5,255 research outputs found

    The NUHM2 after LHC Run 1

    Get PDF
    We make a frequentist analysis of the parameter space of the NUHM2, in which the soft supersymmetry (SUSY)-breaking contributions to the masses of the two Higgs multiplets, mHu,d2m^2_{H_{u,d}}, vary independently from the universal soft SUSY-breaking contributions m02m^2_0 to the masses of squarks and sleptons. Our analysis uses the MultiNest sampling algorithm with over 4×1084 \times 10^8 points to sample the NUHM2 parameter space. It includes the ATLAS and CMS Higgs mass measurements as well as their searches for supersymmetric jets + MET signals using the full LHC Run~1 data, the measurements of Bs→μ+μ−B_s \to \mu^+ \mu^- by LHCb and CMS together with other B-physics observables, electroweak precision observables and the XENON100 and LUX searches for spin-independent dark matter scattering. We find that the preferred regions of the NUHM2 parameter space have negative SUSY-breaking scalar masses squared for squarks and sleptons, m02<0m_0^2 < 0, as well as mHu2<mHd2<0m^2_{H_u} < m^2_{H_d} < 0. The tension present in the CMSSM and NUHM1 between the supersymmetric interpretation of gμ−2g_\mu - 2 and the absence to date of SUSY at the LHC is not significantly alleviated in the NUHM2. We find that the minimum χ2=32.5\chi^2 = 32.5 with 21 degrees of freedom (dof) in the NUHM2, to be compared with χ2/dof=35.0/23\chi^2/{\rm dof} = 35.0/23 in the CMSSM, and χ2/dof=32.7/22\chi^2/{\rm dof} = 32.7/22 in the NUHM1. We find that the one-dimensional likelihood functions for sparticle masses and other observables are similar to those found previously in the CMSSM and NUHM1.Comment: 20 pages latex, 13 figure

    Frequentist Analysis of the Parameter Space of Minimal Supergravity

    Get PDF
    We make a frequentist analysis of the parameter space of minimal supergravity (mSUGRA), in which, as well as the gaugino and scalar soft supersymmetry-breaking parameters being universal, there is a specific relation between the trilinear, bilinear and scalar supersymmetry-breaking parameters, A_0 = B_0 + m_0, and the gravitino mass is fixed by m_{3/2} = m_0. We also consider a more general model, in which the gravitino mass constraint is relaxed (the VCMSSM). We combine in the global likelihood function the experimental constraints from low-energy electroweak precision data, the anomalous magnetic moment of the muon, the lightest Higgs boson mass M_h, B physics and the astrophysical cold dark matter density, assuming that the lightest supersymmetric particle (LSP) is a neutralino. In the VCMSSM, we find a preference for values of m_{1/2} and m_0 similar to those found previously in frequentist analyses of the constrained MSSM (CMSSM) and a model with common non-universal Higgs masses (NUHM1). On the other hand, in mSUGRA we find two preferred regions: one with larger values of both m_{1/2} and m_0 than in the VCMSSM, and one with large m_0 but small m_{1/2}. We compare the probabilities of the frequentist fits in mSUGRA, the VCMSSM, the CMSSM and the NUHM1: the probability that mSUGRA is consistent with the present data is significantly less than in the other models. We also discuss the mSUGRA and VCMSSM predictions for sparticle masses and other observables, identifying potential signatures at the LHC and elsewhere.Comment: 18 pages 27 figure

    The pMSSM10 after LHC Run 1

    Get PDF
    We present a frequentist analysis of the parameter space of the pMSSM10, in which the following 10 soft SUSY-breaking parameters are specified independently at the mean scalar top mass scale Msusy = Sqrt[M_stop1 M_stop2]: the gaugino masses M_{1,2,3}, the 1st-and 2nd-generation squark masses M_squ1 = M_squ2, the third-generation squark mass M_squ3, a common slepton mass M_slep and a common trilinear mixing parameter A, the Higgs mixing parameter mu, the pseudoscalar Higgs mass M_A and tan beta. We use the MultiNest sampling algorithm with 1.2 x 10^9 points to sample the pMSSM10 parameter space. A dedicated study shows that the sensitivities to strongly-interacting SUSY masses of ATLAS and CMS searches for jets, leptons + MET signals depend only weakly on many of the other pMSSM10 parameters. With the aid of the Atom and Scorpion codes, we also implement the LHC searches for EW-interacting sparticles and light stops, so as to confront the pMSSM10 parameter space with all relevant SUSY searches. In addition, our analysis includes Higgs mass and rate measurements using the HiggsSignals code, SUSY Higgs exclusion bounds, the measurements B-physics observables, EW precision observables, the CDM density and searches for spin-independent DM scattering. We show that the pMSSM10 is able to provide a SUSY interpretation of (g-2)_mu, unlike the CMSSM, NUHM1 and NUHM2. As a result, we find (omitting Higgs rates) that the minimum chi^2/dof = 20.5/18 in the pMSSM10, corresponding to a chi^2 probability of 30.8 %, to be compared with chi^2/dof = 32.8/24 (31.1/23) (30.3/22) in the CMSSM (NUHM1) (NUHM2). We display 1-dimensional likelihood functions for SUSY masses, and show that they may be significantly lighter in the pMSSM10 than in the CMSSM, NUHM1 and NUHM2. We discuss the discovery potential of future LHC runs, e+e- colliders and direct detection experiments.Comment: 47 pages, 29 figure

    Supersymmetric Dark Matter after LHC Run 1

    Get PDF
    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, neutralino_1, assumed here to be the LSP and thus the Dark Matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly-degenerate next-to-lightest supersymmetric particle (NLSP) such as the lighter stau (stau_1), stop (stop_1) or chargino (chargino_1), resonant annihilation via direct-channel heavy Higgs bosons H/A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2 and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the stau_1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for missing E_T events and long-lived charged particles, whereas their H/A funnel, focus-point and chargino_1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is chargino_1 coannihilation: {parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.Comment: 21 pages, 8 figure

    Artificial intelligence convolutional neural networks map giant kelp forests from satellite imagery

    Get PDF
    Climate change is producing shifts in the distribution and abundance of marine species. Such is the case of kelp forests, important marine ecosystem-structuring species whose distributional range limits have been shifting worldwide. Synthesizing long-term time series of kelp forest observations is therefore vital for understanding the drivers shaping ecosystem dynamics and for predicting responses to ongoing and future climate changes. Traditional methods of mapping kelp from satellite imagery are time-consuming and expensive, as they require high amount of human effort for image processing and algorithm optimization. Here we propose the use of mask region-based convolutional neural networks (Mask R-CNN) to automatically assimilate data from open-source satellite imagery (Landsat Thematic Mapper) and detect kelp forest canopy cover. The analyses focused on the giant kelp Macrocystis pyrifera along the shorelines of southern California and Baja California in the northeastern Pacific. Model hyper-parameterization was tuned through cross-validation procedures testing the effect of data augmentation, and different learning rates and anchor sizes. The optimal model detected kelp forests with high performance and low levels of overprediction (Jaccard's index: 0.87 +/- 0.07; Dice index: 0.93 +/- 0.04; over prediction: 0.06) and allowed reconstructing a time series of 32 years in Baja California (Mexico), a region known for its high variability in kelp owing to El Nino events. The proposed framework based on Mask R-CNN now joins the list of cost-efficient tools for long-term marine ecological monitoring, facilitating well-informed biodiversity conservation, management and decision making.LA/P/0101/2020info:eu-repo/semantics/publishedVersio

    PGI31 PAIN AFTER LIVER TRANSPLANT: A CROSS SECTIONAL STUDY

    Get PDF

    Oceanographic connectivity explains the intra-specific diversity of mangrove forests at global scales

    Get PDF
    The distribution of mangrove intra-specific biodiversity can be structured by historical demographic processes that enhance or limit effective population sizes. Oceanographic connectivity (OC) may further structure intra-specific biodiversity by preserving or diluting the genetic signatures of historical changes. Despite its relevance for biogeography and evolution, the role of oceanographic connectivity in structuring the distribution of mangrove’s genetic diversity has not been addressed at global scale. Here we ask whether connectivity mediated by ocean currents explains the intra-specific diversity of mangroves. A comprehensive dataset of population genetic differentiation was compiled from the literature. Multigenerational connectivity and population centrality indices were estimated with biophysical modeling coupled with network analyses. The variability explained in genetic differentiation was tested with competitive regression models built upon classical isolation-by-distance (IBD) models considering geographic distance. We show that oceanographic connectivity can explain the genetic differentiation of mangrove populations regardless of the species, region, and genetic marker (significant regression models in 95% of cases, with an average R-square of 0.44 ± 0.23 and Person’s correlation of 0.65 ± 0.17), systematically improving IBD models. Centrality indices, providing information on important stepping-stone sites between biogeographic regions, were also important in explaining differentiation (R-square improvement of 0.06 ± 0.07, up to 0.42). We further show that ocean currents produce skewed dispersal kernels for mangroves, highlighting the role of rare long-distance dispersal events responsible for historical settlements. Overall, we demonstrate the role of oceanographic connectivity in structuring mangrove intra-specific diversity. Our findings are critical for mangroves’ biogeography and evolution, but also for management strategies considering climate change and genetic biodiversity conservation

    SUSY Survey with Inclusive Muon and Same-Sign Dimuon Accompanied by Jets and MET with CMS

    Get PDF
    Generic signatures of supersymmetry with R-parity conservation include those of single isolated muons or like-sign isolated dimuon pairs, accompanied with energetic jets and missing transverse energy. The ability of CMS to discover supersymmetry with these signals is estimated for 10 fb^{-1} of data collected with the inclusive single-muon and dimuon High-Level-Trigger paths. The selection criteria are optimized and the systematic effects are studied for a single low-mass benchmark point of the constrained MSSM with m_0 = 60,GeV/c^2, m_{1/2} = 250,GeVc^2, tan beta=10, A_0=0 and mu> 0. Discovery contours in the m_0, m_{1/2}) plane are presented for integrated luminosities ranging from 1 to 100, fb^{-1}

    Predictions for Supersymmetric Particle Masses in the CMSSM using Indirect Experimental and Cosmological Constraints

    Get PDF
    In view of the imminent start of the LHC experimental programme, we use the available indirect experimental and cosmological information to estimate the likely range of parameters of the constrained minimal supersymmetric extension of the Standard Model (CMSSM), using a Markov-chain Monte Carlo (MCMC) technique to sample the parameter space. The 95% confidence-level area in the (m_0, m_1/2) plane of the CMSSM lies largely within the region that could be explored with 1/fb of integrated luminosity at 14 TeV, and much of the 68% confidence-level area lies within the region that could be explored with 50/pb of integrated luminosity at 10 TeV. A same-sign dilepton signal could well be visible in most of the 68% confidence-level area with 1/fb of integrated luminosity at 14 TeV. We discuss the sensitivities of the preferred ranges to variations in the most relevant indirect experimental and cosmological constraints and also to deviations from the universality of the supersymmetry-breaking contributions to the masses of the Higgs bosons.Comment: 19 pages, 7 figure
    • …
    corecore