108 research outputs found

    Reduced Levels of Membrane-Bound Alkaline Phosphatase Are Common to Lepidopteran Strains Resistant to Cry Toxins from Bacillus thuringiensis

    Get PDF
    Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Identification of biomarkers would assist in the development of sensitive DNA-based methods to monitor evolution of resistance to Bt toxins in natural populations. We report on the proteomic and genomic detection of reduced levels of midgut membrane-bound alkaline phosphatase (mALP) as a common feature in strains of Cry-resistant Heliothis virescens, Helicoverpa armigera and Spodoptera frugiperda when compared to susceptible larvae. Reduced levels of H. virescens mALP protein (HvmALP) were detected by two dimensional differential in-gel electrophoresis (2D-DIGE) analysis in Cry-resistant compared to susceptible larvae, further supported by alkaline phosphatase activity assays and Western blotting. Through quantitative real-time polymerase chain reaction (qRT-PCR) we demonstrate that the reduction in HvmALP protein levels in resistant larvae are the result of reduced transcript amounts. Similar reductions in ALP activity and mALP transcript levels were also detected for a Cry1Ac-resistant strain of H. armigera and field-derived strains of S. frugiperda resistant to Cry1Fa. Considering the unique resistance and cross-resistance phenotypes of the insect strains used in this work, our data suggest that reduced mALP expression should be targeted for development of effective biomarkers for resistance to Cry toxins in lepidopteran pests

    Reduced membrane-bound alkaline phosphatase does not affect binding of Vip3Aa in a Heliothis virescens resistant colony

    Get PDF
    The Vip3Aa insecticidal protein from Bacillus thuringiensis (Bt) is produced by specific transgenic corn and cotton varieties for efficient control of target lepidopteran pests. The main threat to this technology is the evolution of resistance in targeted insect pests and understanding the mechanistic basis of resistance is crucial to deploy the most appropriate strategies for resistance management. In this work, we tested whether alteration of membrane receptors in the insect midgut might explain the >2000-fold Vip3Aa resistance phenotype in a laboratory-selected colony of Heliothis virescens (Vip-Sel). Binding of 125I-labeled Vip3Aa to brush border membrane vesicles (BBMV) from 3rd instar larvae from Vip-Sel was not significantly different from binding in the reference susceptible colony. Interestingly, BBMV from Vip-Sel larvae showed dramatically reduced levels of membrane-bound alkaline phosphatase (mALP) activity, which was further confirmed by a strong downregulation of the membrane-bound alkaline phosphatase 1 (HvmALP1) gene. However, the involvement of HvmALP1 as a receptor for the Vip3Aa protein was not supported by results from ligand blotting and viability assays with insect cells expressing HvmALP1

    Insecticidal Gene Silencing by RNAi in the Neotropical Region.

    Get PDF
    Insecticidal gene silencing by RNA interference (RNAi) involves a post-transcriptional mechanism with great potential for insect control. Here, we aim to summarize the progress on RNAi research toward control of insect pests in the Neotropical region and discuss factors determining its efficacy and prospects for pest management. We include an overview of the available RNAi information for Neotropical pests in the Lepidoptera, Coleoptera, Diptera, and Hemiptera orders. Emphasis is put on significant findings in the use of RNAi against relevant Neotropical pests, including diamondback moth (Plutella xylostella L.), Asian citrus psyllid (Diaphorina citri Kuwayama), and the cotton boll weevil (Anthonomus grandis Boheman). We also examine the main factors involved in insecticidal RNAi efficiency and major advances to improve screening of lethal genes, formulation, and delivery. Few studies detail resistance mechanisms to RNAi, demonstrating a need for more research. Advances in formulation, delivery, and resistance management tools for insecticidal RNAi in the Neotropics can provide a basis for efficient field application

    Resistance of Trichoplusia ni to Bacillus thuringiensis Toxin Cry1Ac Is Independent of Alteration of the Cadherin-Like Receptor for Cry Toxins

    Get PDF
    Alteration of binding sites for Bacillus thuringiensis (Bt) toxins in insect midgut is the major mechanism of high-level resistance to Bt toxins in insects. The midgut cadherin is known to be a major binding protein for Bt Cry1A toxins and linkage of Bt-resistance to cadherin gene mutations has been identified in lepidopterans. The resistance to Bt toxin Cry1Ac evolved in greenhouse populations of Trichoplusia ni has been identified to be associated with the down-regulation of an aminopeptidase N (APN1) gene by a trans-regulatory mechanism and the resistance gene has been mapped to the locus of an ABC transporter (ABCC2) gene. However, whether cadherin is also involved with Cry1Ac-resistance in T. ni requires to be understood. Here we report that the Cry1Ac-resistance in T. ni is independent of alteration of the cadherin. The T. ni cadherin cDNA was cloned and the cadherin sequence showed characteristic features known to cadherins from Lepidoptera. Various T. ni cadherin gene alleles were identified and genetic linkage analysis of the cadherin alleles with Cry1Ac-resistance showed no association of the cadherin gene with the Cry1Ac-resistance in T. ni. Analysis of cadherin transcripts showed no quantitative difference between the susceptible and Cry1Ac-resistant T. ni larvae. Quantitative proteomic analysis of midgut BBMV proteins by iTRAQ-2D-LC-MS/MS determined that there was no quantitative difference in cadherin content between the susceptible and the resistant larvae and the cadherin only accounted for 0.0014% (mol%) of the midgut BBMV proteins, which is 1/300 of APN1 in molar ratio. The cadherin from both the susceptible and resistant larvae showed as a 200-kDa Cry1Ac-binding protein by toxin overlay binding analysis, and nano-LC-MS/MS analysis of the 200-kDa cadherin determined that there is no quantitative difference between the susceptible and resistant larvae. Results from this study indicate that the Cry1Ac-resistance in T. ni is independent of cadherin alteration

    MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth

    Get PDF
    Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella.Zhaojiang Guo, Shi Kang, Defeng Chen, Qingjun Wu, Shaoli Wang, Wen Xie, Xun Zhu, Simon W. Baxter, Xuguo Zhou, Juan Luis Jurat-Fuentes, Youjun Zhan

    Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations

    Get PDF
    Background: The fall armyworm (Spodoptera frugiperda (J.E. Smith)) is a highly polyphagous agricultural pest with long-distance migratory behavior threatening food security worldwide. This pest has a host range of > 80 plant species, but two host strains are recognized based on their association with corn (C-strain) or rice and smaller grasses (R-strain). The population genomics of the United States (USA) fall armyworm remains poorly characterized to date despite its agricultural threat. Results: In this study, the population structure and genetic diversity in 55 S. frugiperda samples from Argentina, Brazil, Kenya, Puerto Rico and USA were surveyed to further our understanding of whole genome nuclear diversity. Comparisons at the genomic level suggest a panmictic S. frugiperda population, with only a minor reduction in gene flow between the two overwintering populations in the continental USA, also corresponding to distinct host strains at the mitochondrial level. Two maternal lines were detected from analysis of mitochondrial genomes. We found members from the Eastern Hemisphere interspersed within both continental USA overwintering subpopulations, suggesting multiple individuals were likely introduced to Africa. Conclusions: Our research is the largest diverse collection of United States S. frugiperda whole genome sequences characterized to date, covering eight continental states and a USA territory (Puerto Rico). The genomic resources presented provide foundational information to understand gene flow at the whole genome level among S. frugiperda populations. Based on the genomic similarities found between host strains and laboratory vs. field samples, our findings validate the experimental use of laboratory strains and the host strain differentiation based on mitochondria and sex-linked genetic markers extends to minor genome wide differences with some exceptions showing mixture between host strains is likely occurring in field populations.Fil: Schlum, Katrina A.. University of Tennessee; Estados UnidosFil: Lamour, Kurt. University of Tennessee; Estados UnidosFil: Placidi de Bortoli, Caroline. University of Tennessee; Estados UnidosFil: Banerjee, Rahul. University of Tennessee; Estados UnidosFil: Meagher, Robert. United States Department Of Agriculture. Center For Medical Agric And Vet Entomology; Estados UnidosFil: Pereira, Eliseu. Universidade Federal de Viçosa; BrasilFil: Murúa, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Sword, Gregory A.. Texas A&M University; Estados UnidosFil: Tessnow, Ashley E.. Texas A&M University; Estados UnidosFil: Viteri Dillon, Diego. Universidad de Puerto Rico; Puerto RicoFil: Linares Ramirez, Angela M.. Universidad de Puerto Rico; Puerto RicoFil: Akutse, Komivi S.. International Centre Of Insect Physiology And Ecology; KeniaFil: Schmidt Jeffris, Rebecca. United States Department Of Agriculture. Center For Medical Agric And Vet Entomology; Estados UnidosFil: Huang, Fangneng. State University of Louisiana; Estados UnidosFil: Reisig, Dominic. North Carolina State University; Estados UnidosFil: Emrich, Scott J.. University of Tennessee; Estados UnidosFil: Jurat Fuentes, Juan Luis. University of Tennessee; Estados Unido

    Binding Site Alteration Is Responsible for Field-Isolated Resistance to Bacillus thuringiensis Cry2A Insecticidal Proteins in Two Helicoverpa Species

    Get PDF
    Background Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt) insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II) comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac. Methodology/Principal Findings Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with 125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in 125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins. Conclusion/Significance This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported. Because we found the same mechanism of resistance in multiple strains representing several field populations, we conclude that target site alteration is the most likely means that field populations evolve resistance to Cry2 proteins in Helicoverpa spp. Our work also confirms the presence in the insect midgut of specific binding sites for this class of proteins. Characterizing the Cry2 receptors and their mutations that enable resistance could lead to the development of molecular tools to monitor resistance in the [email protected]; [email protected]

    Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda

    Get PDF
    First generation of insect-protected transgenic corn (Bt-corn) was based on the expression of Cry1Ab or Cry1Fa proteins. Currently, the trend is the combination of two or more genes expressing proteins that bind to different targets. In addition to broadening the spectrum of action, this strategy helps to delay the evolution of resistance in exposed insect populations. One of such examples is the combination of Cry1A.105 with Cry1Fa and Cry2Ab to control O. nubilalis and S. frugiperda. Cry1A.105 is a chimeric protein with domains I and II and the C-terminal half of the protein from Cry1Ac, and domain III almost identical to Cry1Fa. The aim of the present study was to determine whether the chimeric Cry1A.105 has shared binding sites either with Cry1A proteins, with Cry1Fa, or with both, in O. nubilalis and in S. frugiperda. Brush-border membrane vesicles (BBMV) from last instar larval midguts were used in competition binding assays with 125I-labeled Cry1A.105, Cry1Ab, and Cry1Fa, and unlabeled Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab and Cry2Ae. The results showed that Cry1A.105, Cry1Ab, Cry1Ac and Cry1Fa competed with high affinity for the same binding sites in both insect species. However, Cry2Ab and Cry2Ae did not compete for the binding sites of Cry1 proteins. Therefore, according to our results, the development of cross-resistance among Cry1Ab/Ac, Cry1A.105, and Cry1Fa proteins is possible in these two insect species if the alteration of shared binding sites occurs. Conversely, cross-resistance between these proteins and Cry2A proteins is very unlikely in such case

    Comparative Proteomic Analysis of Aedes aegypti Larval Midgut after Intoxication with Cry11Aa Toxin from Bacillus thuringiensis

    Get PDF
    Cry toxins produced by Bacillus thuringiensis bacteria are environmentally safe alternatives to control insect pests. They are pore-forming toxins that specifically affect cell permeability and cellular integrity of insect-midgut cells. In this work we analyzed the defensive response of Aedes aegypti larva to Cry11Aa toxin intoxication by proteomic and functional genomic analyses. Two dimensional differential in-gel electrophoresis (2D-DIGE) was utilized to analyze proteomic differences among A. aegypti larvae intoxicated with different doses of Cry11Aa toxin compared to a buffer treatment. Spots with significant differential expression (p<0.05) were then identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), revealing 18 up-regulated and seven down-regulated proteins. The most abundant subcategories of differentially expressed proteins were proteins involved in protein turnover and folding, energy production, and cytoskeleton maintenance. We selected three candidate proteins based on their differential expression as representatives of the different functional categories to perform gene silencing by RNA interference and analyze their functional role. The heat shock protein HSP90 was selected from the proteins involved in protein turnover and chaperones; actin, was selected as representative of the cytoskeleton protein group, and ATP synthase subunit beta was selected from the group of proteins involved in energy production. When we affected the expression of ATP synthase subunit beta and actin by silencing with RNAi the larvae became hypersensitive to toxin action. In addition, we found that mosquito larvae displayed a resistant phenotype when the heat shock protein was silenced. These results provide insight into the molecular components influencing the defense to Cry toxin intoxication and facilitate further studies on the roles of identified genes

    Exploring the Midgut Transcriptome and Brush Border Membrane Vesicle Proteome of the Rice Stem Borer, Chilo suppressalis (Walker)

    Get PDF
    The rice stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), is one of the most detrimental pests affecting rice crops. The use of Bacillus thuringiensis (Bt) toxins has been explored as a means to control this pest, but the potential for C. suppressalis to develop resistance to Bt toxins makes this approach problematic. Few C. suppressalis gene sequences are known, which makes in-depth study of gene function difficult. Herein, we sequenced the midgut transcriptome of the rice stem borer. In total, 37,040 contigs were obtained, with a mean size of 497 bp. As expected, the transcripts of C. suppressalis shared high similarity with arthropod genes. Gene ontology and KEGG analysis were used to classify the gene functions in C. suppressalis. Using the midgut transcriptome data, we conducted a proteome analysis to identify proteins expressed abundantly in the brush border membrane vesicles (BBMV). Of the 100 top abundant proteins that were excised and subjected to mass spectrometry analysis, 74 share high similarity with known proteins. Among these proteins, Western blot analysis showed that Aminopeptidase N and EH domain-containing protein have the binding activities with Bt-toxin Cry1Ac. These data provide invaluable information about the gene sequences of C. suppressalis and the proteins that bind with Cry1Ac
    • …
    corecore