133 research outputs found

    Reconstructing complex regions of genomes using long-read sequencing technology

    Get PDF
    Cataloged from PDF version of article.Obtaining high-quality sequence continuity of complex regions of recent segmental duplication remains one of the major challenges of finishing genome assemblies. In the human and mouse genomes, this was achieved by targeting large-insert clones using costly and laborious capillary-based sequencing approaches. Sanger shotgun sequencing of clone inserts, however, has now been largely abandoned, leaving most of these regions unresolved in newer genome assemblies generated primarily by next-generation sequencing hybrid approaches. Here we show that it is possible to resolve regions that are complex in a genome-wide context but simple in isolation for a fraction of the time and cost of traditional methods using long-read single molecule, real-time (SMRT) sequencing and assembly technology from Pacific Biosciences (PacBio). We sequenced and assembled BAC clones corresponding to a 1.3-Mbp complex region of chromosome 17q21.31, demonstrating 99.994% identity to Sanger assemblies of the same clones. We targeted 44 differences using Illumina sequencing and find that PacBio and Sanger assemblies share a comparable number of validated variants, albeit with different sequence context biases. Finally, we targeted a poorly assembled 766-kbp duplicated region of the chimpanzee genome and resolved the structure and organization for a fraction of the cost and time of traditional finishing approaches. Our data suggest a straightforward path for upgrading genomes to a higher quality finished state

    Resolving the complexity of the human genome using single-molecule sequencing

    Get PDF
    The human genome is arguably the most complete mammalian reference assembly, yet more than 160 euchromatic gaps remain and aspects of its structural variation remain poorly understood ten years after its completion. To identify missing sequence and genetic variation, here we sequence and analyse a haploid human genome (CHM1) using single-molecule, real-time DNA sequencing. We close or extend 55% of the remaining interstitial gaps in the human GRCh37 reference genome - 78% of which carried long runs of degenerate short tandem repeats, often several kilobases in length, embedded within (G+C)-rich genomic regions. We resolve the complete sequence of 26,079 euchromatic structural variants at the base-pair level, including inversions, complex insertions and long tracts of tandem repeats. Most have not been previously reported, with the greatest increases in sensitivity occurring for events less than 5 kilobases in size. Compared to the human reference, we find a significant insertional bias (3:1) in regions corresponding to complex insertions and long short tandem repeats. Our results suggest a greater complexity of the human genome in the form of variation of longer and more complex repetitive DNA that can now be largely resolved with the application of this longer-read sequencing technology

    A photoresponsive graphene oxide-C60 conjugate

    Full text link
    [EN] An all-carbon donor–acceptor hybrid combining graphene oxide (GO) and C60 has been prepared. Laser flash photolysis measurements revealed the occurrence of photoinduced electron transfer from the GO electron donor to the C60 electron acceptor in the conjugate.This research was financially supported by the Spanish Ministry of Economy and Competitiveness of Spain (CTQ2010-17498, MAT2010-20843-C02-01 and PLE-2009-0038) and a Severo Ochoa operating grant from the Spanish Ministry of Economy and Competitiveness. We also acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, Comunidad de Madrid (CAM 09-S2009_MAT-1467), Generalitat Valenciana (PROMETEO program), and VLC/Campus Microcluster "Nanomateriales Funcionales y Nanodispositivos".Barrejón, M.; Vizuete, M.; Gómez Escalonilla, M.; Fierro, J.; Berlanga, I.; Zamora, F.; Abellán, G.... (2014). A photoresponsive graphene oxide-C60 conjugate. Chemical Communications. 50(65):9053-9055. doi:10.1039/C3CC49589BS90539055506

    Phthalocyanine-nanocarbon ensembles: From discrete molecular and supramolecular systems to hybrid nanomaterials

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Accounts of Chemical Research, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/ar5004384Conspectus Phthalocyanines (Pcs) are macrocyclic and aromatic compounds that present unique electronic features such as high molar absorption coefficients, rich redox chemistry, and photoinduced energy/electron transfer abilities that can be modulated as a function of the electronic character of their counterparts in donor-acceptor (D-A) ensembles. In this context, carbon nanostructures such as fullerenes, carbon nanotubes (CNTs), and, more recently, graphene are among the most suitable Pc companions. Pc-C60 ensembles have been for a long time the main actors in this field, due to the commercial availability of C60 and the ell-established synthetic methods for its functionalization. As a result, many Pc-C60 architectures have been prepared, featuring different connectivities (covalent or supramolecular), intermolecular interactions (self-organized or molecularly dispersed species), and Pc HOMO/LUMO levels. All these elements provide a versatile toolbox for tuning the photophysical properties in terms of the type of process (photoinduced energy/electron transfer), the nature of the interactions beteen the electroactive units (through bond or space), and the kinetics of the formation/decay of the photogenerated species. Some recent trends in this field include the preparation of stimuli-responsive multicomponent systems ith tunable photophysical properties and highly ordered nanoarchitectures and surface-supported systems shoing high charge mobilities. A breakthrough in the Pc-nanocarbon field as the appearance of CNTs and graphene, hich opened a ne avenue for the preparation of intriguing photoresponsive hybrid ensembles shoing light-stimulated charge separation. The scarce solubility of these 1-D and 2-D nanocarbons, together ith their loer reactivity ith respect to C60 stemming from their less strained sp2 carbon netorks, has not meant an unsurmountable limitation for the preparation of variety of Pc-based hybrids. These systems, hich sho improved solubility and dispersibility features, bring together the unique electronic transport properties of CNTs and graphene ith the excellent light-harvesting and tunable redox properties of Pcs. A singular and distinctive feature of these Pc-CNT/graphene (single- or fe-layers) hybrid materials is the control of the direction of the photoinduced charge transfer as a result of the band-like electronic structure of these carbon nanoforms and the adjustable electronic levels of Pcs. Moreover, these conjugates present intensified light-harvesting capabilities resulting from the grafting of several chromophores on the same nanocarbon platform.In this Account, recent progress in the construction of covalent and supramolecular Pc-nanocarbon ensembles is summarized, ith a particular emphasis on their photoinduced behavior. e believe that the high degree of control achieved in the preparation of Pc-carbon nanostructures, together ith the increasing knoledge of the factors governing their photophysics, ill allo for the design of next-generation light-fueled electroactive systems. Possible implementation of these Pc-nanocarbons in high performance devices is envisioned, finally turning into reality much of the expectations generated by these materialsFinancial support from the Spanish MICINN (CTQ2011-24187/BQU), the Comunidad de Madrid (S2013/MIT-2841 FOTOCARBON) and the EU (“SO2S” FP7-PEOPLE-2012-ITN, no.: 316975) is acknowledge

    Urbanization and traffic related exposures as risk factors for Schizophrenia

    Get PDF
    BACKGROUND: Urban birth or upbringing increase schizophrenia risk. Though unknown, the causes of these urban-rural differences have been hypothesized to include, e.g., infections, diet, toxic exposures, social class, or an artefact due to selective migration. METHODS: We investigated the hypothesis that traffic related exposures affect schizophrenia risk and that this potential effect is responsible for the urban-rural differences. The geographical distance from place of residence to nearest major road was used as a proxy variable for traffic related exposures. We used a large population-based sample of the Danish population (1.89 million people) including information on all permanent addresses linked with geographical information on all roads and house numbers in Denmark. Schizophrenia in cohort members (10,755 people) was identified by linkage with the Danish Psychiatric Central Register. RESULTS: The geographical distance from place of residence to nearest major road had a significant effect. The highest risk was found in children living 500–1000 metres from nearest major road (RR = 1.30 (95% Confidence Interval: 1.17–1.44). However, when we accounted for the degree of urbanization, the geographical distance to nearest major road had no significant effect. CONCLUSION: The cause(s) or exposure(s) responsible for the urban-rural differences in schizophrenia risk were closer related to the degree of urbanization than to the geographical distance to nearest major road. Traffic related exposures might thus be less likely explanations for the urban-rural differences in schizophrenia risk
    • …
    corecore