192 research outputs found

    Electrophysiological effects of 5-hydroxytryptamine on isolated human atrial myocytes, and the influence of chronic beta-adrenoceptor blockade

    Get PDF
    <b>1.</b> 5-Hydroxytryptamine (5-HT) has been postulated to play a proarrhythmic role in the human atria via stimulation of 5-HT<sub>4</sub> receptors. <b>2.</b> The aims of this study were to examine the effects of 5-HT on the L-type Ca<sup>2+</sup> current (<i>I</i><sub>CaL</sub>) action potential duration (APD), the effective refractory period (ERP) and arrhythmic activity in human atrial cells, and to assess the effects of prior treatment with β-adrenoceptor antagonists. <b>3.</b> Isolated myocytes, from the right atrial appendage of 27 consenting patients undergoing cardiac surgery who were in sinus rhythm, were studied using the whole-cell perforated patch-clamp technique at 37ºC. <b>4.</b> 5-HT (1 n-10 μM) caused a concentration-dependent increase in <i>I</i><sub>CaL</sub>, which was potentiated in cells from β-blocked (maximum response to 5-HT, E<sub>max</sub>=299±12% increase above control) compared to non-β-blocked patients (E<sub>max</sub>=220±6%, P<0.05), but with no change in either the potency (log EC<sub>50</sub>: -7.09±0.07 vs -7.26±0.06) or Hill coefficient (<i>n</i><sub>H</sub>: 1.5±0.6 vs 1.5±0.3) of the 5-HT concentration-response curve. <b>5.</b> 5-HT (10 μM) produced a greater increase in the APD at 50% repolarisation (APD50) in cells from β-blocked patients (of 37±10 ms, i.e. 589±197%) vs non-β-blocked patients (of 10±4 ms, i.e. 157±54%; P<0.05). Both the APD<sub>90</sub> and the ERP were unaffected by 5-HT. <b>6.</b> Arrhythmic activity was observed in response to 5-HT in five of 17 cells (29%) studied from β-blocked, compared to zero of 16 cells from the non-β-blocked patients (P<0.05). <b>7.</b> In summary, the 5-HT-induced increase in calcium current was associated with a prolonged early plateau phase of repolarisation, but not late repolarisation or refractoriness, and the enhancement of these effects by chronic β-adrenoceptor blockade was associated with arrhythmic potential

    LNLS Control System

    Get PDF

    On Birch and Swinnerton-Dyer's cubic surfaces

    Full text link
    In a 1975 paper of Birch and Swinnerton-Dyer, a number of explicit norm form cubic surfaces are shown to fail the Hasse Principle. They make a correspondence between this failure and the Brauer--Manin obstruction, recently discovered by Manin. We generalize their work, making use of modern computer algebra software to show that a larger set of cubic surfaces have a Brauer--Manin obstruction to the Hasse principle, thus verifying the Colliot-Th\'el\`ene--Sansuc conjecture for infinitely many cubic surfaces

    The 2nd PACITA conference: A lively picture of (parliamentary) TA

    Get PDF

    Adaptable P body physical states differentially regulate bicoid mRNA storage during early Drosophila development.

    Get PDF
    Ribonucleoprotein condensates can exhibit diverse physical states in vitro and in vivo. Despite considerable progress, the relevance of condensate physical states for in vivo biological function remains limited. Here, we investigated the physical properties of processing bodies (P bodies) and their impact on mRNA storage in mature Drosophila oocytes. We show that the conserved DEAD-box RNA helicase Me31B forms viscous P body condensates, which adopt an arrested physical state. We demonstrate that structurally distinct proteins and protein-protein interactions, together with RNA, regulate the physical properties of P bodies. Using live imaging and in situ hybridization, we show that the arrested state and integrity of P bodies support the storage of bicoid (bcd) mRNA and that egg activation modulates P body properties, leading to the release of bcd for translation in the early embryo. Together, this work provides an example of how physical states of condensates regulate cellular function in development

    Electrophysiological and arrhythmogenic effects of 5-hydroxytryptamine on human atrial cells are reduced in atrial fibrillation

    Get PDF
    5-Hydroxytryptamine (5-HT) is proarrhythmic in atrial cells from patients in sinus rhythm (SR) via activation of 5-HT<sub>4</sub> receptors, but its effects in atrial cells from patients with atrial fibrillation (AF) are unknown. The whole-cell perforated patch-clamp technique was used to record L-type Ca<sup>2+</sup> current (<i>I</i><sub>CaL</sub>), action potential duration (APD) and arrhythmic activity at 37 °C in enzymatically isolated atrial cells obtained from patients undergoing cardiac surgery, in SR or with chronic AF. In the AF group, 5-HT (10 μM) produced an increase in <i>I</i><sub>CaL</sub> of 115 ± 21% above control (<i>n</i> = 10 cells, 6 patients) that was significantly smaller than that in the SR group (232 ± 33%; <i>p</i> 0.05; <i>n</i> = 27 cells, 12 patients). Subsequent co-application of isoproterenol (1 μM) caused a further increase in <i>I</i><sub>CaL</sub> in the AF group (by 256 ± 94%) that was greater than that in the SR group (22 ± 6%; p < 0.05). The APD at 50% repolarisation (APD<sub>50</sub>) was prolonged by 14 ± 3 ms by 5-HT in the AF group (<i>n</i> = 37 cells, 14 patients). This was less than that in the SR group (27 ± 4 ms; <i>p</i> < 0.05; <i>n</i> = 58 cells, 24 patients). Arrhythmic activity in response to 5-HT was observed in 22% of cells in the SR group, but none was observed in the AF group (p < 0.05). Atrial fibrillation was associated with reduced effects of 5-HT, but not of isoproterenol, on <i>I</i><sub>CaL</sub> in human atrial cells. This reduced effect on <i>I</i><sub>CaL</sub> was associated with a reduced APD<sub>50</sub> and arrhythmic activity with 5-HT. Thus, the potentially arrhythmogenic influence of 5-HT may be suppressed in AF-remodelled human atrium

    Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase

    Get PDF
    [EN] During DNA replication replicative polymerases move in discrete mechanical steps along the DNA template. To address how the chemical cycle is coupled to mechanical motion of the enzyme, here we use optical tweezers to study the translocation mechanism of individual bacteriophage Phi29 DNA polymerases during processive DNA replication. We determine the main kinetic parameters of the nucleotide incorporation cycle and their dependence on external load and nucleotide (dNTP) concentration. The data is inconsistent with power stroke models for translocation, instead supports a loose-coupling mechanism between chemical catalysis and mechanical translocation during DNA replication. According to this mechanism the DNA polymerase works by alternating between a dNTP/PPi-free state, which diffuses thermally between pre- and post-translocated states, and a dNTP/PPi-bound state where dNTP binding stabilizes the post-translocated state. We show how this thermal ratchet mechanism is used by the polymerase to generate work against large opposing loads (~50 pN).We thank Stephan Grill laboratory (MPI-CBG, Dresden) for help with data collection and E. Galburt, M. Manosas and M. De Vega for critical reading of the manuscript. Spanish Ministry of Economy and Competitiveness [BFU2011-29038 to J.L.C., BFU2013-44202 to J.M.V., BFU2011-23645 to M.S., FIS2010-17440, GR35/10-A920GR35/10-A-911 to F.J.C., MAT2013-49455-EXP to J.R.A.-G. and BFU2012-31825 to B.I.]; Regional Government of Madrid [S2009/MAT 1507 to J.L.C. and CDS2007-0015 to M.S.]; European Molecular Biology Organization [ASTF 276-2012 to J.M.L.]. Funding for open access charge: Spanish Ministry of Economy and Competitiveness [BFU2012-31825 to B.I.].Morin, J.; Cao, F.; Lázaro, J.; Arias-Gonzalez, JR.; Valpuesta, J.; Carrascosa, J.; Salas, M.... (2015). Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase. Nucleic Acids Research. 43(7):3643-3652. https://doi.org/10.1093/nar/gkv204S36433652437Steitz, T. A., & Steitz, J. A. (1993). A general two-metal-ion mechanism for catalytic RNA. Proceedings of the National Academy of Sciences, 90(14), 6498-6502. doi:10.1073/pnas.90.14.6498Nakamura, T., Zhao, Y., Yamagata, Y., Hua, Y., & Yang, W. (2012). Watching DNA polymerase η make a phosphodiester bond. Nature, 487(7406), 196-201. doi:10.1038/nature11181Kohlstaedt, L., Wang, J., Friedman, J., Rice, P., & Steitz, T. (1992). Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science, 256(5065), 1783-1790. doi:10.1126/science.1377403Steitz, T. A. (2006). Visualizing polynucleotide polymerase machines at work. The EMBO Journal, 25(15), 3458-3468. doi:10.1038/sj.emboj.7601211Zhang, H., Cao, W., Zakharova, E., Konigsberg, W., & De La Cruz, E. M. (2007). Fluorescence of 2-aminopurine reveals rapid conformational changes in the RB69 DNA polymerase-primer/template complexes upon binding and incorporation of matched deoxynucleoside triphosphates. Nucleic Acids Research, 35(18), 6052-6062. doi:10.1093/nar/gkm587Wang, W., Wu, E. Y., Hellinga, H. W., & Beese, L. S. (2012). Structural Factors That Determine Selectivity of a High Fidelity DNA Polymerase for Deoxy-, Dideoxy-, and Ribonucleotides. Journal of Biological Chemistry, 287(34), 28215-28226. doi:10.1074/jbc.m112.366609Berezhna, S. Y., Gill, J. P., Lamichhane, R., & Millar, D. P. (2012). Single-Molecule Förster Resonance Energy Transfer Reveals an Innate Fidelity Checkpoint in DNA Polymerase I. Journal of the American Chemical Society, 134(27), 11261-11268. doi:10.1021/ja3038273Hariharan, C., Bloom, L. B., Helquist, S. A., Kool, E. T., & Reha-Krantz, L. J. (2006). Dynamics of Nucleotide Incorporation:  Snapshots Revealed by 2-Aminopurine Fluorescence Studies†. Biochemistry, 45(9), 2836-2844. doi:10.1021/bi051644sJoyce, C. M., Potapova, O., DeLucia, A. M., Huang, X., Basu, V. P., & Grindley, N. D. F. (2008). Fingers-Closing and Other Rapid Conformational Changes in DNA Polymerase I (Klenow Fragment) and Their Role in Nucleotide Selectivity†. Biochemistry, 47(23), 6103-6116. doi:10.1021/bi7021848Vande Berg, B. J., Beard, W. A., & Wilson, S. H. (2000). DNA Structure and Aspartate 276 Influence Nucleotide Binding to Human DNA Polymerase β. Journal of Biological Chemistry, 276(5), 3408-3416. doi:10.1074/jbc.m002884200Showalter, A. K., & Tsai, M.-D. (2002). A Reexamination of the Nucleotide Incorporation Fidelity of DNA Polymerases†. Biochemistry, 41(34), 10571-10576. doi:10.1021/bi026021iShah, A. M., Li, S.-X., Anderson, K. S., & Sweasy, J. B. (2001). Y265H Mutator Mutant of DNA Polymerase β. Journal of Biological Chemistry, 276(14), 10824-10831. doi:10.1074/jbc.m008680200Rothwell, P. J., Mitaksov, V., & Waksman, G. (2005). Motions of the Fingers Subdomain of Klentaq1 Are Fast and Not Rate Limiting: Implications for the Molecular Basis of Fidelity in DNA Polymerases. Molecular Cell, 19(3), 345-355. doi:10.1016/j.molcel.2005.06.032Patel, S. S., Wong, I., & Johnson, K. A. (1991). Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry, 30(2), 511-525. doi:10.1021/bi00216a029Luo, G., Wang, M., Konigsberg, W. H., & Xie, X. S. (2007). Single-molecule and ensemble fluorescence assays for a functionally important conformational change in T7 DNA polymerase. Proceedings of the National Academy of Sciences, 104(31), 12610-12615. doi:10.1073/pnas.0700920104Joyce, C. M., & Benkovic, S. J. (2004). DNA Polymerase Fidelity:  Kinetics, Structure, and Checkpoints†. Biochemistry, 43(45), 14317-14324. doi:10.1021/bi048422zFiala, K. A., & Suo, Z. (2004). Mechanism of DNA Polymerization Catalyzed bySulfolobus solfataricusP2 DNA Polymerase IV†. Biochemistry, 43(7), 2116-2125. doi:10.1021/bi035746zCramer, J., & Restle, T. (2005). Pre-steady-state Kinetic Characterization of the DinB Homologue DNA Polymerase ofSulfolobus solfataricus. Journal of Biological Chemistry, 280(49), 40552-40558. doi:10.1074/jbc.m504481200Choi, J.-Y., & Guengerich, F. P. (2005). Adduct Size Limits Efficient and Error-free Bypass Across Bulky N2-Guanine DNA Lesions by Human DNA Polymerase η. Journal of Molecular Biology, 352(1), 72-90. doi:10.1016/j.jmb.2005.06.079Olsen, T. J., Choi, Y., Sims, P. C., Gul, O. T., Corso, B. L., Dong, C., … Weiss, G. A. (2013). Electronic Measurements of Single-Molecule Processing by DNA Polymerase I (Klenow Fragment). Journal of the American Chemical Society, 135(21), 7855-7860. doi:10.1021/ja311603rAllen, W. J., Rothwell, P. J., & Waksman, G. (2008). An intramolecular FRET system monitors fingers subdomain opening in Klentaq1. Protein Science, 17(3), 401-408. doi:10.1110/ps.073309208Johnson, S. J., & Beese, L. S. (2004). Structures of Mismatch Replication Errors Observed in a DNA Polymerase. Cell, 116(6), 803-816. doi:10.1016/s0092-8674(04)00252-1Yin, Y. W., & Steitz, T. A. (2004). The Structural Mechanism of Translocation and Helicase Activity in T7 RNA Polymerase. Cell, 116(3), 393-404. doi:10.1016/s0092-8674(04)00120-5Golosov, A. A., Warren, J. J., Beese, L. S., & Karplus, M. (2010). The Mechanism of the Translocation Step in DNA Replication by DNA Polymerase I: A Computer Simulation Analysis. Structure, 18(1), 83-93. doi:10.1016/j.str.2009.10.014Zhang, C., & Burton, Z. F. (2004). Transcription Factors IIF and IIS and Nucleoside Triphosphate Substrates as Dynamic Probes of the Human RNA Polymerase II Mechanism. Journal of Molecular Biology, 342(4), 1085-1099. doi:10.1016/j.jmb.2004.07.070Nedialkov, Y. A., Gong, X. Q., Hovde, S. L., Yamaguchi, Y., Handa, H., Geiger, J. H., … Burton, Z. F. (2003). NTP-driven Translocation by Human RNA Polymerase II. Journal of Biological Chemistry, 278(20), 18303-18312. doi:10.1074/jbc.m301103200Gong, X. Q., Zhang, C., Feig, M., & Burton, Z. F. (2005). Dynamic Error Correction and Regulation of Downstream Bubble Opening by Human RNA Polymerase II. Molecular Cell, 18(4), 461-470. doi:10.1016/j.molcel.2005.04.011Guajardo, R., & Sousa, R. (1997). A model for the mechanism of polymerase translocation 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 265(1), 8-19. doi:10.1006/jmbi.1996.0707Thomen, P., Lopez, P. J., & Heslot, F. (2005). Unravelling the Mechanism of RNA-Polymerase Forward Motion by Using Mechanical Force. Physical Review Letters, 94(12). doi:10.1103/physrevlett.94.128102Larson, M. H., Zhou, J., Kaplan, C. D., Palangat, M., Kornberg, R. D., Landick, R., & Block, S. M. (2012). Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proceedings of the National Academy of Sciences, 109(17), 6555-6560. doi:10.1073/pnas.1200939109Bar-Nahum, G., Epshtein, V., Ruckenstein, A. E., Rafikov, R., Mustaev, A., & Nudler, E. (2005). A Ratchet Mechanism of Transcription Elongation and Its Control. Cell, 120(2), 183-193. doi:10.1016/j.cell.2004.11.045Bai, L., Fulbright, R. M., & Wang, M. D. (2007). Mechanochemical Kinetics of Transcription Elongation. Physical Review Letters, 98(6). doi:10.1103/physrevlett.98.068103Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R., & Block, S. M. (2005). Direct observation of base-pair stepping by RNA polymerase. Nature, 438(7067), 460-465. doi:10.1038/nature04268Dangkulwanich, M., Ishibashi, T., Liu, S., Kireeva, M. L., Lubkowska, L., Kashlev, M., & Bustamante, C. J. (2013). Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism. eLife, 2. doi:10.7554/elife.00971Lieberman, K. R., Dahl, J. M., Mai, A. H., Cox, A., Akeson, M., & Wang, H. (2013). Kinetic Mechanism of Translocation and dNTP Binding in Individual DNA Polymerase Complexes. Journal of the American Chemical Society, 135(24), 9149-9155. doi:10.1021/ja403640bLieberman, K. R., Dahl, J. M., Mai, A. H., Akeson, M., & Wang, H. (2012). Dynamics of the Translocation Step Measured in Individual DNA Polymerase Complexes. Journal of the American Chemical Society, 134(45), 18816-18823. doi:10.1021/ja3090302Dahl, J. M., Mai, A. H., Cherf, G. M., Jetha, N. N., Garalde, D. R., Marziali, A., … Lieberman, K. R. (2012). Direct Observation of Translocation in Individual DNA Polymerase Complexes. Journal of Biological Chemistry, 287(16), 13407-13421. doi:10.1074/jbc.m111.338418Rodriguez, I., Lazaro, J. M., Blanco, L., Kamtekar, S., Berman, A. J., Wang, J., … de Vega, M. (2005). A specific subdomain in  29 DNA polymerase confers both processivity and strand-displacement capacity. Proceedings of the National Academy of Sciences, 102(18), 6407-6412. doi:10.1073/pnas.0500597102Morin, J. A., Cao, F. J., Valpuesta, J. M., Carrascosa, J. L., Salas, M., & Ibarra, B. (2012). Manipulation of single polymerase-DNA complexes: A mechanical view of DNA unwinding during replication. Cell Cycle, 11(16), 2967-2968. doi:10.4161/cc.21389Morin, J. A., Cao, F. J., Lazaro, J. M., Arias-Gonzalez, J. R., Valpuesta, J. M., Carrascosa, J. L., … Ibarra, B. (2012). Active DNA unwinding dynamics during processive DNA replication. Proceedings of the National Academy of Sciences, 109(21), 8115-8120. doi:10.1073/pnas.1204759109Ibarra, B., Chemla, Y. R., Plyasunov, S., Smith, S. B., Lázaro, J. M., Salas, M., & Bustamante, C. (2009). Proofreading dynamics of a processive DNA polymerase. The EMBO Journal, 28(18), 2794-2802. doi:10.1038/emboj.2009.219Bustamante, C., Chemla, Y. R., Forde, N. R., & Izhaky, D. (2004). Mechanical Processes in Biochemistry. Annual Review of Biochemistry, 73(1), 705-748. doi:10.1146/annurev.biochem.72.121801.161542Jahnel, M., Behrndt, M., Jannasch, A., Schäffer, E., & Grill, S. W. (2011). Measuring the complete force field of an optical trap. Optics Letters, 36(7), 1260. doi:10.1364/ol.36.001260Soengas, M. S., Esteban, J. A., Lázaro, J. M., Bernad, A., Blasco, M. A., Salas, M., & Blanco, L. (1992). Site-directed mutagenesis at the Exo III motif of phi 29 DNA polymerase; overlapping structural domains for the 3′-5′ exonuclease and strand-displacement activities. The EMBO Journal, 11(11), 4227-4237. doi:10.1002/j.1460-2075.1992.tb05517.xSoengas, M. S., Gutiérrez, C., & Salas, M. (1995). Helix-destabilizing Activity of φ29 Single-stranded DNA Binding Protein: Effect on the Elongation Rate During Strand Displacement DNA Replication. Journal of Molecular Biology, 253(4), 517-529. doi:10.1006/jmbi.1995.0570De Vega, M., Lazaro, J. M., Salas, M., & Blanco, L. (1996). Primer-terminus stabilization at the 3′-5′ exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases. The EMBO Journal, 15(5), 1182-1192. doi:10.1002/j.1460-2075.1996.tb00457.xVisscher, K., Schnitzer, M. J., & Block, S. M. (1999). Single kinesin molecules studied with a molecular force clamp. Nature, 400(6740), 184-189. doi:10.1038/22146Pandey, M., & Patel, S. S. (2014). Helicase and Polymerase Move Together Close to the Fork Junction and Copy DNA in One-Nucleotide Steps. Cell Reports, 6(6), 1129-1138. doi:10.1016/j.celrep.2014.02.025Truniger, V. (2002). A positively charged residue of phi29 DNA polymerase, highly conserved in DNA polymerases from families A and B, is involved in binding the incoming nucleotide. Nucleic Acids Research, 30(7), 1483-1492. doi:10.1093/nar/30.7.1483Berman, A. J., Kamtekar, S., Goodman, J. L., Lázaro, J. M., de Vega, M., Blanco, L., … Steitz, T. A. (2007). Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases. The EMBO Journal, 26(14), 3494-3505. doi:10.1038/sj.emboj.7601780Thomen, P., Lopez, P. J., Bockelmann, U., Guillerez, J., Dreyfus, M., & Heslot, F. (2008). T7 RNA Polymerase Studied by Force Measurements Varying Cofactor Concentration. Biophysical Journal, 95(5), 2423-2433. doi:10.1529/biophysj.107.125096Keller, D., & Bustamante, C. (2000). The Mechanochemistry of Molecular Motors. Biophysical Journal, 78(2), 541-556. doi:10.1016/s0006-3495(00)76615-xHerbert, K. M., Greenleaf, W. J., & Block, S. M. (2008). Single-Molecule Studies of RNA Polymerase: Motoring Along. Annual Review of Biochemistry, 77(1), 149-176. doi:10.1146/annurev.biochem.77.073106.100741Wong, I., Patel, S. S., & Johnson, K. A. (1991). An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry, 30(2), 526-537. doi:10.1021/bi00216a030Lowe, L. G., & Guengerich, F. P. (1996). Steady-State and Pre-Steady-State Kinetic Analysis of dNTP Insertion Opposite 8-Oxo-7,8-dihydroguanine byEscherichia coliPolymerases I exo-and II exo- †. Biochemistry, 35(30), 9840-9849. doi:10.1021/bi960485xKirmizialtin, S., Nguyen, V., Johnson, K. A., & Elber, R. (2012). How Conformational Dynamics of DNA Polymerase Select Correct Substrates: Experiments and Simulations. Structure, 20(4), 618-627. doi:10.1016/j.str.2012.02.018Donlin, M. J., Patel, S. S., & Johnson, K. A. (1991). Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction. Biochemistry, 30(2), 538-546. doi:10.1021/bi00216a031Li, Y. (1998). Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. The EMBO Journal, 17(24), 7514-7525. doi:10.1093/emboj/17.24.7514Lieberman, K. R., Dahl, J. M., & Wang, H. (2014). Kinetic Mechanism at the Branchpoint between the DNA Synthesis and Editing Pathways in Individual DNA Polymerase Complexes. Journal of the American Chemical Society, 136(19), 7117-7131. doi:10.1021/ja5026408Subuddhi, U., Hogg, M., & Reha-Krantz, L. J. (2008). Use of 2-Aminopurine Fluorescence To Study the Role of the β Hairpin in the Proofreading Pathway Catalyzed by the Phage T4 and RB69 DNA Polymerases†. Biochemistry, 47(23), 6130-6137. doi:10.1021/bi800211fShamoo, Y., & Steitz, T. A. (1999). Building a Replisome from Interacting Pieces. Cell, 99(2), 155-166. doi:10.1016/s0092-8674(00)81647-5Lamichhane, R., Berezhna, S. Y., Gill, J. P., Van der Schans, E., & Millar, D. P. (2013). Dynamics of Site Switching in DNA Polymerase. Journal of the American Chemical Society, 135(12), 4735-4742. doi:10.1021/ja311641bKamtekar, S., Berman, A. J., Wang, J., Lázaro, J. M., de Vega, M., Blanco, L., … Steitz, T. A. (2004). Insights into Strand Displacement and Processivity from the Crystal Structure of the Protein-Primed DNA Polymerase of Bacteriophage φ29. Molecular Cell, 16(4), 609-618. doi:10.1016/j.molcel.2004.10.019Hogg, M., Wallace, S. S., & Doublié, S. (2004). Crystallographic snapshots of a replicative DNA polymerase encountering an abasic site. The EMBO Journal, 23(7), 1483-1493. doi:10.1038/sj.emboj.7600150Seifert, U. (2012). Stochastic thermodynamics, fluctuation theorems and molecular machines. Reports on Progress in Physics, 75(12), 126001. doi:10.1088/0034-4885/75/12/126001Cao, F. J., & Feito, M. (2009). Thermodynamics of feedback controlled systems. Physical Review E, 79(4). doi:10.1103/physreve.79.041118Cao, F. J., Dinis, L., & Parrondo, J. M. R. (2004). Feedback Control in a Collective Flashing Ratchet. Physical Review Letters, 93(4). doi:10.1103/physrevlett.93.040603Bier, M. (2007). The stepping motor protein as a feedback control ratchet. Biosystems, 88(3), 301-307. doi:10.1016/j.biosystems.2006.07.013Astumian, R. D. (1997). Thermodynamics and Kinetics of a Brownian Motor. Science, 276(5314), 917-922. doi:10.1126/science.276.5314.917Komissarova, N., & Kashlev, M. (1997). Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3’ end of the RNA intact and extruded. Proceedings of the National Academy of Sciences, 94(5), 1755-1760. doi:10.1073/pnas.94.5.1755Brueckner, F., & Cramer, P. (2008). Structural basis of transcription inhibition by α-amanitin and implications for RNA polymerase II translocation. Nature Structural & Molecular Biology, 15(8), 811-818. doi:10.1038/nsmb.145
    corecore