67 research outputs found

    The prediction of pressure distributions on an arrow-wing configuration including the effect of camber, twist, and a wing fin

    Get PDF
    Wind tunnel tests of an arrow wing body configuration consisting of flat, twisted, and cambered twisted wings were conducted at Mach numbers from 0.40 to 2.50 to provide an experimental data base for comparison with theoretical methods. A variety of leading and trailing edge control surface deflections were included in these tests, and in addition, the cambered twisted wing was tested with an outboard vertical fin to determine its effect on wing and control surface loads. Theory experiment comparisons show that current state of the art linear and nonlinear attached flow methods were adequate at small angles of attack typical of cruise conditions. The incremental effects of outboard fin, wing twist, and wing camber are most accurately predicted by the advanced panel method PANAIR. Results of the advanced panel separated flow method, obtained with an early version of the program, show promise that accurate detailed pressure predictions may soon be possible for an aeroelasticity deformed wing at high angles of attack

    Study of the single body yawed-wing aircraft concept

    Get PDF
    Areas relating to the development and improvement of the single-fuselage, yawed-wing transonic transport concept were investigated. These included: (1) developing an alternate configuration with a simplified engine installation;(2) determining a structural design speed placard that would allow the engine-airframe match for optimum airplane performance; and (3) conducting an aeroelastic stability and control analysis of the yawed-wing configuration with a flexible wing. A two-engine, single-fuselage, yawed-wing configuration was developed that achieved the Mach 1.2 design mission at 5560 km (3000 nmi) and payload of 18,140 kg (40,000 lb) with a gross weight of 217,700 kg (480,000 lb). This airplane was slightly heavier than the aft-integrated four-engine configuration that had been developed in a previous study. A modified structural design speed placard, which was determined, resulted in a 6% to 8% reduction in the gross weight of the yawed-wing configurations. The dynamic stability characteristics of the single-fuselage yawed-wing configuration were found to be very dependent on the magnitude of the pitch/roll coupling, the static longitudinal stability, and the dihedral effect

    High transonic speed transport aircraft study

    Get PDF
    An initial design study of high-transonic-speed transport aircraft has been completed. Five different design concepts were developed. These included fixed swept wing, variable-sweep wing, delta wing, double-fuselage yawed-wing, and single-fuselage yawed-wing aircraft. The boomless supersonic design objectives of range=5560 Km (3000 nmi), payload-18 143 kg (40 000lb), Mach=1.2, and FAR Part 36 aircraft noise levels were achieved by the single-fuselage yawed-wing configuration with a gross weight of 211 828 Kg (467 000 lb). A noise level of 15 EPNdB below FAR Part 36 requirements was obtained with a gross weight increase to 226 796 Kg (500 000 lb). Although wing aeroelastic divergence was a primary design consideration for the yawed-wing concepts, the graphite-epoxy wings of this study were designed by critical gust and maneuver loads rather than by divergence requirements. The transonic nacelle drag is shown to be very sensitive to the nacelle installation. A six-degree-of-freedom dynamic stability analysis indicated that the control coordination and stability augmentation system would require more development than for a symmetrical airplane but is entirely feasible. A three-phase development plan is recommended to establish the full potential of the yawed-wing concept

    Larval feeding of Cydalima perspectalis on box trees with a focus on the spatial and temporal distribution

    Get PDF
    The box tree moth Cydalima perspectalis is an invasive pest on box trees originating from Eastern Asia which spread throughout Europe. We assessed the efficacy of photo-eclectors (emergence boxes) for the detection of its larvae. We also investigated their spatial distribution on the hosts and the spatial and temporal distribution of the leaf damage caused by this pest in Slovakia. Our results showed non-uniform vertical distribution of the overwintering larvae and leaf damage on the trees. The larval abundance in the spring was significantly affected by the height of the branches above the ground. During spring, the larvae occurred most abundantly in the upper parts of the trees. The leaf damage was greatest in the lower parts throughout the growing season. During the progress of the infestation, the development of the damage in the lower and middle parts was similar. In the upper part, the initial increase in the damage was slow, but accelerated four months before the complete defoliation. The field estimation of the proportion of damaged leaves and the accurate assessment based on counting the damaged leaves suggest a consis­tency between these estimates. Hence, a quick field estimation of the leaf damage may be utilised by horticultural practices

    Aerodynamics of aero-engine installation

    Get PDF
    This paper describes current progress in the development of methods to assess aero-engine airframe installation effects. The aerodynamic characteristics of isolated intakes, a typical transonic transport aircraft as well as a combination of a through-flow nacelle and aircraft configuration have been evaluated. The validation task for an isolated engine nacelle is carried out with concern for the accuracy in the assessment of intake performance descriptors such as mass flow capture ratio and drag rise Mach number. The necessary mesh and modelling requirements to simulate the nacelle aerodynamics are determined. Furthermore, the validation of the numerical model for the aircraft is performed as an extension of work that has been carried out under previous drag prediction research programmes. The validation of the aircraft model has been extended to include the geometry with through flow nacelles. Finally, the assessment of the mutual impact of the through flow nacelle and aircraft aerodynamics was performed. The drag and lift coefficient breakdown has been presented in order to identify the component sources of the drag associated with the engine installation. The paper concludes with an assessment of installation drag for through-flow nacelles and the determination of aerodynamic interference between the nacelle and the aircraft

    The Invasive Box Tree Moth Five Years after Introduction in Slovakia: Damage Risk to Box Trees in Urban Habitats

    Get PDF
    The box tree moth Cydalima perspectalis (Walker, 1859) (Lepidoptera: Crambidae) is an invasive species in Europe and a serious pest of box trees (Buxus spp.). In Slovakia, Central Europe, it was first reported in 2012 within the low elevation region with a warm climate. We hypothesize that the cold mountain region of Slovakia would provide less suitable conditions for the spread of this species, indicated by no or only slight damage to box trees. Five years after C. perspectalis was first recorded in Slovakia, we assessed the probability of occurrence of the moth and the probability of damage to box trees (Buxus sempervirens) by its larvae, using temperature and altitude data as predictors. In June and July 2017, at 156 locations (towns and villages) between the altitudes of 109 and 888 m, we recorded damage and categorized the intensity of damage to box trees by C. perspectalis using a four-point scale. Box trees infested by C. perspectalis were recorded in most locations at altitudes between 110 and 400 m with the mean annual temperature varying between 10.5 and 7.9 °C. High damage to box trees was found in locations up to 340 m a.s.l. characterized by mean annual temperatures above 8.5 °C. Our results suggested high probability (>60%) of any damage to box trees for the area up to approximately 300 m a.s.l. (mean annual temperature above 8.4 °C), and high probability (>60%) of high damage for the area up to approximately 250 m a.s.l. (mean annual temperature above 9 °C). The area where damage to box trees was predicted using the altitude showed great overlap with the area predicted using the mean annual temperature. The area with the probability of any damage was only slightly larger than the area with the probability of high damage

    Scots pine forest in Central Europe as a habitat for Harmonia axyridis: temporal and spatial patterns in the population of an alien ladybird

    Get PDF
    Understanding of habitat favourability has wide relevance to the invasion biology of alien species. We studied the seasonal dynamics of the alien ladybird Harmonia axyridis (Coleoptera: Coccinellidae) in monoculture Scots pine forest stands in south-west Slovakia, Central Europe, from April 2013 to March 2015. Adult H. axyridis were collected monthly across seven randomly selected pine stands of different ages and canopy closure, from the lower branches of pine trees, and larvae were recorded qualitatively. Adults were recorded all year round, most abundantly in November and least abundantly in February. The relationship between the abundance of H. axyridis and selected forest stand characteristics was modelled using the negative binomial Generalized Additive Model with penalized spline component in month (seasonality) effect, year, canopy closure and age effects and the random effect of forest stand (sample area effect). The abundance of H. axyridis was significantly influenced by the age of stand and seasonality (with month granularity) for both closed and open canopy stands, whereas the effects of canopy closure and sample area were not significant. The bimodal pattern of seasonal dynamics of H. axyridis on Scots pine was common for closed and open canopy stands, with two peaks reflecting the cyclic movement of the species from and to overwintering sites. Harmonia axyridis utilized certain pine stands preferably for foraging during the growing season and certain stands for refuge during winter. The ladybirds were found in highest numbers in the 15 year old closed canopy stand (overwintering site). The occurrence of both adults and larvae in most stands indicated a suitability of Scots pine forest for ladybird breeding. The model of year-round dynamics of H. axyridis has been presented for the first time within the invaded range of the ladybird in Europe

    Development of the European Ladybirds Smartphone Application: A Tool for Citizen Science

    Get PDF
    Wildlife observations submitted by volunteers through citizen science initiatives are increasingly used within research and policy. Ladybirds are popular and charismatic insects, with most species being relatively easy to identify from photographs. Therefore, they are considered an appropriate taxonomic group for engaging people through citizen science initiatives to contribute long-term and large-scale datasets for use in many different contexts. Building on the strengths of a mass participation citizen science survey on ladybirds in the United Kingdom, we have developed a mobile application for ladybird recording and identification across Europe. The main aims of the application are to: (1) compile distribution data for ladybird species throughout Europe, and use this to assess changes in distribution over time; (2) connect and engage people in nature and increase awareness about the diversity and ecological importance of ladybirds. In developing the application we first constructed a database including ladybird species from the United Kingdom, Czech Republic, Slovakia, Italy, Belgium, and Portugal with associated information on relevant morphological features (e.g., size, main color, pronotum pattern) to inform identification. Additionally, the species were assessed on the basis of probability of occurrence within each country which enables users to reduce the number of species to only those with relevance to the location of the recorder. This is amongst the first collaborative citizen science approaches aimed at involving participants across Europe in recording a group of insects. In the near future, we aim to expand the use of the application to all countries in Europe

    Factors determining variation in colour morph frequencies in invasive Harmonia axyridis populations

    Get PDF
    The Harlequin ladybird Harmonia axyridis Pallas, native to eastern Asia, is an invasive, non-native species that has recently achieved an almost worldwide distribution. A conspicuous feature of this species is colour polymorphism of the elytra. In its native area, the populations consist of a recessive non-melanic morph, several dominant melanic morphs and small numbers of other (rare) morphs. The morph proportions in native populations have been intensively studied and vary with geographic area, climate and time. In contrast, colour polymorphism in invaded regions has been little studied. We examine and try to account for the morph frequencies observed across the different invaded regions. In America, monomorphic populations consist of the non-melanic morphs while European populations contain also melanic morphs. In particular geographic areas of Europe, the average percentage of the non-melanic morphs varied between 78 and 99%. It was highest in the lowlands of northern Italy and central and northern Europe and decreased in the Alps and western (Spain, UK) and eastern (southeast Russia) margins of the recently invaded area. In central Europe the frequency of the non-melanic morphs decreased over the course of the year but increased over the years from 2010 to 2018. The local differences might thus arise through gradual change of the morph composition of the founder invasive, non-native population. However, the variation in non-melanic morph frequency was not correlated with climatic characteristics that might affect coccinellid polymorphism. The observed rate of change in morph proportions in our data was too small to explain the diversification of what was supposedly a uniform invasive, non-native population at the point of introduction

    The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology

    Get PDF
    The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is native to Asia but has been intentionally introduced to many countries as a biological control agent of pest insects. In numerous countries, however, it has been introduced unintentionally. The dramatic spread of H. axyridis within many countries has been met with considerable trepidation. It is a generalist top predator, able to thrive in many habitats and across wide climatic conditions. It poses a threat to biodiversity, particularly aphidophagous insects, through competition and predation, and in many countries adverse effects have been reported on other species, particularly coccinellids. However, the patterns are not consistent around the world and seem to be affected by many factors including landscape and climate. Research on H. axyridis has provided detailed insights into invasion biology from broad patterns and processes to approaches in surveillance and monitoring. An impressive number of studies on this alien species have provided mechanistic evidence alongside models explaining large-scale patterns and processes. The involvement of citizens in monitoring this species in a number of countries around the world is inspiring and has provided data on scales that would be otherwise unachievable. Harmonia axyridis has successfully been used as a model invasive alien species and has been the inspiration for global collaborations at various scales. There is considerable scope to expand the research and associated collaborations, particularly to increase the breadth of parallel studies conducted in the native and invaded regions. Indeed a qualitative comparison of biological traits across the native and invaded range suggests that there are differences which ultimately could influence the population dynamics of this invader. Here we provide an overview of the invasion history and ecology of H. axyridis globally with consideration of future research perspectives. We reflect broadly on the contributions of such research to our understanding of invasion biology while also informing policy and people
    corecore