339 research outputs found

    The Reanalysis of the ROSAT Data of GQ Mus (1983) Using White Dwarf Atmosphere Emission Models

    Get PDF
    The analyses of X-ray emission from classical novae during the outburst stage have shown that the soft X-ray emission below 1 keV, which is thought to originate from the photosphere of the white dwarf, is inconsistent with the simple blackbody model of emission. Thus, ROSATROSAT Position Sensitive Proportional Counter (PSPC) archival data of the classical novae GQ Mus 1983 (GQ Mus) have been reanalyzed in order to understand the spectral development in the X-ray wavelengths during the outburst stage. The X-ray spectra are fitted with the hot white dwarf atmosphere emission models developed for the remnants of classical novae near the Eddington luminosity. The post-outburst X-ray spectra of the remnant white dwarf is examined in the context of evolution on the Hertzsprung-Russell diagram using C-O enhanced atmosphere models. The data obtained in 1991 August (during the ROSAT All Sky Survey) indicate that the effective temperature is kT_e<54 eV (<6.2x10^5 K). The 1992 February data show that the white dwarf had reached an effective temperature in the range 38.3-43.3 eV (4.4-5.1x10^5 K) with an unabsorbed X-ray flux (i.e., \sim bolometric flux) between 2.5x10^-9 and 2.3x10^-10 erg s^-1 cm^-2. We show that the H burning at the surface of the WD had most likely ceased at the time of the X-ray observations. Only the 1991 August data show evidence for ongoing H burning.Comment: 17 pages and 3 figures. Accepted to be published in MNRA

    Modeling CHANDRA Low Energy Transmission Grating Spectrometer Observations of Classical Novae with PHOENIX. I. V4743 Sagittarii

    Full text link
    We use the PHOENIX code package to model the X-ray spectrum of Nova V4743 Sagittarii observed with the LETGS onboard the Chandra satellite on March 2003. Our atmosphere models are 1D spherical, expanding, line blanketed, and in full NLTE. To analyze nova atmospheres and related systems with an underlying nuclear burning envelope at X-ray wavelengths, it was necessary to update the code with new microphysics, as discussed in this paper. We demonstrate that the X-ray emission is dominated by thermal bremsstrahlung and that the hard X-rays are dominated by Fe and N absorption. The best fit to the observation is provided at a temperature of T_eff = 5.8 x 10^5 K, with L_bol = 50 000 L_sun. The models are calculated for solar abundances. It is shown that the models can be used to determine abundances in the nova ejecta.Comment: 8 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    X-ray Properties of Pre--Main-Sequence Stars in the Orion Nebula Cluster with Known Rotation Periods

    Full text link
    We re-analyze all archival Chandra/ACIS observations of the Orion Nebula Cluster (ONC) to study the X-ray properties of a large sample of pre--main-sequence (PMS) stars with optically determined rotation periods. Our goal is to elucidate the origins of X-rays in PMS stars by seeking out connections between the X-rays and the mechanisms most likely driving their production--rotation and accretion. In our sample X-ray luminosity is significantly correlated with stellar rotation, in the sense of decreasing Lx/Lbol with more rapid rotation, suggesting that these stars are in the "super-saturated" regime of the rotation-activity relationship. However, we also find that stars with optical rotation periods are significantly biased to high Lx. This is not the result of magnitude bias in the optical rotation-period sample but rather to the diminishingly small amplitude of optical variations in stars with low Lx. Evidently, there exists in the ONC a population of stars whose rotation periods are unknown and that possess lower average X-ray luminosities than those of stars with known rotation periods. These stars may sample the linear regime of the rotation-activity relationship. Accretion also manifests itself in X-rays, though in a somewhat counterintuitive fashion: While stars with spectroscopic signatures of accretion show harder X-ray spectra than non-accretors, they show lower X-ray luminosities and no enhancement of X-ray variability. We interpret these findings in terms of a common origin for the X-ray emission observed from both accreting and non-accreting stars, with the X-rays from accreting stars simply being attenuated by magnetospheric accretion columns. This suggests that X-rays from PMS stars have their origins primarily in chromospheres, not accretion.Comment: Accepted by the Astronomical Journal. 43 pages, 16 figure

    The Distance and Morphology of V723 Cassiopeiae (NOVA CASSIOPEIA 1995)

    Full text link
    We present spatially resolved infrared spectra of V723 Cas (Nova Cassiopeia 1995) obtained over four years with the integral field spectrograph OSIRIS on Keck II. Also presented are one epoch of spatially unresolved spectra from the long slit spectrograph NIRSPEC on Keck II. The OSIRIS observations made use of the laser guide star adaptive optics facility that produced diffraction-limited spatial resolution of the strong coronal emission features in the nova ejecta. We remove the point-like continuum from V723 Cas data cubes to reveal details of the extended nebula and find that emission due to [Si VI] and [Ca VIII] has an equatorial ring structure with polar nodules-a strikingly different morphology than emission due to [Al IX], which appears as a prolate spheroid. The contrast in structure may indicate separate ejection events. Using the angular expansion and Doppler velocities observed over four epochs spaced at one year intervals, we determine the distance to V723 Cas to be 3.85+0.23-0.21 kpc. We present the OSIRIS three-dimensional data here in many ways: as narrowband images, one- and two-dimensional spectra, and a volume rendering that reveals the true shape of the ejecta.Comment: 37 pages, 8 figure
    corecore