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Artificial intelligence convolutional 
neural networks map giant kelp 
forests from satellite imagery
L. Marquez 1, E. Fragkopoulou 1, K. C. Cavanaugh 2, H. F. Houskeeper 2 & J. Assis 1*

Climate change is producing shifts in the distribution and abundance of marine species. Such is the 
case of kelp forests, important marine ecosystem-structuring species whose distributional range 
limits have been shifting worldwide. Synthesizing long-term time series of kelp forest observations 
is therefore vital for understanding the drivers shaping ecosystem dynamics and for predicting 
responses to ongoing and future climate changes. Traditional methods of mapping kelp from satellite 
imagery are time-consuming and expensive, as they require high amount of human effort for image 
processing and algorithm optimization. Here we propose the use of mask region-based convolutional 
neural networks (Mask R-CNN) to automatically assimilate data from open-source satellite imagery 
(Landsat Thematic Mapper) and detect kelp forest canopy cover. The analyses focused on the giant 
kelp Macrocystis pyrifera along the shorelines of southern California and Baja California in the 
northeastern Pacific. Model hyper-parameterization was tuned through cross-validation procedures 
testing the effect of data augmentation, and different learning rates and anchor sizes. The optimal 
model detected kelp forests with high performance and low levels of overprediction (Jaccard’s index: 
0.87 ± 0.07; Dice index: 0.93 ± 0.04; over prediction: 0.06) and allowed reconstructing a time series 
of 32 years in Baja California (Mexico), a region known for its high variability in kelp owing to El Niño 
events. The proposed framework based on Mask R-CNN now joins the list of cost-efficient tools 
for long-term marine ecological monitoring, facilitating well-informed biodiversity conservation, 
management and decision making.

Ongoing climate change is shifting the distribution of marine species worldwide1,2. Future climate projections 
suggest further range shifts, potentially driving major biodiversity losses3–5. Accordingly, the future maintenance 
of ecosystem functioning will likely depend on the regional persistence of structuring species6 such as giant kelp 
(Macrocystis pyrifera), the largest and most widespread kelp. This forest-forming species provides multiple eco-
system services, such as coastal protection, blue carbon sequestration, and nursery areas for numerous associated 
species, some of which have high economic value7–9.

Giant kelp forests are naturally resilient but recent changes reported in their distribution and abundance are 
undermining ecosystem services and unbalancing trophic interactions5,10. This has been particularly striking at 
equatorward distributional range limits, where poor nutrient conditions and high temperature anomalies11–13 
have led to changes in populations worldwide5. Future projections for the species estimate further losses. For 
instance, even under low emission scenarios, giant kelp populations of Australia are projected to lose 79% of their 
potential suitable habitats, while under more aggressive scenarios, complete losses are expected14. As a result, 
systematic monitoring is required to track broadscale changes in kelp forests over time, and to discriminate the 
impacts of climate change from natural long-term variability15,16.

Remote monitoring of giant kelp is possible with satellite imagery due to the high near-infrared reflectance 
of dense floating canopies on the water surface17. Different sensors and classification techniques have been used 
to detect and reconstruct kelp coverage over time17,18. However, most of these techniques are based on spectral 
analyses of individual pixels (e.g., Multiple Endmember Spectral Mixture Analysis19), requiring high operational 
costs for image processing and algorithm optimization. The use of artificial intelligence semantic interpretation of 
satellite imagery, just like human perception extracts distinct features from images20,21, could advance the field, by 
enabling automatic detection of the easy to distinguish floating canopies of giant kelp forests18 with reduced costs.

Deep learning can automatically learn representations from images without human domain knowledge22. 
More specifically, convolutional neural networks (CNN) can distinguish features of different classes of objects 
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from pre-annotated images and make accurate predictions23. Learning of CNNs can be boosted by data aug-
mentation, in which the size of the training data set is artificially increased, and also by transfer learning, in 
which learning of the network begins with a prior knowledge24,25. This class of algorithms have been recently 
used in the marine context to identify, e.g., whales25–27, oyster reefs28 and features like ships, garbage patches and 
oil spills27,29, from satellite imagery with high performance. In the field of feature detection, the region-based 
CNN (R-CNN) algorithm was developed to extract the location of classified features, i.e., the parts or patterns 
of an object to be recognized30. This was improved in terms of detection speed (Faster R-CNN) by physical-like 
sampling mapping31,32 and regional reference networks sharing all convolution layers32. Later, the Mask R-CNN 
extended Faster R-CNN with a new branch (FCN) capable of predicting the features’ mask within the region 
recognition branch33,34. This algorithm achieves object outline detection with remarkable performance32, open-
ing the possibility of detecting the coverage of giant kelp forests from satellite imagery (e.g., square meters of 
kelp forests in a given region).

In the present study, we propose the use of mask region-based convolutional neural networks (Mask R-CNN) 
to automatically assimilate data and detect giant kelp coverage from satellite imagery (Landsat Thematic Map-
per). In addition, we demonstrate the ability of the method by reconstructing a time series of kelp coverage with 
32 years of satellite data from a particular region of interest: Baja California, Mexico, where El Niño events have 
recurrently impacted the distribution of giant kelp forests12,35. The proposed method aims for automatic, regular, 
and updated monitoring of giant kelp forests, facilitating well-informed biodiversity conservation, management 
and decision making (e.g., marine protected areas). The outputs generated can be used in explanatory modelling 
for a better understanding of ongoing and projected ecosystem dynamics and services.

Methods
We build a Mask R-CNN framework learning from satellite data and tuned with optimal hyperparameterization 
to generalize predictions of giant kelp coverage. This was used to reconstruct a long-term time series of kelp 
coverage in the species equatorward distributional range limits—Baja California (Mexico). Mask R-CNN is an 
excellent candidate method for giant kelp identification and segmentation because it successfully combines the 
high-performance algorithms of Faster R-CNN for target identification and FCN for mask prediction, boundary 
regression and classification36.

All analysis and experiments were performed in Python programming language (v3.7.1) with the frameworks 
of Matterport Inc.37, Keras (v2.0.8) and Tensorflow (v1.13.1), using a desktop computer with 40 Intel Xeon 
cores (hyperthreading technology) and 128 Gb of memory, and running Ubuntu 18.04. With these resources, 
the models took approx. 5 days to train. All code developed is permanently available at github.com/jorgeassis/
maskRCNN.

Model species.  The giant kelp Macrocystis pyrifera is a coastal species that can be found from temperate to 
subpolar latitudes. In the northern hemisphere, it is distributed from Alaska to Baja California (Mexico), while 
in the southern hemisphere, from Peru to Argentina, as well as in Australia, South Africa, New Zealand and 
some sub-Antarctic Islands.

Giant kelp forms dense floating canopies on the ocean surface that are clearly perceived in satellite imagery. 
In particular, the reflectance signature of the canopies is mostly in the near-infrared making them easily dis-
tinguished from the surrounding waters, which absorb nearly all energy at this wavelength19. In addition, giant 
kelp is the dominant species with floating canopies in the study region38, greatly simplifying the estimation of 
its coverage.

Satellite imagery.  Satellite imagery was obtained from Landsat, a series of satellites with sensors acquir-
ing multispectral imagery in 7 spectral bands at 30 m spatial resolution, with scenes covering an area of approx. 
30,600 km39. Images were pooled from Google Earth Engine API40 for 3 scenes of the coast of California, USA, 
and one scene of Baja California, Mexico (Fig. 1), using the implemented atmospheric correction algorithm 
and the cloud cover filter adjusted to less than 5%. This retrieved a total of 130 images (USGS Landsat 5 and 
8 Surface Reflectance Tier 1; Landsat 7 was not used due to known image artifacts)41 spanning from 1997 to 
2021. Pseudo-RGB composites were generated by selecting the near-infrared (760 to 900 nm), the red and the 
green bands (Fig. 2), in line with recent studies published in the scope of remote sensing of kelp forests15,42–44. 
While the near-infrared band allows generating images of high contrast, considering the high reflectance of kelp 
canopies and the high absorption of water masses at this wavelength19,45, the additional bands (red and green) 
provide informative parameters to discriminate surface cover type and, for aquatic surfaces, particle content46. 
To avoid false positives associated with terrestrial detections of vegetation cover, landmasses were automatically 
masked using the47 dataset, as implemented in Google Earth Engine (Fig. 2). Due to the general small size of 
floating kelp canopies (Fig. 3), and to improve the computational process during model training, images were 
cropped into multiple tiles of 1024 × 1024 pixels (Fig. 2; 943,72 km2), therefore preserving the native resolution 
of satellite imagery26.

Tilled images with kelp were annotated by experts with VGG Image Annotator48 version 2.0 (www.​robots.​ox.​
ac.​uk/​~vgg/​softw​are/​via/), a standalone software that stores information as JSON files. Kelp forests were manually 
digitized and labelled as “kelp”, a process that resulted in 3345 “kelp” polygons in 421 tiles.

Model training.  Considering the high variability in the spatial and temporal patterns of kelp forests15,49, as 
well as the dynamic of floating canopies in terms of contour and shape50, the image catalog was randomly split 
into 3 datasets: the training dataset with 75% of the catalog (317 tiles, containing 2368 “kelp” polygons totalizing 
510.77 km2 of area), the testing dataset with 17.5% of the catalog (74 tiles, 537 “kelp” polygons, 192.89 km2 of 
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Figure 1.   (Left panel) Regions where satellite imagery (Landsat Thematic Mapper) was obtained to develop 
Mask R-CNN models. Numbers refer to the scene code of Landsat. (Right panel) Maximum kelp coverage 
predicted for 32 years of satellite data of Baja California (Mexico; yellow square of the left panel), where El Niño 
events (red triangles) have recurrently impacted the equatorward distributional range limits of giant kelp. Figure 
generated in R computing language60 using the open-source landmass polygon provided by OpenStreetMap61.

Figure 2.   Example of a pseudo-RGB composite (with near-infrared, red and green bands), where floating 
canopies of giant kelp are easily perceived (depicted in red). Pseudo-RGB composites were produced from 
square tiles (1024 × 1024 pixels) of Landsat satellite images, which were preprocessed with a mask matching 
landmass (depicted in black). Figure generated in R computing language60 using an open-source Landsat 
satellite image, courtesy of the U.S. Geological Survey.
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area), and a final independent dataset to assess the performance of the model with 7.5% of catalog (30 tiles, 440 
“kelp” polygons, 52.91 km2 of area). The average size of annotated “kelp” polygons was 0.33 km2 (± 0.51 km2 SD), 
in line with additional studies using Landsat to map kelp forests elsewhere51.

An experimental design based on the grid-search method was implemented to properly tune the optimal 
hyperparameterization of Mask R-CNN models (Table 1). This approach compared the performance of all com-
binations of hyperparameters in cross-validation52,53. In particular, different anchor sizes and learning rates were 
tested because they can significantly impact the performance of CNN models. Anchors are grids of squares with 
different sizes used to propose the location of objects, thus, choosing a proper size is essential to accurately detect 
giant kelp forests54,55. Learning rate controls how much the model changes each time its weights are updated, in 
response to the predicted error (each update is called an epoch55). A small learning rate may result in prolonged 
training, more prone to overfitting (i.e., complex fit describing random noise), while a large rate may result in a 
sub-optimal set of weights with reduced performance and generalization26. The effect of data augmentation was 
also tested in cross-validation. This technique artificially increases the volume of the training dataset by image 
transformation56. Images were randomly rotated by 90º steps, flipped from left to right, from top to down, and 
rescaled by 50% (i.e., a fourfold increase of the original data).

Figure 3.   Example of 3 pseudo-RGB composites used in independent cross-validation. (Left panels) Observed 
floating canopies of giant kelp (depicted in red). (Central panels) Manual annotations of giant kelp made by 
experts (depicted in red). (Right panels) Predicted giant kelp forests with Mask R-CNN (depicted in yellow). 
Performance of predictions is shown with Jaccard’s index and Dice coefficient. An example of the outputs of 
Mask R-CNN including the bounding box detections of giant kelp are available in Supplementary Information 
(Figs. S9, S10). Figure generated in R computing language60 using an open-source Landsat satellite image, 
courtesy of the U.S. Geological Survey.
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Models were trained with all combinations of the 3 hyperparameters in two steps: a step training the first 10 
epochs for the head layers of the CNN, with classification and regression of the bounding boxes localizing giant 
kelp in the image; followed by training all layers in 50 epochs, a step which also trained the backbone of the 
model for edge detection. In the first 10 epochs of training the head layers, the learning rate was set as 10 times 
faster than when training all layers57. The models benefited from previous transfer learning consisting of starting 
the training process using the weights from a pre-trained model using the COCO dataset25, which contains 1.5 
million object instances of 80 different categories58. During training, a loss function was generated to compare 
the performance of predictions through cross-validation against the testing dataset. The loss function of the 
implemented framework of Mask R-CNN is determined by the expression:

where the Classification Loss and Bounding Box Regression Loss are determined through cross-entropy as in the 
Faster R-CNN framework31,32, and reflect the ability of the model to classify kelp and to identify the regions of 
the image (i.e., bounding boxes) where kelp occurs. The Mask Loss is determined through binary cross-entropy 
per pixel34, for the images where kelp was classified, and reflects the ability of the model to identify the masks 
(i.e., the outlines) of kelp forests.

For each experiment, we choose the configuration of the epoch retrieving the minimal loss function and used 
it to evaluate the final accuracy of the model.

Model evaluation and optimal parameterization.  The models were evaluated against the independ-
ent dataset using the Jaccard index and the Dice coefficient, two methods based on the overlap between the 
predicted and annotated (observed) masks, i.e., regions with giant kelp. The Jaccard index penalizes inaccurate 
predictions in single instances, an approximate metric for worst-case performance, while the Dice coefficient is 
used as a general measurement of the model’s performance.

The Jaccard index (J) is defined as:

where A and B are the predicted and observed regions with giant kelp, respectively.
The Sørensen’s Dice coefficient (DSC) is defined as:

where A and B are the predicted and observed regions with giant kelp, respectively.
To identify the optimal combination of hyperparameters, the Jaccard index and Dice coefficients were com-

pared across all models. To this end, pairwise comparisons between experiments were performed using the 
non-parametric Mann–Whitney U test, which is equivalent to the two sample t-test for comparing the mean of 
two independent groups, but without the assumption of normality59. The model retrieving significantly higher 
Jaccard index and Dice coefficient was chosen as the optimal model configuration to detect giant kelp forests 
in the satellite imagery.

Reconstruction of a giant kelp time series.  To demonstrate the ability of Mask R-CNN to detect giant 
kelp coverage, the optimal model was used to reconstruct a time series of 32 years of data from Baja California 
in Mexico (Landsat path 37 and row 41, or scene 037041; 157 images with cloud cover less than 5% from 1990 

Loss function = Classification Loss+ Bounding Box Regression Loss+Mask Loss,

J =
|A ∩ B|

|A ∪ B|
=

|A ∩ B|

|A| + |B| − |A ∩ B|
,

DSC =
2|A ∩ B|

|A| + |B|
,

Table 1.   Experiments performed with Mask R-CNN models to identify the best combination of 
hyperparameters (DA data augmentation, LR learning rate and AS anchor size) to predict giant kelp in 
Landsat satellite imagery. The performance of each hyperparameter combination is shown as the average 
Jaccard’s index, Dice coefficient and overprediction of coverage (proportion of classification, ranging from 0 
to 1). Pairwise tests were performed to identify the model with significantly different Jaccard index and Dice 
coefficient (asterisks depict significant p-values with Bonferroni correction). Bold highlight shows the optimal 
hyperparameter combination to detect giant kelp forests in the satellite imagery.

#

Experiment conditions Performance Pairwise tests

DA LR AS Jaccard I Dice C Overprediction 1 2 3 4 5 6 7 8

1 No 0.001/0.0001 32,64,128,256,512 0.753 ± 0.104 0.855 ± 0.072 0.194 – * * * * *

2 Yes 0.001/0.0001 32,64,128,256,512 0.874 ± 0.068 0.931 ± 0.039 0.064 * – * * * *

3 Yes 0.001/0.0001 16,32,64,128,256 0.853 ± 0.095 0.918 ± 0.060 0.103 * – * *

4 Yes 0.0001/0.00001 16,32,64,128,256 0.856 ± 0.088 0.920 ± 0.054 0.071 * – * * *

5 Yes 0.0001/0.00001 32,64,128,256,512 0.824 ± 0.105 0.899 ± 0.073 0.094 * * * –

6 No 0.0001/0.00001 16,32,64,128,256 0.755 ± 0.150 0.851 ± 0.104 0.122 * * * – *

7 No 0.0001/0.00001 32,64,128,256,512 0.774 ± 0.145 0.865 ± 0.100 0.132 * * * – *

8 No 0.001/0.0001 16,32,64,128,256 0.822 ± 0.132 0.895 ± 0.091 0.119 * * * * –
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to 2021; Fig. 1). Because satellite imagery is not consistently available per Landsat cycle, mostly due to differ-
ent Landsat missions and high regional cloud coverage, the generated dataset was aggregated to the maximum 
coverage of kelp per year (average images per year: 18.25 ± 8.97). This way, the demonstration here proposed 
captures the inter-annual variability of giant kelp forests.

Results
The optimal model configuration detecting giant kelp forests with higher performance was the one using data 
augmentation, a learning rate of 0.001 for the head layers and 0.0001 for the remaining layers, and anchor sizes 
set to 32, 64, 128, 256 and 512 (i.e., Experiment #2; Table 1). This resulted in an average Jaccard index and Dice 
coefficient of 0.874 ± 0.068 and 0.931 ± 0.039, respectively, and an average overprediction of kelp coverage of 
0.064 (tested in the independent dataset). Pairwise tests comparing all hyperparameter combinations showed 
two additional models matching the performance of the previously described model (Experiments #3 and #4), 
both using data augmentation, but distinct learning rates and anchor sizes (Table 1). The overall losses assessed 
per experiment along the 50 epochs of training stages, as well as the epochs retrieving minimal losses, are avail-
able in Supplementary Information (Figs. S1–S8).

The optimal model was applied to 157 images, covering to 32 years of data (1990 to 2021) from Baja California 
Sur in Mexico. This time series showed high inter-annual variability, with high kelp coverage (> 5000 m2) in 1999, 
2000 and 2005, and low (< 1000 m2) or no kelp coverage in 1991 to 1994, 1998, 2003, 2009 and 2016 (Fig. 1).

An example of giant kelp floating canopies manually annotated and predicted by the model is presented in 
Fig. 3.

Discussion
This study proposes the use of mask region-based convolutional neural networks (Mask R-CNN) to detect giant 
kelp forests in satellite imagery. The implemented framework performed outline detection (i.e., coverage) with 
high performance and low levels of overprediction (Jaccard’s index: 0.87 ± 0.07; Dice index: 0.93 ± 0.04; over 
prediction: 0.06). A demonstration of the framework was performed with success by predicting to 32 years of 
satellite data of Baja California, Mexico. This reconstructed a time series of kelp coverage in a region known for 
its high variability in kelp forests owing to El Niño events12,37. The method now joins the list of cost-efficient and 
less time-consuming approaches for long-term marine ecological monitoring28,62–64.

The proposed application based on Mask R-CNN used the grid-search method to properly tune hyperparam-
eterization. The performance of eight models fitting different hyperparameters was compared with independent 
data. Results showed higher performance in kelp detection when considering data augmentation, a learning rate 
of 0.001 for the head layers and 0.0001 for the remaining layers, and an anchor size of 32, 64, 128, 256, 512. The 
positive impact of data augmentation on the performance of CNN has been previously shown elsewhere25,28. 
This technique of virtually increasing training data can be particularly advantageous in reducing overfitting 
in small, highly structured datasets65,66, such as our case with kelp forests. Importantly, in the presence of data 
augmentation, the different anchor sizes and learning rates tested did not result in models with statistically dif-
ferent performances. These two hyperparameters only impacted the models not considering data augmentation, 
yet not in a straightforward way. The effect of each one was interdependent on the other, such that there was 
no pattern of performance and generalization change26 while reducing/increasing learning rate. The same for 
the different anchor scales tested, reflecting different grids of squares generating the region proposal network67. 
Accordingly, the grid-search method resulted in an appropriate approach to infer the best combination of such 
interdependent hyperparameters5.

The performance of our model tuned with optimal hyperparameters is comparable to additional marine 
applications using CNN to identify features in satellite or aerial imagery. Our results ranging between 0.87 and 
0.93, depending on the index considered, are in line with the 0.94 reported for whale counting in Google Earth 
imagery25, the 0.85 for coral reefs identification in WorldView-2 and 0.80 in Planet satellite imagery68, the 0.89 
to 0.97 for ships, garbage and oil spills recognition in Google Earth imagery27, and the 0.92 for shellfish reefs 
segmentation in high-resolution imagery from unmanned aircrafts28.

Despite the high performance achieved, the ability to detect kelp coverage was not flawless, and potential 
drawbacks of our framework should be acknowledged. The first is related to the resolution of the satellite imagery 
used (Landsat Thematic Mapper), which may be too coarse to allow proper detection of kelp forests, particularly 
when an area equivalent to a pixel is covered by less than 15%69. This means that CNN may find it difficult to 
differentiate sparse kelp forests from the background when pixels contain a mixture of land, water and kelp69–71. 
To overcome this, higher resolution imagery could be used with our Mask R-CNN framework, however, the 
available datasets are not completely open-source at decadal time scales like the Landsat Thematic Mapper. The 
second potential drawback has to do with the cloud detection algorithm used. Cloud contamination is a recur-
rent challenge in applications using satellite imagery21,72, and our study might not be the exception. Typically, 
clouds are identified and removed before data processing73,74. In our case, the effect of clouds overlapping kelp 
forests was dealt with by filtering images with a cloud cover of less than 5%, as implemented in Google Earth 
Engine API40. Yet, the potential presence of occasional clouds could have interfered in kelp detection, owing to 
changes in reflectance. Considering the automatic implementation proposed, it is not possible to measure such 
an effect, and only the future optimization of algorithms and sensors may overcome this72. The third potential 
drawback has to do with the high variability in the spatial patterns of kelp forests. Here, Mask R-CNN aimed to 
generalize the shape of kelp forests, but while some forests can be very dense and well-defined, others may not, 
making edges blurry and challenging the backbone, i.e., the modelling structure responsible for edge detection75. 
This might be the major reason behind kelp coverage being slightly overestimated, and behind the higher role 
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of data augmentation, as virtually increasing the training data leads to a better generalization of features and 
increased robustness65,66.

To demonstrate the ability of our Mask R-CNN implementation to detect giant kelp coverage, we fed the 
model with 32 years of satellite data from Baja California, the equatorward distributional limit of the species on 
the coast of the East Pacific. As anticipated, giant kelp coverage showed high inter-annual variability modulated 
by the El Niño/La Niña Southern Oscillation (ENSO). The significant declines in 1991 to 1994, 1998, 2003, 
2009 and 2016 were predicted when El Niño was strong or very strong (El Niño years 1991–1992, 1997–1998, 
2002–2003; 2009–2010 and 2014–201676–78). Conversely, during strong La Niña events, giant kelp recovered 
and achieved maximum coverage (e.g., La Niña years 1999–2000). The strong variation in kelp coverage in our 
predictions (i.e., the declines of 1991–1992 and 1997–1998 and recovery of 1999–2000) was also reported in 
additional studies19,51, with population changes occurring at large spatial scales (e.g., hundreds of km) and in 
orders of magnitude19, followed by fast recovery periods between 1 and 4 years13, as predicted.

Extreme climate conditions during El Niño years trigger marine heatwave events that have been linked 
to declines in giant kelp coverage, such as shown by our Mask R-CNN implementation35,79,80. Future climate 
conditions are projected to cause an increase in the frequency and intensity of marine heatwaves81, potentially 
causing permanent local extinctions for the species, with strong implications for ecosystem services14. In this 
line, the proposed method, aiming for automatic, regular, and updated monitoring of giant kelp forests and 
overcoming the need to perform repetitive tasks that can be time-consuming42, may be a key asset in facilitat-
ing well-informed biodiversity conservation, management and decision making (e.g., in the implementation of 
marine protected areas).

Data availability
The authors declare that all data used in modelling are openly available in Figshare at: https://​doi.​org/​10.​6084/​
m9.​figsh​are.​19935​869. All code developed is permanently available at github.com/jorgeassis/maskRCNN.
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