1,051 research outputs found

    LOFAR observations of 4C+19.44. On the discovery of low frequency spectral curvature in relativistic jet knots

    Get PDF
    We present the first LOFAR observations of the radio jet in the quasar 4C+19.44 (a.k.a. PKS 1354+19) obtained with the long baselines. The achieved resolution is very well matched to that of archival Jansky Very Large Array (JVLA) observations at higher radio frequencies as well as the archival X-ray images obtained with {\it Chandra}. We found that, for several knots along the jet, the radio flux densities measured at hundreds of MHz lie well below the values estimated by extrapolating the GHz spectra. This clearly indicates the presence of spectral curvature. Radio spectral curvature has been already observed in different source classes and/or extended radio structures and it has been often interpreted as due to intrinsic processes, as a curved particle energy distribution, rather than absorption mechanisms ({ Razin-Tsytovich} effect, free-free or synchrotron self absorption to name a few). Here we discuss our results according to the scenario where particles undergo stochastic acceleration mechanisms also in quasar jet knots.Comment: 13 pages, 4 tables, 4 figures, pre-proof version, published on the Astrophysical Journal (Harris, et al. 2019 ApJ, 873, 21

    The connection between the radio jet and the gamma-ray emission in the radio galaxy 3C 120

    Get PDF
    We present the analysis of the radio jet evolution of the radio galaxy 3C 120 during a period of prolonged gamma-ray activity detected by the Fermi satellite between December 2012 and October 2014. We find a clear connection between the gamma-ray and radio emission, such that every period of gamma-ray activity is accompanied by the flaring of the mm-VLBI core and subsequent ejection of a new superluminal component. However, not all ejections of components are associated with gamma-ray events detectable by Fermi. Clear gamma-ray detections are obtained only when components are moving in a direction closer to our line of sight.This suggests that the observed gamma-ray emission depends not only on the interaction of moving components with the mm-VLBI core, but also on their orientation with respect to the observer. Timing of the gamma-ray detections and ejection of superluminal components locate the gamma-ray production to within almost 0.13 pc from the mm-VLBI core, which was previously estimated to lie about 0.24 pc from the central black hole. This corresponds to about twice the estimated extension of the broad line region, limiting the external photon field and therefore suggesting synchrotron self Compton as the most probable mechanism for the production of the gamma-ray emission. Alternatively, the interaction of components with the jet sheath can provide the necessary photon field to produced the observed gamma-rays by Compton scattering.Comment: Already accepted for publication in The Astrophysical Journa

    Chandra Discovery of 10 New X-Ray Jets Associated With FR II Radio Core-Selected AGNs in the MOJAVE Sample

    Get PDF
    The Chandra X-ray observatory has proven to be a vital tool for studying high-energy emission processes in jets associated with Active Galactic Nuclei (AGN).We have compiled a sample of 27 AGN selected from the radio flux-limited MOJAVE (Monitoring of Jets in AGN with VLBA Experiments) sample of highly relativistically beamed jets to look for correlations between X-ray and radio emission on kiloparsec scales. The sample consists of all MOJAVE quasars which have over 100 mJy of extended radio emission at 1.4 GHz and a radio structure of at least 3" in size. Previous Chandra observations have revealed X-ray jets in 11 of 14 members of the sample, and we have carried out new observations of the remaining 13 sources. Of the latter, 10 have Xray jets, bringing the overall detection rate to ~ 78%. Our selection criteria, which is based on highly compact, relativistically beamed jet emission and large extended radio flux, thus provides an effective method of discovering new X-ray jets associated with AGN. The detected X-ray jet morphologies are generally well correlated with the radio emission, except for those displaying sharp bends in the radio band. The X-ray emission mechanism for these powerful FR II (Fanaroff-Riley type II) jets can be interpreted as inverse Compton scattering off of cosmic microwave background (IC/CMB) photons by the electrons in the relativistic jets. We derive viewing angles for the jets, assuming a non-bending, non-decelerating model, by using superluminal parsec scale speeds along with parameters derived from the inverse Compton X-ray model. We use these angles to calculate best fit Doppler and bulk Lorentz factors for the jets, as well as their possible ranges, which leads to extreme values for the bulk Lorentz factor in some cases. When both the non-bending and non-decelerating assumptions are relaxed [abridged]Comment: 38 Pages, 4 Figures, 5 Tables, accepted for publication in Ap

    Multi-waveband polarimetric observations of NRAO 530 on parsec-scale

    Full text link
    We report on multi-bands VLBA polarimetric observations of NRAO 530 in February 1997. Total intensity, EVPA distributions at all these frequencies are presented. Model fitting has been performed, from which the fitted southmost component A is confirmed as the core of the radio structure with relatively high brightness temperature and hard spectrum between 15 and 43 GHz in comparison with the central component B of dominant flux. The relatively high degree of polarization for the component A may arise from its complex radio structure, which is resolvable at 86 GHz. As a contrast, the component B shows a well fitted power-law spectrum with the spectral index of about -0.5, and a linear correlation between EVPAs and wavelength square with the observed RM of about -1062 rad m^{-2}, indicating its structural singleness. Assuming that the component B has a comparable degree of polarization without depolarization at these frequencies, the decrease in fractional polarization with wavelength mainly results from opacity and Faraday rotation, in which the opacity plays quite a large part of role. A spine-sheath like structure in fractional polarization is detected covering almost the whole emission region at 5 and 8 GHz. The linear polarization at 5 GHz shows 3 separate polarized emission regions with alternately aligned and orthogonal polarization vectors down the jet. The polarization goes to zero between the top two regions, with the highest polarization level occurring at the top and bottom. The 5 and 8 GHz images show EVPA changes across the width of the jet as well as along the jet. These complex polarimetric properties can be explained in terms of either the presence of a large helical magnetic field or tangled magnetic fields compressed and sheared down the jet.Comment: 9 pages, 6 figures, accepted for publication in MNRA

    Polarimetric Observations of 15 AGNs at High Frequencies

    Get PDF
    Original paper can be found at: http://www.astrosociety.org/pubs/cs/328.html--Copyright Astronomical Society of the PacificWe have obtained total and polarized intensity images of 15 AGNs with the VLBA at 7 mm at 17 epochs from 25/26 March 1998 to 14 April 2001. The VLBA observations are accompanied at many epochs by simultaneous mea- surements of polarization at 1.35/0.85 mm as well as less frequent simultaneous optical polarization measurements. We discuss the similarities and complexities of polarization behavior at different frequencies along with the VLBI properties

    The milliarcsecond-scale jet of PKS 0735+178 during quiescence

    Get PDF
    We present polarimetric 5 GHz to 43 GHz VLBI observations of the BL Lacertae object PKS 0735+178, spanning March 1996 to May 2000. Comparison with previous and later observations suggests that the overall kinematic and structural properties of the jet are greatly influenced by its activity. Time intervals of enhanced activity, as reported before 1993 and after 2000 by other studies, are followed by highly superluminal motion along a rectilinear jet. In contrast the less active state in which we performed our observations, shows subluminal or slow superluminal jet features propagating through a twisted jet with two sharp bends of about 90 deg. within the innermost three-milliarcsecond jet structure. Proper motion estimates from the data presented here allow us to constrain the jet viewing angle to values < 9 deg., and the bulk Lorentz factor to be between 2 and 4.Comment: 11 pages, 12 figures. Accepted for publication in A&

    Refinement of primary Si in hypereutectic Al-Si alloys by intensive melt shearing

    Get PDF
    Hypereutectic Al-Si based alloys are gaining popularity for applications where a combination of light weight and high wear resistance is required. The high wear resistance arising from the hard primary Si particles comes at the price of extremely poor machine tool life. To minimize machining problems while exploiting outstanding wear resistance, the primary Si particles must be controlled to a uniform small size and uniform spatial distribution. The current industrial means of refining primary Si chemically by the addition of phosphorous suffers from a number of problems. In the present paper an alternative, physical means of refining primary Si by intensive shearing of the melt prior to casting is investigated. Al-15wt%Si alloy has been solidified under varying casting conditions (cooling rate) and the resulting microstructures have been studied using microscopy and quantitative image analysis. Primary Si particles were finer, more compact in shape and more numerous with increasing cooling rate. Intensive melt shearing led to greater refinement and more enhanced nucleation of primary Si than was achieved by adding phosphorous. The mechanism of enhanced nucleation is discussed.EPSRC (grant EP/H026177/1)

    Decreasing time consumption of microscopy image segmentation through parallel processing on the GPU

    Get PDF
    The computational performance of graphical processing units (GPUs) has improved significantly. Achieving speedup factors of more than 50x compared to single-threaded CPU execution are not uncommon due to parallel processing. This makes their use for high throughput microscopy image analysis very appealing. Unfortunately, GPU programming is not straightforward and requires a lot of programming skills and effort. Additionally, the attainable speedup factor is hard to predict, since it depends on the type of algorithm, input data and the way in which the algorithm is implemented. In this paper, we identify the characteristic algorithm and data-dependent properties that significantly relate to the achievable GPU speedup. We find that the overall GPU speedup depends on three major factors: (1) the coarse-grained parallelism of the algorithm, (2) the size of the data and (3) the computation/memory transfer ratio. This is illustrated on two types of well-known segmentation methods that are extensively used in microscopy image analysis: SLIC superpixels and high-level geometric active contours. In particular, we find that our used geometric active contour segmentation algorithm is very suitable for parallel processing, resulting in acceleration factors of 50x for 0.1 megapixel images and 100x for 10 megapixel images

    5 year Global 3-mm VLBI survey of Gamma-ray active blazars

    Get PDF
    The Global mm-VLBI Array (GMVA) is a network of 14 3\,mm and 7\,mm capable telescopes spanning Europe and the United States, with planned extensions to Asia. The array is capable of sensitive maps with angular resolution often exceeding 50\,μ\muas. Using the GMVA, a large sample of prominent γ\gamma-ray blazars have been observed approximately 6 monthly from later 2008 until now. Combining 3\,mm maps from the GMVA with near-in-time 7\,mm maps from the VLBA-BU-BLAZAR program and 2\,cm maps from the MOJAVE program, we determine the sub-pc morphology and high frequency spectral structure of γ\gamma-ray blazars. The magnetic field strength can be estimated at different locations along the jet under the assumption of equipartition between magnetic field and relativistic particle energies. Making assumptions on the jet magnetic field configuration (e.g. poloidal or toroidal), we can estimate the separation of the mm-wave "core" and the jet base, and estimate the strength of the magnetic field there. The results of this analysis show that on average, the magnetic field strength decreases with a power-law BrnB \propto r^{-n}, n=0.3±0.2n=0.3 \pm 0.2. This suggests that on average, the mm-wave "core" is 13\sim 1-3\,pc downstream of the de-projected jet apex and that the magnetic field strength is of the order Bapex520B_{\rm{apex}} \sim 5-20\,kG, broadly consistent with the predictions of magnetic jet launching (e.g. via magnetically arrested disks (MAD)).Comment: 6 pages, 1 figur
    corecore