63 research outputs found

    A Novel Liposome-Based Adjuvant CAF01 for Induction of CD8+ Cytotoxic T-Lymphocytes (CTL) to HIV-1 Minimal CTL Peptides in HLA-A*0201 Transgenic Mice

    Get PDF
    Background: Specific cellular cytotoxic immune responses (CTL) are important in combating viral diseases and a highly desirable feature in the development of targeted HIV vaccines. Adjuvants are key components in vaccines and may assist the HIV immunogens in inducing the desired CTL responses. In search for appropriate adjuvants for CD8+ T cells it is important to measure the necessary immunological features e.g. functional cell killing/lysis in addition to immunological markers that can be monitored by simple immunological laboratory methods. Methodology/Principal Findings: We tested the ability of a novel two component adjuvant, CAF01, consisting of the immune stimulating synthetic glycolipid TDB (Trehalose-Dibehenate) incorporated into cationic DDA (Dimethyldioctade-cylammonium bromide) liposomes to induce CD8+ T-cell restricted cellular immune responses towards subdominant minimal HLA-A0201-restricted CTL epitopes from HIV-1 proteins in HLA-A*0201 transgenic HHD mice. CAF01 has an acceptable safety profile and is used in preclinical development of vaccines against HIV-1, malaria and tuberculosis. Conclusions/Significance: We found that CAF01 induced cellular immune responses against HIV-1 minimal CTL epitopes in HLA-A*0201 transgenic mice to levels comparable with that of incomplete Freund’s adjuvant

    Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity

    Get PDF
    The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide–major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I–restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key–like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease

    Direct Interrogation of Viral Peptides Presented by the Class I HLA of HIV-Infected T Cells

    Get PDF
    Identification of CD8+ cytotoxic T lymphocyte (CTL) epitopes has traditionally relied upon testing of overlapping peptide libraries for their reactivity with T cells in vitro. Here, we pursued deep ligand sequencing (DLS) as an alternative method of directly identifying those ligands that are epitopes presented to CTLs by the class I human leukocyte antigens (HLA) of infected cells. Soluble class I HLA-A*11:01 (sHLA) was gathered from HIV-1 NL4-3-infected human CD4+ SUP-T1 cells. HLA-A*11:01 harvested from infected cells was immunoaffinity purified and acid boiled to release heavy and light chains from peptide ligands that were then recovered by size-exclusion filtration. The ligands were first fractionated by high-pH high-pressure liquid chromatography and then subjected to separation by nano-liquid chromatography (nano-LC)–mass spectrometry (MS) at low pH. Approximately 10 million ions were selected for sequencing by tandem mass spectrometry (MS/MS). HLA-A*11:01 ligand sequences were determined with PEAKS software and confirmed by comparison to spectra generated from synthetic peptides. DLS identified 42 viral ligands presented by HLA-A*11:01, and 37 of these were previously undetected. These data demonstrate that (i) HIV-1 Gag and Nef are extensively sampled, (ii) ligand length variants are prevalent, particularly within Gag and Nef hot spots where ligand sequences overlap, (iii) noncanonical ligands are T cell reactive, and (iv) HIV-1 ligands are derived from de novo synthesis rather than endocytic sampling. Next-generation immunotherapies must factor these nascent HIV-1 ligand length variants and the finding that CTL-reactive epitopes may be absent during infection of CD4+ T cells into strategies designed to enhance T cell immunity

    Host genotype and time dependent antigen presentation of viral peptides: predictions from theory

    Get PDF
    The rate of progression of HIV infected individuals to AIDS is known to vary with the genotype of the host, and is linked to their allele of human leukocyte antigen (HLA) proteins, which present protein degradation products at the cell surface to circulating T-cells. HLA alleles are associated with Gag-specific T-cell responses that are protective against progression of the disease. While Pol is the most conserved HIV sequence, its association with immune control is not as strong. To gain a more thorough quantitative understanding of the factors that contribute to immunodominance, we have constructed a model of the recognition of HIV infection by the MHC class I pathway. Our model predicts surface presentation of HIV peptides over time, demonstrates the importance of viral protein kinetics, and provides evidence of the importance of Gag peptides in the long-term control of HIV infection. Furthermore, short-term dynamics are also predicted, with simulation of virion-derived peptides suggesting that efficient processing of Gag can lead to a 50% probability of presentation within 3 hours post-infection, as observed experimentally. In conjunction with epitope prediction algorithms, this modelling approach could be used to refine experimental targets for potential T-cell vaccines, both for HIV and other viruses

    PARV4 prevalence, phylogeny, immunology and coinfection with HIV, HBV and HCV in a multicentre African cohort

    Get PDF
    Background The seroprevalence of human parvovirus-4 (PARV4) varies considerably by region. In sub-Saharan Africa, seroprevalence is high in the general population, but little is known about the transmission routes or the prevalence of coinfection with blood-borne viruses, HBV, HCV and HIV. Methods To further explore the characteristics of PARV4 in this setting, with a particular focus on the prevalence and significance of coinfection, we screened a cohort of 695 individuals recruited from Durban and Kimberley (South Africa) and Gaborone (Botswana) for PARV4 IgG and DNA, as well as documenting HIV, HBV and HCV status. Results Within these cohorts, 69% of subjects were HIV-positive. We identified no cases of HCV by PCR, but 7.4% were positive for HBsAg. PARV4 IgG was positive in 42%; seroprevalence was higher in adults (69%) compared to children (21%) (p Conclusions This characterisation of PARV4 infection provides enhanced insights into the epidemiology of infection and co-infection in African cohorts, and provides the foundations for planning further focused studies to elucidate transmission pathways, immune responses, and the clinical significance of this organism.</p

    Discordant Impact of HLA on Viral Replicative Capacity and Disease Progression in Pediatric and Adult HIV Infection

    Get PDF
    HLA class I polymorphism has a major influence on adult HIV disease progression. An important mechanism mediating this effect is the impact on viral replicative capacity (VRC) of the escape mutations selected in response to HLA-restricted CD8+ T-cell responses. Factors that contribute to slow progression in pediatric HIV infection are less well understood. We here investigate the relationship between VRC and disease progression in pediatric infection, and the effect of HLA on VRC and on disease outcome in adult and pediatric infection. Studying a South African cohort of >350 ART-naïve, HIV-infected children and their mothers, we first observed that pediatric disease progression is significantly correlated with VRC. As expected, VRCs in mother-child pairs were strongly correlated (p = 0.004). The impact of the protective HLA alleles, HLA-B*57, HLA-B*58:01 and HLA-B*81:01, resulted in significantly lower VRCs in adults (p<0.0001), but not in children. Similarly, in adults, but not in children, VRCs were significantly higher in subjects expressing the disease-susceptible alleles HLA-B*18:01/45:01/58:02 (p = 0.007). Irrespective of the subject, VRCs were strongly correlated with the number of Gag CD8+ T-cell escape mutants driven by HLA-B*57/58:01/81:01 present in each virus (p = 0.0002). In contrast to the impact of VRC common to progression in adults and children, the HLA effects on disease outcome, that are substantial in adults, are small and statistically insignificant in infected children. These data further highlight the important role that VRC plays both in adult and pediatric progression, and demonstrate that HLA-independent factors, yet to be fully defined, are predominantly responsible for pediatric non-progression
    • …
    corecore