186 research outputs found

    Serum Levels of Brain-Derived Neurotrophic Factor at 4 Weeks and Response to Treatment with SSRIs

    Get PDF
    Objective It is important to predict a response to an antidepressant in early time after starting the antidepressant. We previously reported that serum brain-derived neurotrophic factor (BDNF) levels in responders to treatment with antidepressants were increased, whereas, those in nonresponders were not. Therefore, we hypothesized that the changes in serum levels of BDNF from baseline (TO) to 4 weeks (T4) after treatment with selective serotonin reuptake inhibitors (SSRIs) predict the response to the treatment at 8 weeks (T8) in depressed patients. To confirm the hypothesis, we measured serum BDNF at TO, T4, and T8 during the treatment with SSRIs (paroxetine, sertraline, and fluvoxamine). Methods One hundred fifty patients (M/F; 51/99, age; 50.4 +/- 15.1 years) met major depressive disorder (MDD) using by DSM-IV-TR enrolled in the present study. We measured serum BDNF concentrations at TO, T4, and T8 in patients with MDD treated with SSRIs. Results The changes in serum BDNF, age, sex, dose of SSRIs, and HAMD-17 score did not predict the response to SSRIs at T8. Conclusion These results suggest that the changes in serum BDNF levels from TO to T4 could not predict the subsequent responses to SSRIs at T8

    Backward multiplex coherent anti-Stokes Raman (CARS) spectroscopic imaging with electron-multiplying CCD (EM-CCD) camera

    Get PDF
    A multiplex CARS imaging system, equipped with an EM-CCD camera, was developed to improve the sensitivity of backward CARS imaging in biological analysis using an inverted microscope. The signal-to-noise ratio was improved by a factor of ca. 3 compared to a conventional CCD mode through the use of EM gain. When imaging epithelial cells in the backward CARS configuration, intracellular organelles such as lipid droplets and nuclei were spectroscopically identified with an exposure time of only 100 ms/pixel.</p

    The Drosophila afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction

    Get PDF
    Cadherin-based adherens junctions (AJs) mediate cell adhesion and regulate cell shape change. The nectin–afadin complex also localizes to AJs and links to the cytoskeleton. Mammalian afadin has been suggested to be essential for adhesion and polarity establishment, but its mechanism of action is unclear. In contrast, Drosophila melanogaster’s afadin homologue Canoe (Cno) has suggested roles in signal transduction during morphogenesis. We completely removed Cno from embryos, testing these hypotheses. Surprisingly, Cno is not essential for AJ assembly or for AJ maintenance in many tissues. However, morphogenesis is impaired from the start. Apical constriction of mesodermal cells initiates but is not completed. The actomyosin cytoskeleton disconnects from AJs, uncoupling actomyosin constriction and cell shape change. Cno has multiple direct interactions with AJ proteins, but is not a core part of the cadherin–catenin complex. Instead, Cno localizes to AJs by a Rap1- and actin-dependent mechanism. These data suggest that Cno regulates linkage between AJs and the actin cytoskeleton during morphogenesis

    CD24 regulated gene expression and distribution of tight junction proteins is associated with altered barrier function in oral epithelial monolayers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Control of intercellular penetration of microbial products is critical for the barrier function of oral epithelia. We demonstrated that CD24 is selectively and strongly expressed in the cells of the epithelial attachment to the tooth and the epithelial lining of the diseased periodontal pocket and studies <it>in vitro </it>showed that CD24 regulated expression of the epithelial intercellular adhesion protein E-cadherin.</p> <p>Results</p> <p>In the present study, the barrier function of oral epithelial cell monolayers to low molecular weight dextran was assayed as a model for the normal physiological function of the epithelial attachment to limit ingress of microbial products from oral microbial biofilms. Paracellular transfer of low molecular weight dextran across monolayers of oral epithelial cells was specifically decreased following incubation with anti-CD24 peptide antibody whereas passage of dextran across the monolayer was increased following silencing of mRNA for CD24. Changes in barrier function were related to the selective regulation of the genes encoding zonula occludens-1, zonula occludens-2 and occludin, proteins implicated in tight junctions. More particularly, enhanced barrier function was related to relocation of these proteins to the cell periphery, compatible with tight junctions.</p> <p>Conclusion</p> <p>CD24 has the constitutive function of maintaining expression of selected genes encoding tight junction components associated with a marginal barrier function of epithelial monolayers. Activation by binding of an external ligand to CD24 enhances this expression but is also effective in re-deployment of tight junction proteins that is aligned with enhanced intercellular barrier function. These results establish the potential of CD24 to act as a potent regulator of the intercellular barrier function of epithelia in response to local microbial ecology.</p

    Lkb1 and Pten Synergise to Suppress mTOR-Mediated Tumorigenesis and Epithelial-Mesenchymal Transition in the Mouse Bladder

    Get PDF
    The AKT/PI3K/mTOR pathway is frequently altered in a range of human tumours, including bladder cancer. Here we report the phenotype of mice characterised by deletion of two key players in mTOR regulation, Pten and Lkb1, in a range of tissues including the mouse urothelium. Despite widespread recombination within the range of epithelial tissues, the primary phenotype we observe is the rapid onset of bladder tumorigenesis, with median onset of approximately 100 days. Single deletion of either Pten or Lkb1 had no effect on bladder cell proliferation or tumour formation. However, simultaneous deletion of Lkb1 and Pten led to an upregulation of the mTOR pathway and the hypoxia marker GLUT1, increased bladder epithelial cell proliferation and ultimately tumorigenesis. Bladder tissue also exhibited characteristic features of epithelial-mesenchymal transition, with loss of the epithelial markers E-cadherin and the tight junction protein ZO-1, and increases in the mesenchymal marker vimentin as well as nuclear localization of epithelial-mesenchymal transition (EMT) regulator Snail. We show that these effects were all dependent upon mTOR activity, as rapamycin treatment blocked both EMT and tumorigenesis. Our data therefore establish clear synergy between Lkb1 and Pten in controlling the mTOR pathway within bladder epithelium, and show that loss of this control leads to the disturbance of epithelial structure, EMT and ultimately tumorigenesis

    Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction – A model for cross-modulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A feature of epithelial to mesenchymal transition (EMT) relevant to tumour dissemination is the reorganization of actin cytoskeleton/focal contacts, influencing cellular ECM adherence and motility. This is coupled with the transcriptional repression of E-cadherin, often mediated by Snail1, Snail2 and Zeb1/Ξ΄EF1. These genes, overexpressed in breast carcinomas, are known targets of growth factor-initiated pathways, however it is less clear how alterations in ECM attachment cross-modulate to regulate these pathways. EGF induces EMT in the breast cancer cell line PMC42-LA and the kinase inhibitor staurosporine (ST) induces EMT in embryonic neural epithelial cells, with F-actin de-bundling and disruption of cell-cell adhesion, via inhibition of aPKC.</p> <p>Methods</p> <p>PMC42-LA cells were treated for 72 h with 10 ng/ml EGF, 40 nM ST, or both, and assessed for expression of E-cadherin repressor genes (Snail1, Snail2, Zeb1/Ξ΄EF1) and EMT-related genes by QRT-PCR, multiplex tandem PCR (MT-PCR) and immunofluorescence +/- cycloheximide. Actin and focal contacts (paxillin) were visualized by confocal microscopy. A public database of human breast cancers was assessed for expression of Snail1 and Snail2 in relation to outcome.</p> <p>Results</p> <p>When PMC42-LA were treated with EGF, Snail2 was the principal E-cadherin repressor induced. With ST or ST+EGF this shifted to Snail1, with more extreme EMT and Zeb1/Ξ΄EF1 induction seen with ST+EGF. ST reduced stress fibres and focal contact size rapidly and independently of gene transcription. Gene expression analysis by MT-PCR indicated that ST repressed many genes which were induced by EGF (EGFR, CAV1, CTGF, CYR61, CD44, S100A4) and induced genes which alter the actin cytoskeleton (NLF1, NLF2, EPHB4). Examination of the public database of breast cancers revealed tumours exhibiting higher Snail1 expression have an increased risk of disease-recurrence. This was not seen for Snail2, and Zeb1/Ξ΄EF1 showed a reverse correlation with lower expression values being predictive of increased risk.</p> <p>Conclusion</p> <p>ST in combination with EGF directed a greater EMT via actin depolymerisation and focal contact size reduction, resulting in a loosening of cell-ECM attachment along with Snail1-Zeb1/Ξ΄EF1 induction. This appeared fundamentally different to the EGF-induced EMT, highlighting the multiple pathways which can regulate EMT. Our findings add support for a functional role for Snail1 in invasive breast cancer.</p

    ZO-1 Stabilizes the Tight Junction Solute Barrier through Coupling to the Perijunctional Cytoskeleton

    Get PDF
    ZO-1 binds numerous transmembrane and cytoplasmic proteins and is required for assembly of both adherens and tight junctions, but its role in defining barrier properties of an established tight junction is unknown. We depleted ZO-1 in MDCK cells using siRNA methods and observed specific defects in the barrier for large solutes, even though flux through the small claudin pores was unaffected. This permeability increase was accompanied by morphological alterations and reorganization of apical actin and myosin. The permeability defect, and to a lesser extent morphological changes, could be rescued by reexpression of either full-length ZO-1 or an N-terminal construct containing the PDZ, SH3, and GUK domains. ZO-2 knockdown did not replicate either the permeability or morphological phenotypes seen in the ZO-1 knockdown, suggesting that ZO-1 and -2 are not functionally redundant for these functions. Wild-type and knockdown MDCK cells had differing physiological and morphological responses to pharmacologic interventions targeting myosin activity. Use of the ROCK inhibitor Y27632 or myosin inhibitor blebbistatin increased TER in wild-type cells, whereas ZO-1 knockdown monolayers were either unaffected or changed in the opposite direction; paracellular flux and myosin localization were also differentially affected. These studies are the first direct evidence that ZO-1 limits solute permeability in established tight junctions, perhaps by forming a stabilizing link between the barrier and perijunctional actomyosin

    Differential Expressions of Adhesive Molecules and Proteases Define Mechanisms of Ovarian Tumor Cell Matrix Penetration/Invasion

    Get PDF
    Epithelial ovarian cancer is an aggressive and deadly disease and understanding its invasion mechanisms is critical for its treatment. We sought to study the penetration/invasion of ovarian tumor cells into extracellular matrices (ECMs) using a fibroblast-derived three-dimensional (3D) culture model and time-lapse and confocal imaging. Twelve ovarian tumor cells were evaluated and classified into distinct groups based on their ECM remodeling phenotypes; those that degraded the ECM (represented by OVCAR5 cells) and those that did not (represented by OVCAR10 cells). Cells exhibiting a distinct ECM modifying behavior were also segregated by epithelial- or mesenchymal-like phenotypes and uPA or MMP-2/MMP-9 expression. The cells, which presented epithelial-like phenotypes, penetrated the ECM using proteases and maintained intact cell-cell interactions, while cells exhibiting mesenchymal phenotypes modified the matrices via Rho-associated serine/threonine kinase (ROCK) in the absence of apparent cell-cell interactions. Overall, this study demonstrates that different mechanisms of modifying matrices by ovarian tumor cells may reflect heterogeneity among tumors and emphasize the need to systematically assess these mechanisms to better design effective therapies

    Claudin 1 Mediates TNFΞ±-Induced Gene Expression and Cell Migration in Human Lung Carcinoma Cells

    Get PDF
    Epithelial-mesenchymal transition (EMT) is an important mechanism in carcinogenesis. To determine the mechanisms that are involved in the regulation of EMT, it is crucial to develop new biomarkers and therapeutic targets towards cancers. In this study, when TGFΞ²1 and TNFΞ± were used to induce EMT in human lung carcinoma A549 cells, we found an increase in an epithelial cell tight junction marker, Claudin 1. We further identified that it was the TNFΞ± and not the TGFΞ²1 that induced the fibroblast-like morphology changes. TNFΞ± also caused the increase in Claudin-1 gene expression and protein levels in Triton X-100 soluble cytoplasm fraction. Down-regulation of Claudin-1, using small interfering RNA (siRNA), inhibited 75% of TNFΞ±-induced gene expression changes. Claudin-1 siRNA effectively blocked TNFΞ±-induced molecular functional networks related to inflammation and cell movement. Claudin-1 siRNA was able to significantly reduce TNF-enhanced cell migration and fibroblast-like morphology. Furthermore, over expression of Claudin 1 with a Claudin 1-pcDNA3.1/V5-His vector enhanced cell migration. In conclusion, these observations indicate that Claudin 1 acts as a critical signal mediator in TNFΞ±-induced gene expression and cell migration in human lung cancer cells. Further analyses of these cellular processes may be helpful in developing novel therapeutic strategies

    Claudin 13, a Member of the Claudin Family Regulated in Mouse Stress Induced Erythropoiesis

    Get PDF
    Mammals are able to rapidly produce red blood cells in response to stress. The molecular pathways used in this process are important in understanding responses to anaemia in multiple biological settings. Here we characterise the novel gene Claudin 13 (Cldn13), a member of the Claudin family of tight junction proteins using RNA expression, microarray and phylogenetic analysis. We present evidence that Cldn13 appears to be co-ordinately regulated as part of a stress induced erythropoiesis pathway and is a mouse-specific gene mainly expressed in tissues associated with haematopoietic function. CLDN13 phylogenetically groups with its genomic neighbour CLDN4, a conserved tight junction protein with a putative role in epithelial to mesenchymal transition, suggesting a recent duplication event. Mechanisms of mammalian stress erythropoiesis are of importance in anaemic responses and expression microarray analyses demonstrate that Cldn13 is the most abundant Claudin in spleen from mice infected with Trypanosoma congolense. In mice prone to anaemia (C57BL/6), its expression is reduced compared to strains which display a less severe anaemic response (A/J and BALB/c) and is differentially regulated in spleen during disease progression. Genes clustering with Cldn13 on microarrays are key regulators of erythropoiesis (Tal1, Trim10, E2f2), erythrocyte membrane proteins (Rhd and Gypa), associated with red cell volume (Tmcc2) and indirectly associated with erythropoietic pathways (Cdca8, Cdkn2d, Cenpk). Relationships between genes appearing co-ordinately regulated with Cldn13 post-infection suggest new insights into the molecular regulation and pathways involved in stress induced erythropoiesis and suggest a novel, previously unreported role for claudins in correct cell polarisation and protein partitioning prior to erythroblast enucleation
    • …
    corecore