27 research outputs found

    A model for reactive porous transport during re-wetting of hardened concrete

    Full text link
    A mathematical model is developed that captures the transport of liquid water in hardened concrete, as well as the chemical reactions that occur between the imbibed water and the residual calcium silicate compounds residing in the porous concrete matrix. The main hypothesis in this model is that the reaction product -- calcium silicate hydrate gel -- clogs the pores within the concrete thereby hindering water transport. Numerical simulations are employed to determine the sensitivity of the model solution to changes in various physical parameters, and compare to experimental results available in the literature.Comment: 30 page

    Downsizing a human inflammatory protein to a small molecule with equal potency and functionality

    Get PDF
    A significant challenge in chemistry is to rationally reproduce the functional potency of a protein in a small molecule, which is cheaper to manufacture, non-immunogenic, and also both stable and bioavailable. Synthetic peptides corresponding to small bioactive protein surfaces do not form stable structures in water and do not exhibit the functional potencies of proteins. Here we describe a novel approach to growing small molecules with protein-like potencies from a functionally important amino acid of a protein. A 77-residue human inflammatory protein (complement C3a) important in innate immunity is rationally transformed to equipotent small molecules, using peptide surrogates that incorporate a turn-inducing heterocycle with correctly positioned hydrogen-bond-accepting atoms. Small molecule agonists (molecular weigh

    Impact of biofilm-induced heterogeneities on solute transport in porous media

    No full text
    International audienceIn subsurface systems, biofilm may degrade organic or organometallic pollutants contributing to natural attenuation and soil bioremediation techniques. This increase of microbial activity leads to change the hydrodynamic properties of aquifers. The purpose of this work was to investigate the influence of biofilm-induced heterogeneities on solute transport in porous media and more specifically on dispersivity. We pursued this goal by (i) monitoring both spatial concentration fields and solute breakthrough curves from conservative tracer experiments in a biofilm-supporting porous medium, (ii) characterizing in situ the changes in biovolume and visualizing the dynamics of the biological material at the mesoscale. A series of experiments was carried out in a flow cell system (60 cm(3)) with a silica sand (Phi = 50-70 mesh) as solid carrier and Shewanella oneidensis MR-1 as bacterial strain. Biofilm growth was monitored by image acquisition with a digital camera. The biofilm volume fraction was estimated through tracer experiments with the Blue Dextran macromolecule as in size-exclusion chromatography, leading to a fair picture of the biocolonization within the flow cell. Biofilm growth was achieved in the whole flow cell in 29 days and up to 50% of void space volume was plugged. The influence of biofilm maturation on porous medium transport properties was evaluated from tracer experiments using Brilliant Blue FCF. An experimental correlation was found between effective (i.e., nonbiocolonized) porosity and biofilm-affected dispersivity. Comparison with values given by the theoretical model of Taylor and Jaffe (1990b) yields a fair agreement

    Local treatment with BPPcysMPEG reduces allergic airway inflammation in sensitized mice

    Get PDF
    According to the hygiene hypothesis, triggering the immune system with microbial components during childhood balances the inherent Th2 bias. In contrast, specific immunotherapy involves exposure of the patient to the allergen in order to achieve desensitization to subsequent contact. In a human in vitro allergy model the potential of the TLR2/6 agonist BPPcysMPEG to modulate antigen presenting cells and allergen-specific immune responses was evaluated. Specific immunomodulation via co-administration of the allergen and BPPcysMPEG enhanced expression of co-stimulatory molecules on DC and increased secretion of the proinflammatory cytokine TNF-?. Acting as an adjuvant, BPPcysMPEG elevated allergen-specific immune responses in co-culture with autologous lymphocytes. Although administration of BPPcysMPEG alone enhanced expression of co-stimulatory molecules on DC, proliferation of autologous lymphocytes was not induced. Based on this finding, the potential of BPPcysMPEG to reduce allergic airway inflammation by preventive modulation of the innate immune system via TLR2/6 agonization was investigated in mice. Local administration of BPPcysMPEG altered cellular influx and cell composition in BAL fluid. Furthermore, the Th2-associated cytokines IL-4 and IL-5 were diminished. Allergen-specific restimulation of cells from mediastinal lymph nodes and splenocytes suggested an alteration of immune responses. The treatment with BPPcysMPEG induced a Th1-dominated cytokine milieu in mediastinal lymph nodes, while allergen-specific immune responses in splenocytes were diminished. The co-administration of allergen and BPPcysMPEG reduced cytokine secretion upon restimulation in mediastinal lymph nodes and splenocytes. From these data we conclude that BPPcysMPEG was able to influence the immune system with regard to subsequent allergen contact by TLR2/6 agonization

    Subcutaneous immunotherapy suppresses Th2 inflammation and induces neutralizing antibodies, but sublingual immunotherapy suppresses airway hyperresponsiveness in grass pollen mouse models for allergic asthma

    Get PDF
    BackgroundBoth subcutaneous and sublingual allergen immunotherapy (SCIT and SLIT) have been shown to effectively suppress allergic manifestations upon allergen exposure, providing long-term relief from symptoms in allergic disorders including allergic asthma. Clinical studies directly comparing SCIT and SLIT report a different kinetics and magnitude of immunological changes induced during treatment. Comparative studies into the mechanisms underlying immune suppression in SCIT and SLIT are lacking. ObjectiveWe aimed to establish an experimental model for grass pollen (GP) SCIT and SLIT that would allow a head-to-head comparison of the two treatments. MethodsBALB/c mice were sensitized with GP extract, followed by SCIT and SLIT treatments with various GP dosages. Subsequently, we challenged mice with GP and measured airway responsiveness (AHR), GP-specific immunoglobulins, ear swelling tests (EST), eosinophilic inflammation in bronchoalveolar lavage fluid (BALF), and T cell cytokine release after restimulation of lung cells (IL-5, IL-10, and IL-13). ResultsWe find that SLIT treatment was able to suppress allergen-induced AHR, while allergic inflammation was not effectively suppressed even at the highest GP dose in this model. In contrast, SCIT treatment induced higher levels of GP-specific IgG1, while SLIT was superior in inducing a GP-specific IgG2a response, which was associated with increased Th1 activity in lung tissue after SLIT, but not SCIT treatment. Interestingly, SCIT was able to suppress Th2-type cytokine production in lung cell suspensions, while SLIT failed to do so. Conclusions and clinical relevanceIn conclusion, GP-SCIT suppresses Th2 inflammation and induced neutralizing antibodies, while GP-SLIT suppresses the clinically relevant lung function parameters in an asthma mouse model, indicating that the two application routes depend on partially divergent mechanisms of tolerance induction. Interestingly, these data mirror observations in clinical studies, underscoring the translational value of these mouse models

    Sublingual vaccination with influenza virus protects mice against lethal viral infection

    No full text
    We assessed whether the sublingual (s.l.) route would be an effective means of delivering vaccines against influenza virus in mice by using either formalin-inactivated or live influenza A/PR/8 virus (H1N1). Sublingual administration of inactivated influenza virus given on two occasions induced both systemic and mucosal antibody responses and conferred protection against a lethal intranasal (i.n.) challenge with influenza virus. Coadministration of a mucosal adjuvant (mCTA-LTB) enhanced these responses and resulted in complete protection against respiratory viral challenge. In addition, s.l. administration of formalin-inactivated A/PR/8 plus mCTA-LTB induced systemic expansion of IFN-γ-secreting T cells and virus-specific cytotoxic T lymphocyte responses. Importantly, a single s.l. administration of live A/PR/8 virus was not pathogenic and induced protection mediated by both acquired and innate immunity. Moreover, s.l. administration of live A/PR/8 virus conferred heterosubtypic protection against respiratory challenge with H3N2 virus. Unlike the i.n. route, the A/PR/8 virus, whether live or inactivated, did not migrate to or replicate in the CNS after s.l. administration. Based on these promising findings, we propose that the s.l. mucosal route offers an attractive alternative to mucosal routes for administering influenza vaccines
    corecore