We present the first LOFAR observations of the radio jet in the quasar
4C+19.44 (a.k.a. PKS 1354+19) obtained with the long baselines. The achieved
resolution is very well matched to that of archival Jansky Very Large Array
(JVLA) observations at higher radio frequencies as well as the archival X-ray
images obtained with {\it Chandra}. We found that, for several knots along the
jet, the radio flux densities measured at hundreds of MHz lie well below the
values estimated by extrapolating the GHz spectra. This clearly indicates the
presence of spectral curvature. Radio spectral curvature has been already
observed in different source classes and/or extended radio structures and it
has been often interpreted as due to intrinsic processes, as a curved particle
energy distribution, rather than absorption mechanisms ({ Razin-Tsytovich}
effect, free-free or synchrotron self absorption to name a few). Here we
discuss our results according to the scenario where particles undergo
stochastic acceleration mechanisms also in quasar jet knots.Comment: 13 pages, 4 tables, 4 figures, pre-proof version, published on the
Astrophysical Journal (Harris, et al. 2019 ApJ, 873, 21