63 research outputs found
Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER)
[1] The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) measures linear energy transfer by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) on the Lunar Reconnaissance Orbiter (LRO) Mission in a circular, polar lunar orbit. GCR fluxes remain at the highest levels ever observed during the space age. One of the largest SEP events observed by CRaTER during the LRO mission occurred on June 7, 2011. We compare model predictions by the Earth-Moon-Mars Radiation Environment Module (EMMREM) for both dose rates from GCRs and SEPs during this event with results from CRaTER. We find agreement between these models and the CRaTER dose rates, which together demonstrate the accuracy of EMMREM, and its suitability for a real-time space weather system. We utilize CRaTER to test forecasts made by the Relativistic Electron Alert System for Exploration (REleASE), which successfully predicts the June 7th event. At the maximum CRaTER-observed GCR dose rate (∼11.7 cGy/yr where Gy is a unit indicating energy deposition per unit mass, 1 Gy = 1 J/kg), GCRs deposit ∼88 eV/molecule in water over 4 billion years, causing significant change in molecular composition and physical structure (e.g., density, color, crystallinity) of water ice, loss of molecular hydrogen, and production of more complex molecules linking carbon and other elements in the irradiated ice. This shows that space weathering by GCRs may be extremely important for chemical evolution of ice on the Moon. Thus, we show comprehensive observations from the CRaTER instrument on the Lunar Reconnaissance Orbiter that characterizes the radiation environment and space weathering on the Moon
Recommended from our members
Galactic cosmic ray hazard in the unusual extended solar minimum between solar cycle 23 and 24
Galactic cosmic rays (GCRs) are extremely difficult to shield against and pose one of the most severe long-term hazards for human exploration of space. The recent solar minimum between solar cycles 23 and 24 shows a prolonged period of reduced solar activity and low interplanetary magnetic field strengths. As a result, the modulation of GCRs is very weak, and the fluxes of GCRs are near their highest levels in the last 25 years in the fall of 2009. Here we explore the dose rates of GCRs in the current prolonged solar minimum and make predictions for the Lunar Reconnaissance Orbiter (LRO) Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which is now measuring GCRs in the lunar environment. Our results confirm the weak modulation of GCRs leading to the largest dose rates seen in the last 25 years over a prolonged period of little solar activity
Magnetic Field Strength in the Upper Solar Corona Using White-light Shock Structures Surrounding Coronal Mass Ejections
To measure the magnetic field strength in the solar corona, we examined 10
fast (> 1000 km/s) limb CMEs which show clear shock structures in SOHO/LASCO
images. By applying piston-shock relationship to the observed CME's standoff
distance and electron density compression ratio, we estimated the Mach number,
Alfven speed, and magnetic field strength in the height range 3 to 15 solar
radii (Rs). Main results from this study are: (1) the standoff distance
observed in solar corona is consistent with those from a magnetohydrodynamic
(MHD) model and near-Earth observations; (2) the Mach number as a shock
strength is in the range 1.49 to 3.43 from the standoff distance ratio, but
when we use the density compression ratio, the Mach number is in the range 1.47
to 1.90, implying that the measured density compression ratio is likely to be
underestimated due to observational limits; (3) the Alfven speed ranges from
259 to 982 km/s and the magnetic field strength is in the range 6 to 105 mG
when the standoff distance is used; (4) if we multiply the density compression
ratio by a factor of 2, the Alfven speeds and the magnetic field strengths are
consistent in both methods; (5) the magnetic field strengths derived from the
shock parameters are similar to those of empirical models and previous
estimates.Comment: Accepted for publication in ApJ, 11 Figures, 1 Tabl
Synthesis of 3-D coronal-solar wind energetic particle acceleration modules
1. Introduction Acute space radiation hazards pose one of the most serious risks to future human and robotic exploration. Large solar energetic particle (SEP) events are dangerous to astronauts and equipment. The ability to predict when and where large SEPs will occur is necessary in order to mitigate their hazards. The Coronal-Solar Wind Energetic Particle Acceleration (C-SWEPA) modeling effort in the NASA/NSF Space Weather Modeling Collaborative [Schunk, 2014] combines two successful Living With a Star (LWS) (http://lws. gsfc.nasa.gov/) strategic capabilities: the Earth-Moon-Mars Radiation Environment Modules (EMMREM) [Schwadron et al., 2010] that describe energetic particles and their effects, with the Next Generation Model for the Corona and Solar Wind developed by the Predictive Science, Inc. (PSI) group. The goal of the C-SWEPA effort is to develop a coupled model that describes the conditions of the corona, solar wind, coronal mass ejections (CMEs) and associated shocks, particle acceleration, and propagation via physics-based modules. Assessing the threat of SEPs is a difficult problem. The largest SEPs typically arise in conjunction with X class flares and very fast (\u3e1000 km/s) CMEs. These events are usually associated with complex sunspot groups (also known as active regions) that harbor strong, stressed magnetic fields. Highly energetic protons generated in these events travel near the speed of light and can arrive at Earth minutes after the eruptive event. The generation of these particles is, in turn, believed to be primarily associated with the shock wave formed very low in the corona by the passage of the CME (injection of particles from the flare site may also play a role). Whether these particles actually reach Earth (or any other point) depends on their transport in the interplanetary magnetic field and their magnetic connection to the shock
On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode
A major, albeit serendipitous, discovery of the SOlar and Heliospheric
Observatory mission was the observation by the Extreme Ultraviolet Telescope
(EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating
over a significant fraction of the Sun's surface. These so-called EIT or EUV
waves are associated with eruptive phenomena and have been studied intensely.
However, their wave nature has been challenged by non-wave (or pseudo-wave)
interpretations and the subject remains under debate. A string of recent solar
missions has provided a wealth of detailed EUV observations of these waves
bringing us closer to resolving their nature. With this review, we gather the
current state-of-art knowledge in the field and synthesize it into a picture of
an EUV wave driven by the lateral expansion of the CME. This picture can
account for both wave and pseudo-wave interpretations of the observations, thus
resolving the controversy over the nature of EUV waves to a large degree but
not completely. We close with a discussion of several remaining open questions
in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for
publicatio
Comprehensive Characterization of Solar Eruptions with Remote and In-Situ Observations, and Modeling: The Major Solar Events on 4 November 2015
Solar energetic particles (SEPs) are an important product of solar activity. They are connected to solar active regions and flares, coronal mass ejections (CMEs), EUV waves, shocks, Type II and III radio emissions, and X-ray bursts. These phenomena are major probes of the partition of energy in solar eruptions, as well as for the organization, dynamics, and relaxation of coronal and interplanetary magnetic fields. Many of these phenomena cause terrestrial space weather, posing multiple hazards for humans and their technology from space to the ground. Since particular flares, shocks, CMEs, and EUV waves produce SEP events but others do not, since propagation effects from the low corona to 1 AU appear important for some events but not others, and since Type II and III radio emissions and X-ray bursts are sometimes produced by energetic particles leaving these acceleration sites, it is necessary to study the whole system with a multi-frequency and multi-instrument perspective that combines both in-situ and remote observations with detailed modeling of phenomena. This article demonstrates this comprehensive approach and shows its necessity by analyzing a trio of unusual and striking solar eruptions, radio and X-ray bursts, and SEP events that occurred on 4 November 2015. These events show both strong similarities and differences from standard events and each other, despite having very similar interplanetary conditions and only two flare sites and CME genesis regions. They are therefore major targets for further in-depth observational studies, and for testing both existing and new theories and models. We present the complete suite of relevant observations, complement them with initial modeling results for the SEPs and interplanetary magnetic connectivity, and develop a plausible scenario for the eruptions. Perhaps controversially, the SEPs appear to be reasonably modelled and evidence points to significant non-Parker magnetic fields. Based on the very limited modeling available, we identify the aspects that are and are not understood, and we discuss ideas that may lead to improved understanding of the SEP, radio, and space-weather events
The Wave-Driver System of the Off-Disk Coronal Wave 17 January 2010
We study the 17 January 2010 flare-CME-wave event by using STEREO/SECCHI EUVI
and COR1 data. The observational study is combined with an analytic model which
simulates the evolution of the coronal-wave phenomenon associated with the
event. From EUV observations, the wave signature appears to be dome shaped
having a component propagating on the solar surface (v~280 km s-1) as well as
off-disk (v~600 km s-1) away from the Sun. The off-disk dome of the wave
consists of two enhancements in intensity, which conjointly develop and can be
followed up to white-light coronagraph images. Applying an analytic model, we
derive that these intensity variations belong to a wave-driver system with a
weakly shocked wave, initially driven by expanding loops, which are indicative
of the early evolution phase of the accompanying CME. We obtain the shock
standoff distance between wave and driver from observations as well as from
model results. The shock standoff distance close to the Sun (<0.3 Rs above the
solar surface) is found to rapidly increase with values of ~0.03-0.09 Rs which
give evidence of an initial lateral (over-)expansion of the CME. The
kinematical evolution of the on-disk wave could be modeled using input
parameters which require a more impulsive driver (t=90 s, a=1.7 km s-2)
compared to the off-disk component (t=340 s, a=1.5 km s-2).Comment: accepted for publication in Solar Physic
Models and data analysis tools for the Solar Orbiter mission
Context. The Solar Orbiter spacecraft will be equipped with a wide range of remote-sensing (RS) and in situ (IS) instruments to record novel and unprecedented measurements of the solar atmosphere and the inner heliosphere. To take full advantage of these new datasets, tools and techniques must be developed to ease multi-instrument and multi-spacecraft studies. In particular the currently inaccessible low solar corona below two solar radii can only be observed remotely. Furthermore techniques must be used to retrieve coronal plasma properties in time and in three dimensional (3D) space. Solar Orbiter will run complex observation campaigns that provide interesting opportunities to maximise the likelihood of linking IS data to their source region near the Sun. Several RS instruments can be directed to specific targets situated on the solar disk just days before data acquisition. To compare IS and RS, data we must improve our understanding of how heliospheric probes magnetically connect to the solar disk.Aims. The aim of the present paper is to briefly review how the current modelling of the Sun and its atmosphere can support Solar Orbiter science. We describe the results of a community-led effort by European Space Agency's Modelling and Data Analysis Working Group (MADAWG) to develop different models, tools, and techniques deemed necessary to test different theories for the physical processes that may occur in the solar plasma. The focus here is on the large scales and little is described with regards to kinetic processes. To exploit future IS and RS data fully, many techniques have been adapted to model the evolving 3D solar magneto-plasma from the solar interior to the solar wind. A particular focus in the paper is placed on techniques that can estimate how Solar Orbiter will connect magnetically through the complex coronal magnetic fields to various photospheric and coronal features in support of spacecraft operations and future scientific studies.Methods. Recent missions such as STEREO, provided great opportunities for RS, IS, and multi-spacecraft studies. We summarise the achievements and highlight the challenges faced during these investigations, many of which motivated the Solar Orbiter mission. We present the new tools and techniques developed by the MADAWG to support the science operations and the analysis of the data from the many instruments on Solar Orbiter.Results. This article reviews current modelling and tool developments that ease the comparison of model results with RS and IS data made available by current and upcoming missions. It also describes the modelling strategy to support the science operations and subsequent exploitation of Solar Orbiter data in order to maximise the scientific output of the mission.Conclusions. The on-going community effort presented in this paper has provided new models and tools necessary to support mission operations as well as the science exploitation of the Solar Orbiter data. The tools and techniques will no doubt evolve significantly as we refine our procedure and methodology during the first year of operations of this highly promising mission.Peer reviewe
- …