64 research outputs found

    Industry Leaders' Perspectives on Communicating the Cooperative Value Package

    Get PDF
    Communication, Cooperatives, Value Package, Agribusiness, Q13, P13,

    Direct Marketing of Fresh Produce: Understanding Consumer Purchasing Decisions

    Get PDF
    Consumer/Household Economics, Crop Production/Industries, Marketing, Q13,

    Eat Your Fruits and Veggies: Who Informs Consumers about Produce Choices and Nutrition?

    Get PDF
    Food consumption trends in the U.S. may be affected by and/or contributing to the growth in food- and nutrition-related information channels. Information channels are increasing in number, as are the sources (McCluskey & Swinnnen 2004) that provide information. This paper examines consumer perceptions of the relative desirability of various food and nutrition information sources and education methods as well as the relative credibility of various food and nutrition sources. Using data from a 2006 nationwide consumer survey, comparative summary statistics show significant differences between information delivery methods and sources that consumers use and trust. By understanding how consumers receive and value information we can better target consumer groups.Food Consumption/Nutrition/Food Safety,

    The Effects of Warming-Shifted Plant Phenology on Ecosystem Carbon Exchange Are Regulated by Precipitation in a Semi-Arid Grassland

    Get PDF
    BACKGROUND: The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems. METHODOLOGY/PRINCIPAL FINDINGS: A 4-year field experiment with day and night warming was conducted to examine the responses of plant phenology and their influences on plant coverage and ecosystem C cycling in a temperate steppe in northern China. Greater phenological responses were observed under night than day warming. Both day and night warming prolonged the growing season by advancing phenology of early-blooming species but without changing that of late-blooming species. However, no warming response of vegetation coverage was found for any of the eight species. The variances in species-level coverage and ecosystem C fluxes under different treatments were positively dependent upon the accumulated precipitation within phenological duration but not the length of phenological duration. CONCLUSIONS/SIGNIFICANCE: These plants' phenology is more sensitive to night than day warming, and the warming effects on ecosystem C exchange via shifting plant phenology could be mediated by precipitation patterns in semi-arid grasslands

    Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry

    Get PDF
    Author Posting. Β© American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB3016, doi:10.1029/2008GB003440.We present results from transient sensitivity studies with the Biogeochemical Elemental Cycling (BEC) ocean model to increasing anthropogenic atmospheric inorganic nitrogen (N) and soluble iron (Fe) deposition over the industrial era. Elevated N deposition results from fossil fuel combustion and agriculture, and elevated soluble Fe deposition results from increased atmospheric processing in the presence of anthropogenic pollutants and soluble Fe from combustion sources. Simulations with increasing Fe and increasing Fe and N inputs raised simulated marine nitrogen fixation, with the majority of the increase in the subtropical North and South Pacific, and raised primary production and export in the high-nutrient low-chlorophyll (HNLC) regions. Increasing N inputs alone elevated small phytoplankton and diatom production, resulting in increased phosphorus (P) and Fe limitation for diazotrophs, hence reducing nitrogen fixation (∼6%). Globally, the simulated primary production, sinking particulate organic carbon (POC) export. and atmospheric CO2 uptake were highest under combined increase in Fe and N inputs compared to preindustrial control. Our results suggest that increasing combustion iron sources and aerosol Fe solubility along with atmospheric anthropogenic nitrogen deposition are perturbing marine biogeochemical cycling and could partially explain the observed trend toward increased P limitation at station ALOHA in the subtropical North Pacific. Excess inorganic nitrogen ([NO3 βˆ’] + [NH4 +] βˆ’ 16[PO4 3βˆ’]) distributions may offer useful insights for understanding changing ocean circulation and biogeochemistry.This work was supported by funding from NSF grant OCE-0452972 to J. K. Moore and C. S. Zender. Computations were supported by the Earth System Modeling Facility at UCI (NSFATMO321380) and by the Climate Simulation Laboratory at National Center for Atmospheric Research. The National Center for Atmospheric Research is sponsored by the U.S. National Science Foundation. N.M. would like to acknowledge the assistance of NSF– Carbon and Water (ATM-0628472), and N.M., S.D., and C.L. would like to acknowledge the assistance of NASA-IDS (NNX07AL80G)

    Is the northern high-latitude land-based CO2 sink weakening?

    Get PDF
    Author Posting. Β© American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB3018, doi:10.1029/2010GB003813.Studies indicate that, historically, terrestrial ecosystems of the northern high-latitude region may have been responsible for up to 60% of the global net land-based sink for atmospheric CO2. However, these regions have recently experienced remarkable modification of the major driving forces of the carbon cycle, including surface air temperature warming that is significantly greater than the global average and associated increases in the frequency and severity of disturbances. Whether Arctic tundra and boreal forest ecosystems will continue to sequester atmospheric CO2 in the face of these dramatic changes is unknown. Here we show the results of model simulations that estimate a 41 Tg C yrβˆ’1 sink in the boreal land regions from 1997 to 2006, which represents a 73% reduction in the strength of the sink estimated for previous decades in the late 20th century. Our results suggest that CO2 uptake by the region in previous decades may not be as strong as previously estimated. The recent decline in sink strength is the combined result of (1) weakening sinks due to warming-induced increases in soil organic matter decomposition and (2) strengthening sources from pyrogenic CO2 emissions as a result of the substantial area of boreal forest burned in wildfires across the region in recent years. Such changes create positive feedbacks to the climate system that accelerate global warming, putting further pressure on emission reductions to achieve atmospheric stabilization targets.This study was supported through grants provided as part of the Arctic System Science Program (NSF OPP‐ 0531047), the North American Carbon Program (NASA NNG05GD25G), and the Bonanza Creek Long‐Term Ecological Program (funded jointly by NSF grant DEB‐0423442 and USDA Forest Service, Pacific Northwest Research Station grant PNW01‐JV11261952‐231)

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    • …
    corecore