð1�TijÞð1�TiJ4 Þ
þ⋯þ 〈SiIjIJ3 IJ4UJ5…UJm 〉tγð1�TijÞð1�TiJ3 Þð1�TiJ4 Þ
þ 〈SiIjUJ3 IJ4 IJ5…UJm 〉tγð1�TijÞð1�TiJ4 Þð1�TiJ5 Þ
þ⋯þ 〈SiIjIJ3 IJ4 IJ5…UJm 〉tγð1�TijÞð1�TiJ3 Þð1�TiJ4 Þð1�TiJ5 Þ

þ⋯þ 〈SiIjIJ3 IJ4 IJ5…IJm 〉tγð1�TijÞ ∏
m

h ¼ 3
ð1�TiJh Þ ðA:3Þ

where the term 〈SiIjUJ3UJ4UJ5…UJm 〉tγð1�TijÞ takes into account
that, even if J3; J4;…; Jm are not infective, i may still be infected
through the link with j, so 〈SiIjUJ3UJ4UJ5…UJm 〉t is multiplied by the
recovery probability γ and the probability that j does not infect i;
that is, ð1�TijÞ.

Similarly, the term Π IiSj-RiSj is given by:

Π IiSj-RiSj ¼ 〈IiSjUJ3UJ4UJ5…UJm 〉tγð1�TijÞ
þ 〈IiSjIJ3UJ4UJ5…UJm 〉tγð1�TijÞð1�TjJ3 Þ
þ 〈IiSjUJ3 IJ4UJ5…UJm 〉tγð1�TijÞð1�TjJ4 Þ
þ⋯þ 〈IiSjIJ3 IJ4UJ5…UJm 〉tγð1�TijÞð1�TjJ3 Þð1�TjJ4 Þ
þ 〈IiSjUJ3 IJ4 IJ5…UJm 〉tγð1�TijÞð1�TjJ4 Þð1�TjJ5 Þ
þ⋯þ 〈IiSjIJ3 IJ4 IJ5…UJm 〉tγð1�TijÞð1�TjJ3 Þð1�TjJ4 Þð1�TjJ5 Þ

þ⋯þ 〈IiSjIJ3 IJ4 IJ5…IJm 〉tγð1�TijÞ ∏
m

h ¼ 3
ð1�TjJh Þ: ðA:4Þ
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For the transition from SiIj to IiIj to occur, then i has to become
infected (eventually through the link with j or one of its neighbors)
and j has not to recover, so that:

ΠSiIj-Ii Ij ¼ 〈SiIjUJ3UJ4UJ5…UJm 〉tð1�γÞ½1�ð1�TijÞ�
þ〈SiIjIJ3UJ4UJ5…UJm 〉tð1�γÞ½1�ð1�TijÞð1�TiJ3 Þ�
þ〈SiIjUJ3 IJ4UJ5…UJm 〉tð1�γÞ½1�ð1�TijÞð1�TiJ4 Þ�

þ⋯þ 〈SiIjIJ3 IJ4UJ5…UJm 〉tð1�γÞ½1�ð1�TijÞð1�TiJ3 Þð1�TiJ4 Þ�
þ〈SiIjUJ3 IJ4 IJ5…UJm 〉tð1�γÞ½1�ð1�TijÞð1�TiJ4 Þð1�TiJ5 Þ�
þ⋯þ 〈SiIjIJ3 IJ4 IJ5…UJm 〉tð1�γÞ½1�ð1�TijÞð1�TiJ3 Þð1�TiJ4 Þ

�ð1�TiJ5 Þ�þ⋯þ 〈SiIjIJ3 IJ4 IJ5…IJm 〉tð1�γÞ½1�ð1�TijÞ ∏
m

h ¼ 3
ð1�TiJh Þ�:

ðA:5Þ
Similarly, Π IiSj-Ii Ij reads:

Π IiSj-Ii Ij ¼ 〈IiSjUJ3UJ4UJ5…UJm 〉tð1�γÞ½1�ð1�TijÞ�
þ〈IiSjIJ3UJ4UJ5…UJm 〉tð1�γÞ½1�ð1�TijÞð1�TjJ3 Þ�
þ〈IiSjUJ3 IJ4UJ5…UJm 〉tð1�γÞ½1�ð1�TijÞð1�TjJ4 Þ�
þ⋯þ 〈IiSjIJ3 IJ4UJ5…UJm 〉tð1�γÞ½1�ð1�TijÞð1�TjJ3 Þð1�TjJ4 Þ�

þ〈IiSjUJ3 IJ4 IJ5…UJm 〉tð1�γÞ½1�ð1�TijÞð1�TjJ4 Þð1�TjJ5 Þ�
þ⋯þ 〈IiSjIJ3 IJ4 IJ5…UJm 〉tð1�γÞ½1�ð1�TijÞð1�TjJ3 Þð1�TjJ4 Þð1�TjJ5 Þ�

þ⋯þ 〈IiSjIJ3 IJ4 IJ5…IJm 〉tð1�γÞ½1�ð1�TijÞ ∏
m

h ¼ 3
ð1�TjJh Þ�:

ðA:6Þ
The transition from SiIj to IiRj occurs when i becomes infected

and j recovers, so that:

ΠSiIj-IiRj
¼ 〈SiIjUJ3UJ4UJ5…UJm 〉tγ½1�ð1�TijÞ�

þ〈SiIjIJ3UJ4UJ5…UJm 〉tγ½1�ð1�TijÞð1�TiJ3 Þ�
þ〈SiIjUJ3 IJ4UJ5…UJm 〉tγ½1�ð1�TijÞð1�TiJ4 Þ�
þ⋯þ 〈SiIjIJ3 IJ4UJ5…UJm 〉tγ½1�ð1�TijÞð1�TiJ3 Þð1�TiJ4 Þ�
þ〈SiIjUJ3 IJ4 IJ5…UJm 〉tγ½1�ð1�TijÞð1�TiJ4 Þð1�TiJ5 Þ�
þ⋯þ〈SiIjIJ3 IJ4 IJ5…UJm 〉tγ½1�ð1�TijÞð1�TiJ3 Þð1�TiJ4 Þð1�TiJ5 Þ�

þ⋯þ 〈SiIjIJ3 IJ4 IJ5…IJm 〉tγ½1�ð1�TijÞ ∏
m

h ¼ 3
ð1�TiJh Þ� ðA:7Þ

and similarly

Π IiSj-RiIj ¼ 〈IiSjUJ3UJ4UJ5…UJm 〉tγ½1�ð1�TijÞ�
þ〈IiSjIJ3UJ4UJ5…UJm 〉tγ½1�ð1�TijÞð1�TjJ3 Þ�
þ〈IiSjUJ3 IJ4UJ5…UJm 〉tγ½1�ð1�TijÞð1�TjJ4 Þ�
þ⋯þ 〈IiSjIJ3 IJ4UJ5…UJm 〉tγ½1�ð1�TijÞð1�TjJ3 Þ
�ð1�TjJ4 Þ�þ 〈IiSjUJ3 IJ4 IJ5…UJm 〉tγ½1�ð1�TijÞð1�TjJ4 Þð1�TjJ5 Þ�

þ⋯þ〈IiSjIJ3 IJ4 IJ5…UJm 〉tγ½1�ð1�TijÞð1�TjJ3 Þð1�TjJ4 Þð1�TjJ5 Þ�

þ⋯þ 〈IiSjIJ3 IJ4 IJ5…IJm 〉tγ½1�ð1�TijÞ ∏
m

h ¼ 3
ð1�TjJh Þ�: ðA:8Þ

The transition from IiIj to RiIj occurs when j recovers and i does
not, so that

Π Ii Ij-RiIj ¼ 〈IiIj〉tγð1�γÞ: ðA:9Þ
For a homogeneous recovery rate, the term Π Ii Ij-IiRj

has the
same expression as for Π Ii Ij-RiIj :

Π Ii Ij-IiRj
¼ 〈IiIj〉tγð1�γÞ: ðA:10Þ

The term ΠRiSj-RiIj takes into account that the corresponding
transition occurs if j gets the infection:

ΠRiSj-RiIj ¼ 〈RiSjIJ3UJ4UJ5…UJm 〉t ½1�ð1�TjJ3 Þ�
þ〈RiSjUJ3 IJ4UJ5…UJm 〉t ½1�ð1�TjJ4 Þ�
þ⋯þ 〈RiSjIJ3 IJ4UJ5…UJm 〉t ½1�ð1�TjJ3 Þð1�TjJ4 Þ�
þ〈RiSjUJ3 IJ4 IJ5…UJm 〉t ½1�ð1�TjJ4 Þð1�TjJ5 Þ�
þ⋯þ 〈RiSjIJ3 IJ4 IJ5…UJm 〉t ½1�ð1�TjJ3 Þð1�TjJ4 Þð1�TjJ5 Þ�

þ⋯þ 〈RiSjIJ3 IJ4 IJ5…IJm 〉t ½1� ∏
m

h ¼ 3
ð1�TjJh Þ�: ðA:11Þ

The three remaining terms give the probabilities to reach the
absorbing state RiRj from IiRj, RiIj or IiIj and are given by:

Π IiRj-RiRj ¼ 〈IiRj〉tγ ðA:12Þ

ΠRiIj-RiRj
¼ 〈RiIj〉tγ ðA:13Þ

Π Ii Ij-RiRj
¼ 〈IiIj〉tγ2: ðA:14Þ
Appendix B. Transition terms for the pair-approximation
population model

In this Appendix, the transitions terms appearing in the
population model (30) are detailed.

The term ΠSS-IS is written by considering that the first node
has to be infected by one of its k�1 neighbors (the k-th is in the S
state) and the other node has not to be infected; that is:

ΠSS-IS ¼ 〈SSI1U2…Uk�1UkUkþ1…U2k�2〉t ½1�ð1�τÞ�ð1�τÞ0

� k�1
0

� �
k�1
1

� �
þ⋯þ 〈SSU1U2…Uk�1IkUkþ1…U2k�2〉t

�½1�ð1�τÞ0�ð1�τÞ k�1
1

� �
k�1
0

� �

þ⋯þ 〈SSI1I2…Uk�1UkUkþ1…U2k�2〉t ½1�ð1�τÞ2�ð1�τÞ0

� k�1
0

� �
k�1
2

� �
þ⋯þ 〈SSU1U2…Uk�1IkIkþ1…U2k�2〉t

�½1�ð1�τÞ0�ð1�τÞ2 k�1
2

� �
k�1
0

� �

þ⋯þ 〈SSI1U2…Uk�1IkUkþ1…U2k�2〉t ½1�ð1�τÞ1�ð1�τÞ1

� k�1
1

� �
k�1
1

� �
þ⋯þ 〈SSI1…I2k�2〉t ½1�ð1�τÞk�1� k�1

k�1

� �

� k�1
k�1

� �
: ðB:1Þ

By taking into account the closure:

〈SSI1…IqUqþ1…U2k�2〉¼ 〈SS〉
〈SI〉q〈SU〉2k�2�q

〈S〉2k�2
ðB:2Þ

and after some manipulation, Eq. (B.1) becomes:

ΠSS-IS ¼ 〈SS〉
X2k�2

q ¼ 1

〈SI〉q〈SU〉2k�2�q

〈S〉2k�2

Xminðq;k�1Þ

h ¼ maxð0;q�kþ1Þ
½1�ð1�τÞq�h�

�ð1�τÞh k�1
h

� � k�1
q�h

 !
: ðB:3Þ

Similar to Eq. (B.3), the term ΠSS-II is written as:

ΠSS-II ¼ 〈SS〉
X2k�2

q ¼ 1

〈SI〉q〈SU〉2k�2�q

〈S〉2k�2

Xminðq;k�1Þ

h ¼ maxð0;q�kþ1Þ
½1�ð1�τÞq�h�

�½1�ð1�τÞh� k�1
h

� � k�1
q�h

 !
: ðB:4Þ

The term Π IS-RS reads:

Π IS-RS ¼ 〈SIUUU…U〉tγð1�τÞþ 〈SIIUU…U〉tγð1�τÞ2 k�1
1

� �

þ 〈SIIIU…U〉tγð1�τÞ3 k�1
2

� �
þ⋯þ 〈SIIII…I〉tγð1�τÞk k�1

k�1

� �
:

ðB:5Þ
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Considering the closure

〈SII1…IqUqþ1…Uk�1〉¼ 〈SI〉
〈SI〉q〈SU〉k�1�q

〈S〉k�1
ðB:6Þ

the term Π IS-RS becomes:

ΠSI-SR ¼ 〈SI〉
Xk�1

q ¼ 0

〈SI〉q〈SU〉k�1�q

〈S〉k�1
γð1�τÞqþ1 k�1

q

 !
: ðB:7Þ

The term ΠSI-II is:

ΠSI-II ¼ 〈SIUUU…U〉tð1�γÞ½1�ð1�τÞ�þ 〈SIIUU…U〉tð1�γÞ

�½1�ð1�τÞ2� k�1
1

� �
þ 〈SIIIU…U〉tð1�γÞ½1�ð1�τÞ3� k�1

2

� �

þ⋯þ 〈SIIII…I〉tð1�γÞ½1�ð1�τÞk� k�1
k�1

� �
ðB:8Þ

and with the closure (B.6) it becomes:

ΠSI-II ¼ 〈SI〉
Xk�1

q ¼ 0

〈SI〉q〈SU〉k�1�q

〈S〉k�1
ð1�γÞ½1�ð1�τÞqþ1�

k�1
q

 !
:

ðB:9Þ
The term ΠSI-IR is given by:

ΠSI-IR ¼ 〈SIUUU…U〉tγ½1�ð1�τÞ�þ 〈SIIUU…U〉tγ½1�ð1�τÞ2�

� k�1
1

� �
þ 〈SIIIU…U〉tγ½1�ð1�τÞ3� k�1

2

� �

þ⋯þ 〈SIIII…I〉tγ½1�ð1�τÞk� k�1
k�1

� �
ðB:10Þ

and considering the closure (B.6) it becomes:

ΠSI-IR ¼ 〈SI〉
Xk�1

q ¼ 0

〈SI〉q〈SU〉k�1�q

〈S〉k�1
γ½1�ð1�τÞqþ1�

k�1
q

 !
: ðB:11Þ

The term Π II-RI reads:

Π II-RI ¼ 〈II〉γð1�γÞ ðB:12Þ
and the term Π II-RR is:

Π II-RR ¼ 〈II〉γ2: ðB:13Þ
The term ΠRS-RI reads as:

ΠRS-RI ¼ 〈RSIUU…U〉t ½1�ð1�τÞ� k�1
1

� �

þ 〈RSIIU…U〉t ½1�ð1�τÞ2� k�1
2

� �

þ⋯þ 〈RSIII…I〉t ½1�ð1�τÞk� k�1
k�1

� �
: ðB:14Þ

Taking into account the closure:

〈RSI1…IqUqþ1…Uk�1〉¼ 〈RS〉
〈SI〉q〈SU〉k�1�q

〈S〉k�1
ðB:15Þ

ΠRS-RI becomes:

ΠRS-RI ¼ 〈RS〉
Xk�1

q ¼ 1

〈SI〉q〈SU〉k�1�q

〈S〉k�1
½1�ð1�τÞq�

k�1
q

 !
: ðB:16Þ

Finally, the term ΠRI-RR is given by:

ΠRI-RR ¼ 〈RI〉γ: ðB:17Þ
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