224 research outputs found

    The nature of the excited states of p-nitro-N,N-dimethylaniline.

    No full text
    Contrary to numerous derivatives of p-substituted N,N-dimethyl-aniline, p-nitro-N,N-dimethylaniline, does not form the TICT state. This behaviour is predicted by INDO/S calculations. The calculations also reveal an important role of the Coulomb interaction term in the evolution of intramolecular charge-transfer excited-state energy upon twisting of the dimethylamino group

    Finite size effects on transport coefficients for models of atomic wires coupled to phonons

    Full text link
    We consider models of quasi-1-d, planar atomic wires consisting of several, laterally coupled rows of atoms, with mutually non-interacting electrons. This electronic wire system is coupled to phonons, corresponding, e.g., to some substrate. We aim at computing diffusion coefficients in dependence on the wire widths and the lateral coupling. To this end we firstly construct a numerically manageable linear collision term for the dynamics of the electronic occupation numbers by following a certain projection operator approach. By means of this collision term we set up a linear Boltzmann equation. A formula for extracting diffusion coefficients from such Boltzmann equations is given. We find in the regime of a few atomic rows and intermediate lateral coupling a significant and non-trivial dependence of the diffusion coefficient on both, the width and the lateral coupling. These results, in principle, suggest the possible applicability of such atomic wires as electronic devices, such as, e.g., switches.Comment: 9 pages, 5 figures, accepted for publication in Eur. Phys. J.

    Control of Uterine Microenvironment by Foxp3+ Cells Facilitates Embryo Implantation

    Get PDF
    Implantation of the fertilized egg into the maternal uterus depends on the fine balance between inflammatory and anti-inflammatory processes. Whilst regulatory T cells (Tregs) are reportedly involved in protection of allogeneic fetuses against rejection by the maternal immune system, their role for pregnancy to establish, e.g., blastocyst implantation, is not clear. By using 2-photon imaging we show that Foxp3(+) cells accumulated in the mouse uterus during the receptive phase of the estrus cycle. Seminal fluid further fostered Treg expansion. Depletion of Tregs in two Foxp3.DTR-based models prior to pairing drastically impaired implantation and resulted in infiltration of activated T effector cells as well as in uterine inflammation and fibrosis in both allogeneic and syngeneic mating combinations. Genetic deletion of the homing receptor CCR7 interfered with accumulation of Tregs in the uterus and implantation indicating that homing of Tregs to the uterus was mediated by CCR7. Our results demonstrate that Tregs play a critical role in embryo implantation by preventing the development of a hostile uterine microenvironment.DFG grants: (ZE526/4-2, SFB854TP7), Wilhelm Sander Stiftung Germany grant: (2009.022.1), Helmholtz Alliance for Immunotherapy, FCT, Medical Faculty Otto-von-Guericke University PhD grant

    How flat is an air-cleaved mica surface?

    Get PDF
    Ostendorf F, Schmitz C, Hirth S, Kühnle A, Kolodziej JJ, Reichling M. How flat is an air-cleaved mica surface? Nanotechnology. 2008;19(30):305705.Muscovite mica is an important mineral that has become a standard substrate, due to its easy cleavage along the {001} planes, revealing a very flat surface that is compatible with many biological materials. Here we study mica surfaces by dynamic atomic force microscopy (AFM) operated in the non-contact mode (NC-AFM) under ultra-high vacuum (UHV) conditions. Surfaces produced by cleaving in UHV cannot be imaged with NC-AFM due to large surface charges; however, cleavage in air yields much less surface charge and allows for NC-AFM imaging. We present highly resolved NC-AFM images of air-cleaved mica surfaces revealing a rough morphology originating from a high density of nanometre-sized particles. Among these particles, we find regularly shaped structures indicating the growth of crystallites on the surface. The contamination layer cannot be removed by degassing in UHV; even prolonged heating at a temperature of 560 K under UHV conditions does not yield an atomically flat surface

    Evidence for Potassium Carbonate Crystallites on Air-Cleaved Mica Surfaces

    Get PDF
    Ostendorf F, Schmitz C, Hirth S, Kühnle A, Kolodziej JJ, Reichling M. Evidence for Potassium Carbonate Crystallites on Air-Cleaved Mica Surfaces. Langmuir. 2009;25(18):10764-10767.Air-cleaved mica surfaces exhibit a high density of nanometer or micrometer size particles that have been ascribed to potassium carbonate formed as it reaction product of carbonaceous gases with potassium ions. Unambiguous evidence for this assignment has, however, never been presented. We study air-cleaved mica surfaces by high-resolution noncontact atomic force microscopy (NC-AFM) in ultrahigh vacuum to reveal the detailed structure of such precipitates on the surface. Among a large number of irregularly shaped surface structures, we find flat, hexagonally shaped islands exhibiting two different patterns on their surfaces, namely a rectangular atomic corrugation pattern and a hexagonal moire Structure. The unit cell of the rectangular pattern corresponds to the dimensions of the potassium carbonate bulk structure and is found on high crystallites. The moire structure solely appears on very flat islands and is caused by the interference of the potassium carbonate lattice periodicity and the lattice periodicity of the underlying mica substrate. Both results strongly point to the presence of potassium carbonate crystallites on air-cleaved mica surfaces

    Cytokines and growth factors cross-link heparan sulfate

    Get PDF
    The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors

    Generic nature of long-range repulsion mechanism on a bulk insulator?

    Get PDF
    Neff JL, Richter A, Söngen H, et al. Generic nature of long-range repulsion mechanism on a bulk insulator? Faraday Discussions. 2017;204:419-428

    STM observations of a one-dimensional electronic edge state at steps on Cu(111)

    Get PDF
    Bartels L, Hla SW, Kühnle A, Meyer G, Rieder K-H, Manson JR. STM observations of a one-dimensional electronic edge state at steps on Cu(111). Physical Review B. 2003;67(20):205416.Scanning tunneling microscopy measurements across isolated straight step edges on a Cu(111) surface were carried out for biases between 100 mV and 5 V. In addition to the well known surface state oscillations, and at lower sample bias than the onset of the two-dimensional surface image state, a sharply defined linear protrusion, was observed at the top of the step faces. This linear feature is interpreted as a one-dimensional image state at the step, with its energy modified by a dipolar potential whose appearance is attributed to Smoluchowski smoothing of the electron density at the step edge

    Influence of charge transfer doping on the morphologies of C-60 islands on hydrogenated diamond C(100)-(2 x 1)

    Get PDF
    Nimmrich M, Kittelmann M, Rahe P, et al. Influence of charge transfer doping on the morphologies of C-60 islands on hydrogenated diamond C(100)-(2 x 1). Physical Review B. 2012;85(3): 35420.The adsorption and island formation of C-60 fullerenes on the hydrogenated C(100)-(2 x 1):H diamond surface is studied using high-resolution noncontact atomic force microscopy in ultrahigh vacuum. At room temperature, C-60 fullerene molecules assemble into monolayer islands, exhibiting a hexagonally close-packed internal structure. Dewetting is observed when raising the substrate temperature above approximately 505 K, resulting in two-layer high islands. In contrast to the monolayer islands, these double-layer islands form extended wetting layers. This peculiar behavior is explained by an increased molecule-substrate binding energy in the case of double-layer islands, which originates from charge transfer doping. Only upon further increasing the substrate temperature to approximately 615 K, the wetting layer desorbs, corresponding to a binding energy of the charge transfer-stabilized film of 1.7 eV

    Smooth crack-free targets for nuclear applications produced by molecular plating

    Get PDF
    Vascon A, Santi S, Isse AA, et al. Smooth crack-free targets for nuclear applications produced by molecular plating. Nuclear Instruments and Methods in Physics Research A. 2013;714:163-175.The production process of smooth and crack-free targets by means of constant current electrolysis in organic media, commonly known as molecular plating, was optimized. Using a Nd salt, i.e., [Nd(NO3)(3)center dot 6H(2)O], as model electrolyte several constant current density electrolysis experiments were carried out to investigate the effects of different parameters, namely the plating solvent (isopropanol and isobutanol mixed together, pyridine, and N,N-dimethylformamide), the electrolyte concentration (0.11, 0.22, 0.44 mM), the applied current density (0.17, 0.3, 0.7, and 1.3 mA/cm(2)), and the surface roughness of the deposition substrates (12 and 24 nm). Different environments (air and Ar) were used to dry the samples and the effects on the produced layers were investigated. The obtained deposits were characterized using gamma-ray spectroscopy for determining Nd deposition yields, X-ray photoelectron spectroscopy for chemical analysis of the produced surfaces, radiographic imaging for surface homogeneity inspection, atomic force microscopy for surface roughness evaluation, and scanning electron microscopy for surface morphology investigation. The results allowed identifying the optimum parameters for the production of smooth and crack-free targets by means of molecular plating. The smoothest layers, which had an average RMS roughness of ca. 20 nm and showed no cracks, were obtained using 0.22 mM [Nd(NO3)(3)center dot 6H(2)O] plated from N,N-dimethylformamide at current densities in the range of 0.3-0.7 mA/cm(2) on the smoothest deposition substrate available. (c) 2013 Elsevier B.V. All rights reserved
    corecore