21 research outputs found

    Cyclic Tetrapyrrolic Photosensitisers from the leaves of Phaeanthus ophthalmicus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Twenty-seven extracts from 26 plants were identified as photo-cytotoxic in the course of our bioassay guided screening program for photosensitisers from 128 extracts prepared from 64 terrestrial plants in two different collection sites in Malaysia - Royal Belum Forest Reserve in the State of Perak and Gunung Nuang in the State of Selangor. One of the photo-cytotoxic extracts from the leaves of <it>Phaeanthus ophtalmicus </it>was further investigated.</p> <p>Results</p> <p>The ethanolic extract of the leaves from <it>Phaeanthus ophtalmicus </it>was able to reduce the <it>in vitro </it>viability of leukaemic HL60 cells to < 50% when exposed to 9.6 J/cm<sup>2 </sup>of a broad spectrum light at a concentration of 20 μg/mL. Dereplication of the photo-cytotoxic fractions from <it>P. ophthalmicus </it>extracts based on TLC R<sub>f </sub>values and HPLC co-injection of reference tetrapyrrolic compounds enabled quick identification of known photosensitisers, pheophorbide-<it>a</it>, pheophorbide-<it>a </it>methyl ester, 13<sup>2</sup>-hydroxypheophorbide-<it>a </it>methyl ester, pheophytin-<it>a </it>and 15<sup>1</sup>-hydroxypurpurin 7-lactone dimethyl ester. In addition, compound <b>1 </b>which was not previously isolated as a natural product was also identified as 7-formyl-15<sup>1</sup>-hydroxypurpurin-7-lactone methyl ester using standard spectroscopic techniques.</p> <p>Conclusions</p> <p>Our results suggest that the main photosensitisers in plants are based on the cyclic tetrapyrrole structure and photosensitisers with other structures, if present, are present in very minor amounts or are not as active as those with the cyclic tetrapyrrole structure.</p

    The status of platinum anticancer drugs in the clinic and in clinical trials

    Get PDF
    Since its approval in 1979 cisplatin has become an important component in chemotherapy regimes for the treatment of ovarian, testicular, lung and bladder cancers, as well as lymphomas, myelomas and melanoma. Unfortunately its continued use is greatly limited by severe dose limiting side effects and intrinsic or acquired drug resistance. Over the last 30 years, 23 other platinum-based drugs have entered clinical trials with only two (carboplatin and oxaliplatin) of these gaining international marketing approval, and another three (nedaplatin, lobaplatin and heptaplatin) gaining approval in individual nations. During this time there have been more failures than successes with the development of 14 drugs being halted during clinical trials. Currently there are four drugs in the various phases of clinical trial (satraplatin, picoplatin, LipoplatinTM and ProLindacTM). No new small molecule platinum drug has entered clinical trials since 1999 which is representative of a shift in focus away from drug design and towards drug delivery in the last decade. In this perspective article we update the status of platinum anticancer drugs currently approved for use, those undergoing clinical trials and those discontinued during clinical trials, and discuss the results in the context of where we believe the field will develop over the next decade
    corecore