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Abstract

Reflected-force feedback is an important aspect of teleoperations. Our objective is to determine

the ability of the human operator to respond to that force. The present study simulates telerobotics

operation by computer control of a motor-driven device with capabilities for programmable force

feedback and force measurement. We have developed a computer-controlled motor drive that

provides forces against the fingers as well as (angular) position control. A load cell moves in a

circular arc as it is pushed by a finger and measures reaction forces on the finger. The force

exerted by the finger on the load cell and the angular position are digitized and recorded as a

function of time by the computer. We investigated flexure forces of the index, long and ring

fingers of the human hand in opposition to the motor driven load cell. We present results of the

following experiments: 1) Exertion of maximum finger force as a function of angle; 2) Exertion of

target finger force against a computer controlled force; 3) Test of the ability to move to a target

force against a force that is a function of position.

Averaged over ten individuals, the maximum force that could be exerted by the index or long

finger is about 50 Newtons, while that of the ring finger is about 40 Newtons. From our tests of

the ability of a subject to exert a target force, we conclude that reflected-force feedback can be

achieved with the direct kinesthetic perception of force without the use of tactile or visual clues.

1. Introduction

Space telerobotic systemsl, 2 have many aspects, ranging from quite direct control by an

operator in a master-slave configuration to much more autonomous control, which may be

particularly useful when signal transmission times are large. We are concerned with the former,

particularly the response of the human operator. Such a system might be used for work on a

space station. An operator of a telerobotic system must be supplied with information on the status

of the controlled device, perhaps an arm or manipulator. This information can be in the form of

visual displays, audible or tactile signals, or reflected force feedback. Since knowledge of the
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forces experienced by the driven telerobotic system, as well as the position information, are of

fundamental importance to the operator, it is useful to develop systems that feed that information

back to the operator in as natural a way as possible. Our study is on the ability of a subject to

respond to simple force signals to the fingers.

Each finger 3 has a metacarpal bone, which is inside the hand, and proximal, middle and distal

phalanges. In our experiments, the metacarpalphalangeal (MCP) joint rotated in flexure. At high

angles of rotation of the finger with respect to the straight ahead direction, the proximal

interphalangeal (PIP) joint also rotated. The flexure forces are transmitted by tendons from muscles

in the anterior forearm. The physiological basis for the perception of position and muscular force

is discussed in review articles4, 5 on proprioception and kinesthetic sensations.

Reflected-force feedback to the fingers of an operator will be effective, if the operator can

sense force levels in a normal way. This not only provides a more natural mode of perception by

the operator but also frees up the other senses, for example vision, for other information gathering.

In our experiments on the ability of a subject to sense forces, the computer provides a functional

dependence of force on position that simulates the forces that might be felt by the slave unit in

teleoperations in space.

2. Instrument Design

This study simulated telerobotics operation with a computer (IBM AT) which controls a dc

motor (Galil control board ) to provide angular position and torque control. Metrabyte DAS8 and

Tecmar LabMaster boards were used for data acquisition. A semiconductor load cell was used to

measure the force exerted by a finger on a computer controlled motor drive system that carried the

load cell along a circular arc in a horizontal plane. Angular position was measured with an optical

encoder and a potentiometer. The digitized force and position information was recorded in the

computer as a function of time. Flexure forces exerted individually by the index, ring and long

fingers of the human hand were measured as the finger pushed against the motor driven load cell,

with the subject's arm and wrist stationary. The lower arm was horizontal, with the wrist and hand

extended straight ahead. The upper arm was vertical. The apparatus is shown in Figure 1.

A one inch diameter brass "pad" was placed on the distal (terminal) phalanx of the finger

being tested. It was soft on the side facing the finger and had a semicircular cross-section groove

on the side that mated with the load cell holder. The straight groove in the pad bore against a steel

rod on the outside of the load cell holder. Thus a force could be applied to the load cell with some

freedom of motion of the finger with respect to the load cell. The steel rod was attached to a

pivoted plate (see Figure 1) that held a block of teflon that actually pushed on the semiconductor

load cell and assured that the forces exerted on the cell surface were perpendicular and uniform.

The voltage output of the load cell was a linear function of the force. The voltage was digitized and
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convertedto theforce in Newtonsby useof a gravity calibrationmethod.In someexperiments,a
two inch long brass"splint" wasusedto restrictrotationto theMCPjoint only. This matedwith
theloadcell in thesamewayasthecircular"pad".

Figure 1: APPARATUS
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3. Experimental Results

3.1 Maximum finger flexion force:

We measured the maximum flexure force of the long, index and ring fingers of ten subjects.

In one procedure, the motor drive swept the arm at a constant rate of 6.75 degrees per second for a

time of 20.4 seconds. Data was obtained and recorded every 10 milliseconds. The subject exerted

maximum force against the load cell with the pad on the terminal phalanx. This force deflected the

arm slightly until the motor drive feedback torque became large enough so that the position was

determined by the angle-sweep commands from the computer. The motor drive system was

adequate to oppose the finger force and the angle increased as a linear function of time. Data from

a single run is graphed in Figure 6 in the appendix. That data yields force and angle as a function

of time after reduction based on the calibration of the apparatus. Figure 2 shows the maximum

flexure force exerted by a finger as a function of angle for one individual. The three lines are for

the index, long and ring fingers of this subject.
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The finger angle is 0 ° when the f'mger is extended straight along a line through the forearm and

hand. The subject's wrist was straight throughout the experiments . At first, only the

metacarpophalangeal (MCP) joint rotates, but after about 70 ° the proximal interphalangeal (PIP)

joint also rotates. Averaging over many runs and individuals yields a curve that is rather flat out to

about 90 ° and then declines with increasing angle as shown in Figure 3.

FIGURE 2: MAXIMUM FINGER FORCE VS ANGLE
For One Individual
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FIGURE 3: AVERAGE OF MAXIMUM FINGER FORCE
Averaging over many runs and subjects
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The distribution over individuals is shown in Figure 4 in which the cross hatched segments of the

bars represent a standard deviation above and below the mean, which is at the intersection of the
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cross hatched regions. For most individuals the index and ring fingers can exert approximately the

same maximum force while the ring finger is weaker.

FIGURE 4:
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3.2 Pulsed maximum force:

A second mode of testing was to have the computer sweep the angle range over a time interval

of 40.8 seconds with the subject intermittently applying a maximum force. Data was obtained and

recorded every 20 milliseconds. Typically, a signal tone was on for 3 seconds and then off for 3

seconds, etc.; and the subject exerted a maximum force when the tone was on and relaxed when it

was off. This reduced the effect of muscle fatigue. The force versus angle was similar to the

above graphs, with somewhat less decline at high angles. The higher angles occur at longer times

so that part (but not all) of the decline at high angles in Section 3.1 may be due to fatigue.

In order to prevent rotation of the PIP joint, we also used a splint on the fingers of some

subjects. The metal splint replaced the circular pad in bearing against the load cell device. The

results were similar to those discussed above except that the finger rotation was limited to about

80 ° .

3.3 Target finger force:

A series of experiments were designed to determine how well a subject could sense target

force levels. In one set of experiments, the computer simulated a spring-like force. That is the

restoring force was proportional to the distance from an origin. In this series, a subject heard a

three second tone about once every six seconds and was told to push with the target force while the

tone was on. The target force was half-maximum, quarter-maximum or eighth-maximum. A

typical run consisted of the subject pushing at full maximum during the first tone and then, on the

remaining tones, pushing at half maximum force. The repeatability of the force pulses was of

primary concern, while the relationship to the maximum force was secondary. In the simple

spring simulation, the computer selects a spring force constant and uses an origin near an angle of
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0 °. As the subject pushes against the load cell, the load cell moves through an angle while

providing a restoring force that is proportional to the angular displacement from the origin. The

finger might swing through an angle of forty degrees, for example, before the subject sensed the

target force and held that force. The spring force constant and origin remain fixed during a single

run. In each such run, the subject attempted to return to a target force 6 times. In a typical set of

eight such runs, the ratio of the actual force to the maximum force was 0.46 + .04 while the target

was 0.50. The scatter of the 6 force pulses within a run was 7% + 3%, which is .032+ .014

with respect to the maximum force. For this simple spring simulation, the repeated return to the

target force occurs at the same angular position during a run. Although the subject did not use

vision to return to this repeated position, a proprioceptive sense could have been used rather than a

perception of the force exerted by the finger.

3.4 Target finger force with separation of position and force sensing:

In order to separate the proprioception from the kinesthetic sense of force, we also simulated

springs in which the spring constant or origin were randomized within a run. In these runs, the

target force occurs at random angular positions during a run. Hence, the subject could not use

position clues as a means of returning to the target force. Raw data for a run of this type is

graphed in Figure 7 in the appendix. Since the vertical voltage scale is linearly related to the force,

this data shows that the subject was able to closely return to the target force in successive attempts.

The bar chart in Figure 5 shows the results of a series of runs with the index finger of a subject.

Within each run, the computer simulated either a simple spring, a spring with random force

constant or a spring with random origin. The long dark bar indicates the average ratio of the

exerted force to the maximum force, with the target value being 0.50. The lighter bars show the

average standard deviation of the scatter within a run, expressed as a fraction of the maximum

force. We conclude that the subject is not relying on a position clue, but rather is correctly judging

the force exerted by the finger.

FIGURE 5: HALF-MAX TARGET WITH SIMULATED SPRING
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"RANDOM K" means random force constant or stiffness during a run.

"STAND DEV" means the standard deviation of the scatter within a run.
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In order to study this force judgement at lower fractions of the maximum finger force,

subjects attempted to repeat similar runs with a) a maximum force pulse followed by six attempts at

a force of half-maximum; b) a first half-maximum force pulse followed by six quarter-maximum

pulses; c) a first quarter-maximum pulse followed by eighth-maximum pulses. Table 1 shows the

results of a series of these runs:

Table 1: Pulsed Target Forces Against Spring Simulations

Mean successive/first

First for_e 6 successive forces Target Observe4 S_atter

Maximum Half-maximum 0.50 0.48 + .05

Half-Max Quarter-Max 0.50 0.44 + .05

Quarter-Max Eighth-Max 0.50 0.34 + .05

The last column of Table 1 is the average scatter (standard deviation) within a run. This is

expressed as a ratio to the force in the first pulse. The individual runs within a set included simple

spring, random spring constant and random origin with results similar to those given above. The

perception of the finger-force appears to be successful even at relatively low force levels.

3.5 Tactile clues:

The possibility that the force perception is simply due to tactile clues should be considered.

For this purpose we repeated the runs with the use of the metal splint, which should reduce the

pressure on the terminal phalanx and isolate the rotation to the PIP joint. The results were similar

as long as the splint did not impede the motion with the least stiff spring simulations. These results

are shown in Table 2:

Table 2. Pulsed Target Forces with Splint

Mean successive/first

First force 6 successive forces Target Observed Scatter

Maximum Half-maximum 0.50 0.42 + .05

Hal f-Max Quarter-Max 0.50 0.46 +. 05

Quarter-Max Eighth-Max 0.50 0.45 + .04

As another way to reduce the tactile sensation of force, we immersed the terminal phalanx of

the finger in ice for about ten minutes before repeating the runs. The finger was re-inserted in the

ice for several minutes between runs, each of which took about 40 seconds. The results are given
in Table 3:
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Table 3: Pulsed Target Force with Numbed Finger

First pulse was maximum, successive six pulses were half-maximum.

Spring simulation

Fixed force constant

Random force constant

Mean of successive forces/first force

No Ice Scatter With Ice Scatter

0.46 + .05 0.42 + .04

0.34 + .05 0.35 + .05

The results indicate that numbing the terminal phalanx of the finger, which is in the pad that

pushes on the load cell, does not prevent the perception of force. We conclude that this force

perception is not an artifact of tactile clues at the finger tips.

4. Conclusions

Based on the results in Section 3.1 and 3.2, it appears that a good design value for the

maximum finger force to be exerted by an operator in a telerobotics system is about 40 Newtons

for the index and long fingers and about 30 Newtons for the ring finger. These forces can be

maintained out to angular excursions beyond 90 degrees. Averaging over runs and individuals,

the maximum finger flexure force is nearly independent of angle in this range.

From the results in Section 3.3 and 3.4, we conclude that a subject can successfully exert a

target force against a restoring force which is a function of position. The ability to repeatedly sense

the target force level did not require visual or position information and did not require

training.Furthermore, the perception of force was effective down to one-eighth of the maximum

force. From the experiments described in Section 3.5, we conclude that the perception of the

force exerted by a finger is not dependent on tactile clues.

This study is encouraging with respect to the use of direct operator perception of force in

reflected-force feedback telerobotic devices. This can be useful in developing space telerobotics

because it provides natural perception of force by the operator rather that a reliance on visual

displays, for example, which might then be used for other information.
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FIGURE 6 Raw Data for Force and Position versus Time.

The load cell voltage is plotted vertically with a scale of one volt per dot.

6 volts corresponds to a force of 42 Newtons. The dots are 1.5 seconds apart

horizontally. The dotted line is position versus time with the motor drive

providing a constant sweep rate under computer control at about i0 ° per dot.
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FIGURE 7 Raw Data for Target Finger Force Against a Simulated Spring.

This simulation is for a spring with a random spring constant so that the

stiffness of the spring changes randomly at each attempt. The dots are three

seconds apart horizontally. The subject pushes for about three seconds and

then relaxes for about three seconds. The first pulse target was maximum

force and the load cell voltage reached about 6 volts which corresponds to

42 Newtons. The lower plateau at that time is the position data. On the

following attempts the target force was half-maximum. Notice that the force

levels are similar but that the lower plateau for position is variable. This

is because the system behaved like a spring with a random stiffness. The

subject pushes out to the same force level even though it occurs at different

positions.
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