261 research outputs found

    Response to reflected-force feedback to fingers in teleoperations

    Get PDF
    Reflected-force feedback is an important aspect of teleoperations. The objective is to determine the ability of the human operator to respond to that force. Telerobotics operation is simulated by computer control of a motor-driven device with capabilities for programmable force feedback and force measurement. A computer-controlled motor drive is developed that provides forces against the fingers as well as (angular) position control. A load cell moves in a circular arc as it is pushed by a finger and measures reaction forces on the finger. The force exerted by the finger on the load cell and the angular position are digitized and recorded as a function of time by the computer. Flexure forces of the index, long and ring fingers of the human hand in opposition to the motor driven load cell are investigated. Results of the following experiments are presented: (1) Exertion of maximum finger force as a function of angle; (2) Exertion of target finger force against a computer controlled force; and (3) Test of the ability to move to a target force against a force that is a function of position. Averaged over ten individuals, the maximum force that could be exerted by the index or long finger is about 50 Newtons, while that of the ring finger is about 40 Newtons. From the tests of the ability of a subject to exert a target force, it was concluded that reflected-force feedback can be achieved with the direct kinesthetic perception of force without the use of tactile or visual clues

    Introduction

    Get PDF
    The concept of Responsible Research and Innovation (RRI) originates in discourses on emerging technologies and research ethics in contested innovative fields, such as nanotechnologies or geo-engineering, and has been predominantly driven by European research and innovation policy over the past 10 years. The concept was initially developed and introduced by policy makers and social scientists, but recent studies have aimed to shed light on the implementation of responsible research and innovation practices in business. The contributions collected in this book are a result of work conducted by seven partner organisations in the European funded Horizon 2020 project "COMPASS – Evidence and opportunities for responsible innovation in SMEs". In combination, they illustrate that responsible innovation (RI) has been emerging as a new field in the ongoing discourse on the role and responsibility of business in society

    TNFα Transport Induced by Dynamic Loading Alters Biomechanics of Intact Intervertebral Discs

    Full text link
    Objective Intervertebral disc (IVD) degeneration is an important contributor to the development of back pain, and a key factor relating pain and degeneration are the presence of pro-inflammatory cytokines and IVD motion. There is surprisingly limited understanding of how mechanics and inflammation interact in the IVD. This study investigated interactions between mechanical loading and pro-inflammatory cytokines in a large animal organ culture model to address fundamental questions regarding (i.) how inflammatory mediators arise within the IVD, (ii.) how long inflammatory mediators persist, and (iii.) how inflammatory mediators influence IVD biomechanics. Methods Bovine caudal IVDs were cultured for 6 or 20-days under static & dynamic loading with or without exogenous TNFα in the culture medium, simulating a consequence of inflammation of the surrounding spinal tissues. TNFα transport within the IVD was assessed via immunohistochemistry. Changes in IVD structural integrity (dimensions, histology & aggrecan degradation), biomechanical behavior (Creep, Recovery & Dynamic stiffness) and pro-inflammatory cytokines in the culture medium (ELISA) were assessed. Results TNFα was able to penetrate intact IVDs when subjected to dynamic loading but not static loading. Once transported within the IVD, pro-inflammatory mediators persisted for 4–8 days after TNFα removal. TNFα exposure induced changes in IVD biomechanics (reduced diurnal displacements & increased dynamic stiffness). Discussion This study demonstrated that exposure to TNFα, as might occur from injured surrounding tissues, can penetrate healthy intact IVDs, induce expression of additional pro-inflammatory cytokines and alter IVD mechanical behavior. We conclude that exposure to pro-inflammatory cytokine may be an initiating event in the progression of IVD degeneration in addition to being a consequence of disease

    Relevance of collagen piezoelectricity to "Wolff's Law": A critical review

    Get PDF
    According to “Wolff's Law”, bone is deposited and reinforced at areas of greatest stress. From a clinical perspective, this “law” is supported by the strong association between bone density and physical activity. From a mechanistic standpoint, however, the law presents a challenge to scientists seeking to understand how osteocytes and osteoblasts sense the mechanical load. In the 1960s, collagen piezoelectricity was invoked as a potential mechanism by which osteocytes could detect areas of greater stress but piezoelectricity diminished in importance as more compelling mechanisms, such as streaming potential, were identified. In addition, accumulating evidence for the role of fluid-related shear stress in osteocyte's mechanosensory function has made piezoelectricity seemingly more obsolete in bone physiology. This review critically evaluates the role of collagen piezoelectricity (if any) in Wolff's Law—specifically, the evidence regarding its involvement in strain-generated potentials, existing alternate mechanisms, the present understanding of bone mechanosensation, and whether piezoelectricity serves an influential role within the context of this newly proposed mechanism. In addition to reviewing the literature, this review generates several hypotheses and proposes future research to fully address the relevance of piezoelectricity in bone physiology.National Center for Complementary and Alternative Medicine (U.S.) (grant K23-AT003238

    The Effect of Sustained Compression on Oxygen Metabolic Transport in the Intervertebral Disc Decreases with Degenerative Changes

    Get PDF
    Intervertebral disc metabolic transport is essential to the functional spine and provides the cells with the nutrients necessary to tissue maintenance. Disc degenerative changes alter the tissue mechanics, but interactions between mechanical loading and disc transport are still an open issue. A poromechanical finite element model of the human disc was coupled with oxygen and lactate transport models. Deformations and fluid flow were linked to transport predictions by including strain-dependent diffusion and advection. The two solute transport models were also coupled to account for cell metabolism. With this approach, the relevance of metabolic and mechano-transport couplings were assessed in the healthy disc under loading-recovery daily compression. Disc height, cell density and material degenerative changes were parametrically simulated to study their influence on the calculated solute concentrations. The effects of load frequency and amplitude were also studied in the healthy disc by considering short periods of cyclic compression. Results indicate that external loads influence the oxygen and lactate regional distributions within the disc when large volume changes modify diffusion distances and diffusivities, especially when healthy disc properties are simulated. Advection was negligible under both sustained and cyclic compression. Simulating degeneration, mechanical changes inhibited the mechanical effect on transport while disc height, fluid content, nucleus pressure and overall cell density reductions affected significantly transport predictions. For the healthy disc, nutrient concentration patterns depended mostly on the time of sustained compression and recovery. The relevant effect of cell density on the metabolic transport indicates the disturbance of cell number as a possible onset for disc degeneration via alteration of the metabolic balance. Results also suggest that healthy disc properties have a positive effect of loading on metabolic transport. Such relation, relevant to the maintenance of the tissue functional composition, would therefore link disc function with disc nutrition

    In vitro and biomechanical screening of polyethylene glycol and poly(trimethylene carbonate) block copolymers for annulus fibrosus repair

    Get PDF
    Herniated intervertebral discs (IVDs) are a common cause of back and neck pain. There is an unmet clinical need to seal annulus fibrosus (AF) defects, as discectomy surgeries address acute pain but are complicated by reherniation and recurrent pain. Copolymers of polyethylene glycol with trimethylene carbonate (TMC) and hexamethylene diisocyanate (HDI) end-groups were formulated as AF sealants as the HDI form covalent bonds with native AF tissue. TMC adhesives were evaluated and optimized using the design criteria: stable size, strong adherence to AF tissue, high cytocompatibility, restoration of IVD biomechanics to intact levels following in situ repair, and low extrusion risk. TMC adhesives had high adhesion strength as assessed with a pushout test (150kPa), and low degradation rates over 3weeks in vitro. Both TMC adhesives had shear moduli (220 and 490kPa) similar to, but somewhat higher than, AF tissue. The adhesive with three TMC moieties per branch (TMC3) was selected for additional in situ testing because it best matched AF shear properties. TMC3 restored torsional stiffness, torsional hysteresis area and axial range of motion to intact states. However, in a failure test of compressive deformation under fixed 5 degrees flexion, some herniation risk was observed with failure strength of 5.9MPa compared with 13.5MPa for intact samples; TMC3 herniated under cyclic organ culture testing. These TMC adhesives performed well during in vitro and in situ testing, but additional optimization to enhance failure strength is required to further this material to advanced screening tests, such as long-term degradation. Copyright (c) 2016 John Wiley & Sons, Ltd

    Expression of matrix metalloproteinase-1 (MMP-1) in Wistar rat's intervertebral disc after experimentally induced scoliotic deformity

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>A scoliotic deformity on intervertebral discs may accelerate degeneration at a molecular level with the production of metalloproteinases (MMPs). In the present experimental study we evaluated the presence of MMP-1 immunohistochemically after application of asymmetric forces in a rat intervertebral disc and the impact of the degree of the deformity on MMP-1 expression.</p> <p>Material-Method</p> <p>Thirty female Wistar rats (aged 2 months old, weighted 200 ± 10 grams) were used. All animals were age, weight and height matched. A mini Ilizarov external fixator was applied at the base of a rat tail under anaesthesia in order to create a scoliotic deformity of the intervertebral disc between the 9<sup>th </sup>and 10<sup>th </sup>vertebrae. Rats were divided into three groups according to the degree of the deformity. In group I, the deformity was 10°, in group II 30° and in group III 50°. The rats were killed 35 days after surgery. The discs were removed along with the neighbouring vertebral bodies, prepared histologically and stained immunohistochemically. Immunopositivity of disc's cells for MMP-1 was determined using a semi-quantitative scored system.</p> <p>Results</p> <p>MMP-1 immunopositivity was detected in disc cells of annulus fibrosus of all intervertebral disc specimens examined. The percentage of MMP-1 positive disc cells in annulus fibrosus in group I, II and III were 20%, 43% and 75%, respectively. MMP-1 positivity was significantly correlated with the degree of the deformity (p < 0,001). An increase of chondrocyte-like disc cells was observed in the outer annulus fibrosus and at the margin of the intervertebral disc adjacent to the vertebral end plates. The difference in the proportion of MMP-1 positive disc cells between the convex and the concave side was statistically not significant in group I (p = 0,6), in group II this difference was statistically significant (p < 0,01). In group III the concave side showed a remarkable reduction in the number of disc's cells and a severe degeneration of matrix microstructure.</p> <p>Conclusion</p> <p>The present study showed that an experimentally induced scoliotic deformity on a rat tail intervertebral disc results in over-expression of MMP-1, which is dependent on the degree of the deformity and follows a dissimilar distribution between the convex and the concave side.</p

    Industrial and Human Ruins of Post Communist Europe

    Get PDF
    With the former industrial cities of Eastern Europe in ruin - once the pillars of these former communist economies - the attention of both investors and academics has shifted towards capital cities and their political and economic potential fueled by the rise of new governments and foreign direct investment. The failed attempts to privatize many of these former industrial spaces, has left entire cities in ruin and despair, forgotten by all but artists and preservationists, who see these spaces not only as aesthetically inspiring but also as charged with redemptive potential. This article puts forward an alternative exploration of the Eastern European post-communist transition through these ruined spaces, arguing that the aesthetic dimension of change is key to understanding the human impact of the transition. Focusing on two former industrial sites – the Hunedoara Ironworks in Romania and the Vitkovice Ironworks in the Czech Republic, the article seeks to understand the rhetorical and material relationship between these ruined spaces and the workers who once inhabited them as well as the effect that different practices of representation – mainly photography - and preservation have had on these spaces

    Compact Polyelectrolyte Complexes: “Saloplastic” Candidates for Biomaterials

    Get PDF
    Precipitates of polyelectrolyte complexes were transformed into rugged shapes suitable for bioimplants by ultracentrifugation in the presence of high salt concentration. Salt ions dope the complex, creating a softer material with viscous fluid-like properties. Complexes that were compacted under the centrifugal field (CoPECs) were made from poly(diallyldimethyl ammonium), PDADMA, as polycation, and poly(styrene sulfonate), PSS, or poly(methacrylic acid), PMAA, as polyanion. Dynamic mechanical testing revealed a rubbery plateau at lower frequencies for PSS/PDADMA with moduli that decreased with increasing salt concentration, as internal ion pair cross-links were broken. CoPECs had significantly lower modulii compared to similar polyelectrolyte complexes prepared by the “multilayering ” method. The difference in mechanical properties was ascribed to higher water content (located in micropores) for the former and, more importantly, to their nonstoichiometric polymer composition. The modulus of PMAA/PDADMA CoPECs, under physiological conditions, demonstrated dynamic mechanical properties that were close to those of the nucleus pulposus in an intervertebral disk
    corecore