122 research outputs found

    The Expanded Kinesin-13 Repertoire of Trypanosomes Contains Only One Mitotic Kinesin Indicating Multiple Extra-Nuclear Roles

    Get PDF
    BACKGROUND: Kinesin-13 proteins have a critical role in animal cell mitosis, during which they regulate spindle microtubule dynamics through their depolymerisation activity. Much of what is known about Kinesin-13 function emanates from a relatively small sub-family of proteins containing MCAK and Kif2A/B. However, recent work on kinesins from the much more widely distributed, ancestral Kinesin-13 family, which includes human Kif24, have identified a second function in flagellum length regulation that may exist either alongside or instead of the mitotic role. METHODOLOGY/PRINCIPAL FINDINGS: The African trypanosome Trypanosoma brucei encodes 7 distinct Kinesin-13 proteins, allowing scope for extensive specialisation of roles. Here, we show that of all the trypanosomal Kinesin-13 proteins, only one is nuclear. This protein, TbKIN13-1, is present in the nucleoplasm throughout the cell cycle, but associates with the spindle during mitosis, which in trypanosomes is closed. TbKIN13-1 is necessary for the segregation of both large and mini-chromosomes in this organism and reduction in TbKIN13-1 levels mediated by RNA interference causes deflects in spindle disassembly with spindle-like structures persisting in non-mitotic cells. A second Kinesin-13 is localised to the flagellum tip, but the majority of the Kinesin-13 family members are in neither of these cellular locations. CONCLUSIONS/SIGNIFICANCE: These data show that the expanded Kinesin-13 repertoire of trypanosomes is not associated with diversification of spindle-associated roles. TbKIN13-1 is required for correct spindle function, but the extra-nuclear localisation of the remaining paralogues suggests that the biological roles of the Kinesin-13 family is wider than previously thought

    Different expressions of the same mode: a recent dialogue between archaeological and contemporary drawing practices

    Get PDF
    In this article we explore what we perceive as pertinent features of shared experience at the excavations of an Iron Age Hillfort at Bodfari, North Wales, referencing artist, archaeologist and examples of seminal art works and archaeological records resulting through inter-disciplinary collaboration. We explore ways along which archaeological and artistic practices of improvisation become entangled and productive through their different modes of mark-making. We contend that marks and memories of artist and archaeologist alike emerge interactively, through the mutually constituting effects of the object of study, the tools of exploration, and the practitioners themselves, when they are enmeshed in the cross-modally bound activities. These include, but are not limited to, remote sensing, surveying, mattocking, trowelling, drawing, photographing, videoing and sound recording. These marks represent the co-signatories: the gesture of the often anonymous practitioners, the voice of the deposits, as well as the imprint of the tools, and their interplay creates a multi-threaded narrative documenting their modes of intra-action, in short our practices. They occupy the conceptual space of paradata, and in the process of saturating the interstices of digital cognitive prosthetics they lend probity to their translations in both art form and archive

    Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin

    Get PDF
    Microtubule severing enzymes regulate microtubule dynamics in a wide range of organisms and are implicated in important cell cycle processes such as mitotic spindle assembly and disassembly, chromosome movement and cytokinesis. Here we explore the function of several microtubule severing enzyme homologues, the katanins (KAT80, KAT60a, KAT60b and KAT60c), spastin (SPA) and fidgetin (FID) in the bloodstream stage of the African trypanosome parasite, Trypanosoma brucei. The trypanosome cytoskeleton is microtubule based and remains assembled throughout the cell cycle, necessitating its remodelling during cytokinesis. Using RNA interference to deplete individual proteins, we show that the trypanosome katanin and spastin homologues are non-redundant and essential for bloodstream form proliferation. Further, cell cycle analysis revealed that these proteins play essential but discrete roles in cytokinesis. The KAT60 proteins each appear to be important during the early stages of cytokinesis, while downregulation of KAT80 specifically inhibited furrow ingression and SPA depletion prevented completion of abscission. In contrast, RNA interference of FID did not result in any discernible effects. We propose that the stable microtubule cytoskeleton of T. brucei necessitates the coordinated action of a family of katanins and spastin to bring about the cytoskeletal remodelling necessary to complete cell divisio

    Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility.

    Get PDF
    BACKGROUND: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. METHODS: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. RESULTS: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. CONCLUSIONS: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    A Novel Rho-Like Protein TbRHP Is Involved in Spindle Formation and Mitosis in Trypanosomes

    Get PDF
    Background: In animals and fungi Rho subfamily small GTPases are involved in signal transduction, cytoskeletal function and cellular proliferation. These organisms typically possess multiple Rho paralogues and numerous downstream effectors, consistent with the highly complex contributions of Rho proteins to cellular physiology. By contrast, trypanosomatids have a much simpler Rho-signaling system, and the Trypanosoma brucei genome contains only a single divergent Rho-related gene, TbRHP (Tb927.10.6240). Further, only a single RhoGAP-like protein (Tb09.160.4180) is annotated, contrasting with the.70 Rho GAP proteins from Homo sapiens. We wished to establish the function(s) of TbRHP and if Tb09.160.4180 is a potential GAP for this protein. Methods/Findings: TbRHP represents an evolutionarily restricted member of the Rho GTPase clade and is likely trypanosomatid restricted. TbRHP is expressed in both mammalian and insect dwelling stages of T. brucei and presents with a diffuse cytoplasmic location and is excluded from the nucleus. RNAi ablation of TbRHP results in major cell cycle defects and accumulation of multi-nucleated cells, coinciding with a loss of detectable mitotic spindles. Using yeast two hybrid analysis we find that TbRHP interacts with both Tb11.01.3180 (TbRACK), a homolog of Rho-kinase, and the sole trypanosome RhoGAP protein Tb09.160.4180, which is related to human OCRL. Conclusions: Despite minimization of the Rho pathway, TbRHP retains an important role in spindle formation, and henc

    A leucine aminopeptidase is involved in kinetoplast DNA segregation in <i>Trypanosoma brucei</i>

    Get PDF
    The kinetoplast (k), the uniquely packaged mitochondrial DNA of trypanosomatid protists is formed by a catenated network of minicircles and maxicircles that divide and segregate once each cell cycle. Although many proteins involved in kDNA replication and segregation are now known, several key steps in the replication mechanism remain uncharacterized at the molecular level, one of which is the nabelschnur or umbilicus, a prominent structure which in the mammalian parasite Trypanosoma brucei connects the daughter kDNA networks prior to their segregation. Here we characterize an M17 family leucyl aminopeptidase metalloprotease, termed TbLAP1, which specifically localizes to the kDNA disk and the nabelschur and represents the first described protein found in this structure. We show that TbLAP1 is required for correct segregation of kDNA, with knockdown resulting in delayed cytokinesis and ectopic expression leading to kDNA loss and decreased cell proliferation. We propose that TbLAP1 is required for efficient kDNA division and specifically participates in the separation of daughter kDNA networks

    A MAP6-Related Protein Is Present in Protozoa and Is Involved in Flagellum Motility

    Get PDF
    In vertebrates the microtubule-associated proteins MAP6 and MAP6d1 stabilize cold-resistant microtubules. Cilia and flagella have cold-stable microtubules but MAP6 proteins have not been identified in these organelles. Here, we describe TbSAXO as the first MAP6-related protein to be identified in a protozoan, Trypanosoma brucei. Using a heterologous expression system, we show that TbSAXO is a microtubule stabilizing protein. Furthermore we identify the domains of the protein responsible for microtubule binding and stabilizing and show that they share homologies with the microtubule-stabilizing Mn domains of the MAP6 proteins. We demonstrate, in the flagellated parasite, that TbSAXO is an axonemal protein that plays a role in flagellum motility. Lastly we provide evidence that TbSAXO belongs to a group of MAP6-related proteins (SAXO proteins) present only in ciliated or flagellated organisms ranging from protozoa to mammals. We discuss the potential roles of the SAXO proteins in cilia and flagella function

    Comparative genomics of proteins involved in RNA nucleocytoplasmic export

    Get PDF
    Background: The establishment of the nuclear membrane resulted in the physical separation of transcription and translation, and presented early eukaryotes with a formidable challenge: how to shuttle RNA from the nucleus to the locus of protein synthesis. In prokaryotes, mRNA is translated as it is being synthesized, whereas in eukaryotes mRNA is synthesized and processed in the nucleus, and it is then exported to the cytoplasm. In metazoa and fungi, the different RNA species are exported from the nucleus by specialized pathways. For example, tRNA is exported by exportin-t in a RanGTP-dependent fashion. By contrast, mRNAs are associated to ribonucleoproteins (RNPs) and exported by an essential shuttling complex (TAP-p15 in human, Mex67-mtr2 in yeast) that transports them through the nuclear pore. The different RNA export pathways appear to be well conserved among members of Opisthokonta, the eukaryotic supergroup that includes Fungi and Metazoa. However, it is not known whether RNA export in the other eukaryotic supergroups follows the same export routes as in opisthokonts. Methods: Our objective was to reconstruct the evolutionary history of the different RNA export pathways across eukaryotes. To do so, we screened an array of eukaryotic genomes for the presence of homologs of the proteins involved in RNA export in Metazoa and Fungi, using human and yeast proteins as queries. Results: Our genomic comparisons indicate that the basic components of the RanGTP-dependent RNA pathways are conserved across eukaryotes, and thus we infer that these are traceable to the last eukaryotic common ancestor (LECA). On the other hand, several of the proteins involved in RanGTP-independent mRNA export pathways are less conserved, which would suggest that they represent innovations that appeared later in the evolution of eukaryotes. Conclusions: Our analyses suggest that the LECA possessed the basic components of the different RNA export mechanisms found today in opisthokonts, and that these mechanisms became more specialized throughout eukaryotic evolution
    corecore