187 research outputs found

    Improvements in micromanipulators

    Get PDF
    Design, operation, and application of micromanipulators in biological researc

    Repair and Manufacture of High Performance Products for Medicine and Aviation with Laser Technology

    Get PDF
    High performance products used for special purposes in medicine and aviation are often manufactured from advanced materials such as titanium and nickel based alloys. As the most promising and effective technology for such production and repair the Laser Rapid Prototyping technologies are being used and implemented into the practice. Special focus has been orientated into the Laser Net Shape (LENS) technology. This paper will review the State of the Art of the LENS laser technology and present application case studies where LENS is being applied to manufacture of modern medical implants such as bone fixation plate and jet engine turbine inconel blade

    A Novel and More Efficient Way to Grind Punching Tools

    Get PDF
    ABSTRACT A simulation model of punch grinding has been developed which calculates the instantaneous material-removal rate, arc length of contact and temperature based on the kinematic relationships between wheel and workiece and determines the optimum machine parameters to reduce cycle time and achieve a constant-temperature no-burn situation. Two basic outputs of the simulation model include arc length of contact and specific material-removal rate. A thermal model is included in the simulation to calculate maximum grinding zone temperature rise. A novel method is developed to constrain this temperature rise in the simulation. The thermal model inputs a constant value of specific grinding energy and the energy partition, which represents the fraction of the grinding energy conducted as heat to the workpiece. The simulation-based optimization can lead to a drastic reduction of grinding cycle time. Moreover, the limitation of maximum grinding zone temperature rise below the transitional temperature can help to avoid generation of workpiece thermal damage, which includes thermal softening, residual tensile stress, and rehardening burn. The grindability of high speed steel (HSS) is also discussed in terms of power consumption, specific grinding energy and undeformed chip thickness

    Access and utilisation of maternity care for disabled women who experience domestic abuse:a systematic review

    Get PDF
    BACKGROUND: Although disabled women are significantly more likely to experience domestic abuse during pregnancy than non-disabled women, very little is known about how maternity care access and utilisation is affected by the co-existence of disability and domestic abuse. This systematic review of the literature explored how domestic abuse impacts upon disabled women’s access to maternity services. METHODS: Eleven articles were identified through a search of six electronic databases and data were analysed to identify: the factors that facilitate or compromise access to care; the consequences of inadequate care for pregnant women’s health and wellbeing; and the effectiveness of existing strategies for improvement. RESULTS: Findings indicate that a mental health diagnosis, poor relationships with health professionals and environmental barriers can compromise women’s utilisation of maternity services. Domestic abuse can both compromise, and catalyse, access to services and social support is a positive factor when accessing care. Delayed and inadequate care has adverse effects on women’s physical and psychological health, however further research is required to fully explore the nature and extent of these consequences. Only one study identified strategies currently being used to improve access to services for disabled women experiencing abuse. CONCLUSIONS: Based upon the barriers and facilitators identified within the review, we suggest that future strategies for improvement should focus on: understanding women’s reasons for accessing care; fostering positive relationships; being women-centred; promoting environmental accessibility; and improving the strength of the evidence base

    Structural analysis and corrosion studies on an ISO 5832-9 biomedical alloy with TiO2 sol–gel layers

    Get PDF
    The aim of this study was to demonstrate the relationship between the structural and corrosion properties of an ISO 5832-9 biomedical alloy modified with titanium dioxide (TiO2) layers. These layers were obtained via the sol–gel method by acid-catalyzed hydrolysis of titanium isopropoxide in isopropanol solution. To obtain TiO2 layers with different structural properties, the coated samples were annealed at temperatures of 200, 300, 400, 450, 500, 600 and 800 C for 2 h. For all the prepared samples, accelerated corrosion measurements were performed in Tyrode’s physiological solution using electrochemical methods. The most important corrosion parameters were determined: corrosion potential, polarization resistance, corrosion rate, breakdown and repassivation potentials. Corrosion damage was analyzed using scanning electron microscopy. Structural analysis was carried out for selected TiO2 coatings annealed at 200, 400, 600 and 800 C. In addition, the morphology, chemical composition, crystallinity, thickness and density of the deposited TiO2 layers were determined using suitable electron and X-ray measurement methods. It was shown that the structure and character of interactions between substrate and deposited TiO2 layers depended on annealing temperature. All the obtained TiO2 coatings exhibit anticorrosion properties, but these properties are related to the crystalline structure and character of substrate–layer interaction. From the point of view of corrosion, the best TiO2 sol–gel coatings for stainless steel intended for biomedical applications seem to be those obtained at 400 C.This study was supported by Grant No. N N507 501339 of the National Science Centre. The authors wish to express their thanks to J. Borowski (MEDGAL, Poland) for the Rex 734 alloy

    The unpolarized macronova associated with the gravitational wave event GW 170817

    Get PDF
    The merger of two dense stellar remnants including at least one neutron star (NS) is predicted to produce gravitational waves (GWs) and short duration gamma ray bursts (GRBs). In the process, neutron-rich material is ejected from the system and heavy elements are synthesized by r-process nucleosynthesis. The radioactive decay of these heavy elements produces additional transient radiation termed "kilonova" or "macronova". We report the detection of linear optical polarization P = (0.50 +/- 0.07)% at 1.46 days after detection of the GWs from GW170817, a double neutron star merger associated with an optical macronova counterpart and a short GRB. The optical emission from a macronova is expected to be characterized by a blue, rapidly decaying, component and a red, more slowly evolving, component due to material rich of heavy elements, the lanthanides. The polarization measurement was made when the macronova was still in its blue phase, during which there is an important contribution from a lanthanide-free outflow. The low degree of polarization is consistent with intrinsically unpolarized emission scattered by Galactic dust, suggesting a symmetric geometry of the emitting region and low inclination of the merger system. Stringent upper limits to the polarization degree from 2.45 - 9.48 days post-burst are consistent with the lanthanides-rich macronova interpretation.Comment: 18 pages, 1 figure, 2 tables, Nature Astronomy, in pres

    A REVERSE SHOCK in GRB 160509A

    Get PDF
    We present the second multi-frequency radio detection of a reverse shock in a γ-ray burst. By combining our extensive radio observations of the Fermi-Large Area Telescope γ-ray burst 160509A at z = 1.17 up to 20 days after the burst with Swift X-ray observations and ground-based optical and near-infrared data, we show that the afterglow emission comprises distinct reverse shock and forward shock contributions: the reverse shock emission dominates in the radio band at ≲10 days, while the forward shock emission dominates in the X-ray, optical, and near-infrared bands. Through multi-wavelength modeling, we determine a circumburst density of , supporting our previous suggestion that a low-density circumburst environment is conducive to the production of long-lasting reverse shock radiation in the radio band. We infer the presence of a large excess X-ray absorption column, N H ≈ 1.5 ×1022 , and a high rest-frame optical extinction, A V ≈ 3.4 mag. We identify a jet break in the X-ray light curve at , and thus derive a jet opening angle of , yielding a beaming-corrected kinetic energy and radiated γ-ray energy of erg and erg (1-104 keV, rest frame), respectively. Consistency arguments connecting the forward shocks and reverse shocks suggest a deceleration time of s ≈ T 90, a Lorentz factor of , and a reverse-shock-to-forward-shock fractional magnetic energy density ratio of . Our study highlights the power of rapid-response radio observations in the study of the properties and dynamics of γ-ray burst ejecta. © 2016. The American Astronomical Society. All rights reserved

    Microbial contributions to the persistence of coral reefs

    Get PDF
    On contemplating the adaptive capacity of reef organisms to a rapidly changing environment, the microbiome offers significant and greatly unrecognised potential. Microbial symbionts contribute to the physiology, development, immunity and behaviour of their hosts, and can respond very rapidly to changing environmental conditions, providing a powerful mechanism for acclimatisation and also possibly rapid evolution of coral reef holobionts. Environmentally acquired fluctuations in the microbiome can have significant functional consequences for the holobiont phenotype upon which selection can act. Environmentally induced changes in microbial abundance may be analogous to host gene duplication, symbiont switching / shuffling as a result of environmental change can either remove or introduce raw genetic material into the holobiont; and horizontal gene transfer can facilitate rapid evolution within microbial strains. Vertical transmission of symbionts is a key feature of many reef holobionts and this would enable environmentally acquired microbial traits to be faithfully passed to future generations, ultimately facilitating microbiome-mediated transgenerational acclimatisation (MMTA) and potentially even adaptation of reef species in a rapidly changing climate. In this commentary, we highlight the capacity and mechanisms for MMTA in reef species, propose a modified Price equation as a framework for assessing MMTA and recommend future areas of research to better understand how microorganisms contribute to the transgenerational acclimatisation of reef organisms, which is essential if we are to reliably predict the consequences of global change for reef ecosystems

    GRB 091024A and the Nature of Ultra-Long Gamma-Ray Bursts

    Get PDF
    We present a broadband study of gamma-ray burst (GRB) 091024A within the context of other ultra-long-duration GRBs. An unusually long burst detected by Konus-Wind (KW), Swift, and Fermi, GRB 091024A has prompt emission episodes covering ~1300 s, accompanied by bright and highly structured optical emission captured by various rapid-response facilities, including the 2 m autonomous robotic Faulkes North and Liverpool Telescopes, KAIT, S-LOTIS, and the Sonoita Research Observatory. We also observed the burst with 8 and 10 m class telescopes and determine the redshift to be z = 1.0924 ± 0.0004. We find no correlation between the optical and γ-ray peaks and interpret the optical light curve as being of external origin, caused by the reverse and forward shock of a highly magnetized jet (RB ≈ 100-200). Low-level emission is detected throughout the near-background quiescent period between the first two emission episodes of the KW data, suggesting continued central-engine activity; we discuss the implications of this ongoing emission and its impact on the afterglow evolution and predictions. We summarize the varied sample of historical GRBs with exceptionally long durations in gamma-rays (gsim1000 s) and discuss the likelihood of these events being from a separate population; we suggest ultra-long GRBs represent the tail of the duration distribution of the long GRB population
    corecore