67 research outputs found

    Growth, seed development and genetic analysis in wild type and Def mutant of Pisum sativum L

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>def </it>mutant pea (<it>Pisum sativum </it>L) showed non-abscission of seeds from the funicule. Here we present data on seed development and growth pattern and their relationship in predicting this particular trait in wild type and mutant lines as well as the inheritance pattern of the <it>def </it>allele in F<sub>2 </sub>and F<sub>3 </sub>populations.</p> <p>Findings</p> <p>Pod length and seed fresh weight increase with fruit maturity and this may affect the abscission event in pea seeds. However, the seed position in either the distal and proximal ends of the pod did not show any difference. The growth factors of seed fresh weight (FW), width of funicles (WFN), seed width (SW) and seed height (SH) were highly correlated and their relationships were determined in both wild type and <it>def </it>mutant peas. The coefficient of determination <it>R</it><sup>2 </sup>values for the relationship between WFN and FW, SW and SH and their various interactions were higher for the <it>def </it>dwarf type. Stepwise multiple regression analysis showed that variation of WFN was associated with SH and SW. Pearson's chi square analysis revealed that the inheritance and segregation of the <it>Def </it>locus in 3:1 ratio was significant in two F<sub>2 </sub>populations. Structural analysis of the F3 population was used to confirm the inheritance status of the <it>Def </it>locus in F<sub>2 </sub>heterozygote plants.</p> <p>Conclusions</p> <p>This study investigated the inheritance of the presence or absence of the <it>Def </it>allele, controlling the presence of an abscission zone (AZ) or an abscission-less zone (ALZ) forming in wild type and mutant lines respectively. The single major gene (<it>Def</it>) controlling this phenotype was monogenic and <it>def </it>mutants were characterized and controlled by the homozygous recessive <it>def </it>allele that showed no palisade layers in the hilum region of the seed coat.</p

    Selective reduction of APP-BACE1 activity improves memory via NMDA-NR2B receptor-mediated mechanisms in aged PDAPP mice

    Get PDF
    β-Amyloid (Aβ) accumulation is an early event of Alzheimer's disease (AD) pathogenesis. Inhibition of Aβ production by β-secretase (BACE) has been proposed as a potential therapeutic strategy for AD. However, BACE inhibitors lack specificity and have had limited clinical benefit. To better study the consequences of reducing BACE metabolism, specifically of APP, we used an antibody, 2B3, that binds to APP at the BACE cleavage site, inhibiting Aβ production. 2B3 was administered either directly into the lateral ventricles or by intraperitoneal injection to (platelet-derived growth factor promoter hAPP717V (PDAPP) mice and WT mice. 2B3 reduced soluble Aβ40 and βCTF (β-amyloid derived C-terminal fragment) and improved memory for object-in-place associations and working memory in a foraging task in PDAPP mice. 2B3 also normalized the phosphorylation of the N-methyl-D-aspartate receptor NR2B subunit and subsequent extracellular signal-regulated kinase signaling. The importance of this NR2B pathway for OiP memory was confirmed by administering the NR2B antagonist, Ro25-6981, to 18-month-old WT. In contrast, 2B3 impaired associative recognition memory in young WT mice. These data provide novel insights into the mechanism by which selective modulation of APP metabolism by BACE influences synaptic and cognitive processes in both normal mice and aged APP transgenic mice

    Alterations in endocytic protein expression with increasing age in the transgenic APP695 V717I London mouse model of amyloid pathology: Implications for Alzheimer's disease

    Get PDF
    Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved. A major risk factor for the development of Alzheimer's disease (AD) is increasing age, but the reason behind this association has not been identified. It is thought that the changes in endocytosis seen in AD patients are causal for this condition. Thus, we hypothesized that the increased risk of developing AD associated with ageing may be because of changes in endocytosis. We investigated using Western blotting whether the expression of endocytic proteins involved in clathrin-mediated and clathrin-independent endocytosis are altered by increasing age in a mouse model of amyloid pathology. We used mice transgenic for human amyloid precursor protein containing the V717I London mutation. We compared the London mutation mice with age-matched wild-type (WT) controls at three ages, 3, 9 and 18 months, representing different stages in the development of pathology in this model. Having verified that the London mutation mice overexpressed amyloid precursor protein and β-amyloid, we found that the expression of the smallest isoform of PICALM, a key protein involved in the regulation of clathrin-coated pit formation, was significantly increased in WT mice, but decreased in the London mutation mice with age. PICALM levels in WT 18-month mice and clathrin levels in WT 9-month mice were significantly higher than those in the London mutation mice of the same ages. The expression of caveolin-1, involved in clathrin-independent endocytosis, was significantly increased with age in all mice. Our results suggest that endocytic processes could be altered by the ageing process and such changes could partly explain the association between ageing and AD

    Trial-unique, delayed nonmatching-to-location (TUNL) touchscreen testing for mice: sensitivity to dorsal hippocampal dysfunction.

    Get PDF
    RATIONALE: The hippocampus is implicated in many of the cognitive impairments observed in conditions such as Alzheimer's disease (AD) and schizophrenia (SCZ). Often, mice are the species of choice for models of these diseases and the study of the relationship between brain and behaviour more generally. Thus, automated and efficient hippocampal-sensitive cognitive tests for the mouse are important for developing therapeutic targets for these diseases, and understanding brain-behaviour relationships. One promising option is to adapt the touchscreen-based trial-unique nonmatching-to-location (TUNL) task that has been shown to be sensitive to hippocampal dysfunction in the rat. OBJECTIVES: This study aims to adapt the TUNL task for use in mice and to test for hippocampus-dependency of the task. METHODS: TUNL training protocols were altered such that C57BL/6 mice were able to acquire the task. Following acquisition, dysfunction of the dorsal hippocampus (dHp) was induced using a fibre-sparing excitotoxin, and the effects of manipulation of several task parameters were examined. RESULTS: Mice could acquire the TUNL task using training optimised for the mouse (experiments 1). TUNL was found to be sensitive to dHp dysfunction in the mouse (experiments 2, 3 and 4). In addition, we observed that performance of dHp dysfunction group was somewhat consistently lower when sample locations were presented in the centre of the screen. CONCLUSIONS: This study opens up the possibility of testing both mouse and rat models on this flexible and hippocampus-sensitive touchscreen task.CHK received funding from the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI11C1183). CJH, LMS and TJB were funded by Medical Research Council/Wellcome Trust grant 089703/Z/09/Z. CR, LMS and TJB were funded by Alzheimer’s Research UK [ART/ESG2010/1]. ACM, MHE, CAO, LMS and TJB also received funding from the Innovative Medicine Initiative Joint Undertaking under grant agreement no 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013).This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00213-015-4017-

    The continuous performance test (rCPT) for mice: a novel operant touchscreen test of attentional function.

    Get PDF
    RATIONALE: Continuous performance tests (CPTs) are widely used to assess attentional processes in a variety of disorders including Alzheimer's disease and schizophrenia. Common human CPTs require discrimination of sequentially presented, visually patterned 'target' and 'non-target' stimuli at a single location. OBJECTIVES: The aims of this study were to evaluate the performance of three popular mouse strains on a novel rodent touchscreen test (rCPT) designed to be analogous to common human CPT variants and to investigate the effects of donepezil, a cholinesterase inhibitor and putative cognitive enhancer. METHODS: C57BL/6J, DBA/2J and CD1 mice (n = 15-16/strain) were trained to baseline performance using four rCPT training stages. Then, probe tests assessed the effects of parameter changes on task performance: stimulus size, duration, contrast, probability, inter-trial interval or inclusion of flanker distractors. rCPT performance was also evaluated following acute administration of donepezil (0-3 mg/kg, i.p.). RESULTS: C57BL/6J and DBA/2J mice showed similar acquisition rates and final baseline performance following rCPT training. On probe tests, rCPT performance of both strains was sensitive to alteration of visual and/or attentional demands (stimulus size, duration, contrast, rate, flanker distraction). Relative to C57BL/6J, DBA/2J mice exhibited (1) decreasing sensitivity (d') across the 45-min session, (2) reduced performance on probes where the appearance of stimuli or adjacent areas were changed (size, contrast, flanking distractors) and (3) larger dose- and stimulus duration-dependent changes in performance following donepezil administration. In contrast, CD1 mice failed to acquire rCPT (stage 3) and pairwise visual discrimination tasks. CONCLUSIONS: rCPT is a potentially useful translational tool for assessing attention in mice and for detecting the effects of nootropic drugs.Funding for this research was provided by Professor Mark Johnson, Imperial College London. CHK received funding from the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI11C1183). MHE, SRON, TWR, LMS, TJB and ACM received funding from the Innovative Medicine Initiative Joint Undertaking under grant agreement no 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013). LMS and TJB were funded by Medical Research Council/Wellcome Trust grant 089703/Z/09/Z.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00213-015-4081-

    Influencia de la radiación UV-B, sobre la biosíntesis de antocianinas en frutos de manzana (Malus domestica Borkh) CV.”ANNA” para condiciones de trópico alto en Boyacá Colombia

    Get PDF
    1 recurso en línea (73 páginas) : figuras, tablas.En la manzana roja, la coloración de la piel y las características fisicoquímicas, son factores importantes que determinan la calidad de los frutos; estos parámetros tienen un control de orden genético pero influenciado por condiciones ambientales en etapa de maduración de frutos. El color rojo está ligado a la biosíntesis de antocianinas, que son un grupo de pigmentos de color rojo, hidrosolubles, producto del metabolismo secundario mediado por luz UV, Y ampliamente distribuidos en el reino vegetal. En el presente estudio se determinó el IUV, se cuantifico antocianinas totales y se analizaron SST en frutos maduros de manzana cv “ANNA” cultivados en diferentes altitudes en localidades de Boyacá: Soracá a 2820 m.s.n.m, Tuta a 2640m.s.n.m y Nuevo Colon a 2450 m.s.n.m. Los resultados mostraron que en la localidad a mayor altitud (Soracá), el valor promedio del IUV fue mayor (14.9) y la acumulación de antocianinas totales igualmente fue el más alto (25.4 mg/100g). Se ha encontrado una correlaciòn positiva entre la intensidad de la radiación UV, altitud y concentración de antocianinas totales, mientras que para los SST no se encontraron diferencias significativas.Bibliografía y webgrafía: páginas 61-70MaestríaMagíster en Ciencias Biológica

    Effects of anterior cingulate cortex lesions on a continuous performance task for mice.

    Get PDF
    Important tools in the study of prefrontal cortical-dependent executive functions are cross-species behavioural tasks with translational validity. A widely used test of executive function and attention in humans is the continuous performance task (CPT). Optimal performance in variations of this task is associated with activity along the medial wall of the prefrontal cortex, including the anterior cingulate cortex (ACC), for its essential components such as response control, target detection and processing of false alarm errors. We assess the validity of a recently developed rodent touchscreen continuous performance task (rCPT) that is analogous to typical human CPT procedures. Here we evaluate the performance of mice with quinolinic acid-induced lesions centred on the ACC in the rCPT following a range of task parameter manipulations designed to challenge attention and impulse control. Lesioned mice showed a disinhibited response profile expressed as a decreased response criterion and increased false alarm rates. ACC lesions also resulted in a milder increase in inter-trial interval responses ('ITI touches') and hit rate. Lesions did not affect discriminative sensitivity d'. The disinhibited behaviour of ACC lesioned animals was stable and not affected by the manipulation of variable task parameter manipulations designed to increase task difficulty. The results are in general agreement with human studies implicating the ACC in the processing of inappropriate responses. We conclude that the rCPT may be useful for studying prefrontal cortex function in mice and has the capability of providing meaningful links between animal and human cognitive tasks

    Haploinsufficiency of EHMT1 improves pattern separation and increases hippocampal cell proliferation

    Get PDF
    Contains fulltext : 169681.pdf (publisher's version ) (Open Access)Heterozygous mutations or deletions of the human Euchromatin Histone Methyltransferase 1 (EHMT1) gene are the main causes of Kleefstra syndrome, a neurodevelopmental disorder that is characterized by impaired memory, autistic features and mostly severe intellectual disability. Previously, Ehmt1+/- heterozygous knockout mice were found to exhibit cranial abnormalities and decreased sociability, phenotypes similar to those observed in Kleefstra syndrome patients. In addition, Ehmt1+/- knockout mice were impaired at fear extinction and novel- and spatial object recognition. In this study, Ehmt1+/- and wild-type mice were tested on several cognitive tests in a touchscreen-equipped operant chamber to further investigate the nature of learning and memory changes. Performance of Ehmt1+/- mice in the Visual Discrimination &Reversal learning, object-location Paired-Associates learning- and Extinction learning tasks was found to be unimpaired. Remarkably, Ehmt1+/- mice showed enhanced performance on the Location Discrimination test of pattern separation. In line with improved Location Discrimination ability, an increase in BrdU-labelled cells in the subgranular zone of the dentate gyrus was observed. In conclusion, reduced levels of EHMT1 protein in Ehmt1+/- mice does not result in general learning deficits in a touchscreen-based battery, but leads to increased adult cell proliferation in the hippocampus and enhanced pattern separation ability

    The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia.

    Get PDF
    RATIONALE: The NEWMEDS initiative (Novel Methods leading to New Medications in Depression and Schizophrenia, http://www.newmeds-europe.com ) is a large industrial-academic collaborative project aimed at developing new methods for drug discovery for schizophrenia. As part of this project, Work package 2 (WP02) has developed and validated a comprehensive battery of novel touchscreen tasks for rats and mice for assessing cognitive domains relevant to schizophrenia. OBJECTIVES: This article provides a review of the touchscreen battery of tasks for rats and mice for assessing cognitive domains relevant to schizophrenia and highlights validation data presented in several primary articles in this issue and elsewhere. METHODS: The battery consists of the five-choice serial reaction time task and a novel rodent continuous performance task for measuring attention, a three-stimulus visual reversal and the serial visual reversal task for measuring cognitive flexibility, novel non-matching to sample-based tasks for measuring spatial working memory and paired-associates learning for measuring long-term memory. RESULTS: The rodent (i.e. both rats and mice) touchscreen operant chamber and battery has high translational value across species due to its emphasis on construct as well as face validity. In addition, it offers cognitive profiling of models of diseases with cognitive symptoms (not limited to schizophrenia) through a battery approach, whereby multiple cognitive constructs can be measured using the same apparatus, enabling comparisons of performance across tasks. CONCLUSION: This battery of tests constitutes an extensive tool package for both model characterisation and pre-clinical drug discovery.This work was supported by the Innovative Medicine Initiative Joint Undertaking under grant agreement no. 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013). The authors thank Charlotte Oomen for valuable comments on the manuscript.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s00213-015-4007-
    corecore