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Abstract. We construct the tensor product for f -algebras, including
proving a universal property for it, and investigate how it preserves
algebraic properties of the factors.
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1. Introduction

An f -algebra is a vector lattice A with an associative multiplication �, such
that

1. a, b ∈ A+ ⇒ a � b ∈ A+

2. If a, b, c ∈ A+ with a ∧ b = 0 then (a � c) ∧ b = (c � a) ∧ b = 0.
We are only concerned in this paper with Archimedean f -algebras so hence-
forth, all f-algebras and, indeed, all vector lattices are assumed to be
Archimedean.

In this paper, we construct the tensor product of two f -algebras A and
B. To be precise, we show that there is a natural way in which the Frem-
lin Archimedean vector lattice tensor product A⊗B can be endowed with
an f -algebra multiplication. This tensor product has the expected univer-
sal property, at least as far as order bounded algebra homomorphisms are
concerned. We also show that, unlike the case for order theoretic properties,
algebraic properties behave well under this product. Again, let us emphasise
here that algebra homomorphisms are not assumed to map an identity to an
identity.

Our approach is very much representational, however, much that might
annoy some purists. In §2, we derive the representations needed, which are
very mild improvements on results already in the literature. In the proof
of our main result, a first attempt at a proof ran into the problem that if
f ∈ C∞(Σ) and g ∈ C∞(Ω) (continuous functions into R ∪ {−∞,∞} that
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are finite on a dense subset), then we do not have (σ, ω) �→ f(σ)g(ω) lying in
C∞(Σ × Ω). We get round this problem by working with representations in
the space of continuous real-valued functions defined on dense open subsets,
modulo equality on intersection of domains.

Although we can find no direct connection, we feel that we should pay
homage to the first use of f -algebras in connection with tensor products in
[5]. There is overlap between our results and those obtained (for unital and
semi-prime f -algebras, and using different methods) in [1].

2. Representations of f -algebras

There are many representation results in the literature for f -algebras, e.g.,
[2,3,7,9]. We are able to prove a result that is slightly more general than any
of these, but our main reason for approaching the topic of representations is
that we actually need to represent the multiplication in situations when we
have a functional representation of only some fragment of the f -algebra.

If Σ is a topological space, then C∞(Σ) is the set of continuous functions
into the usual two point compactification of the reals which are finite on a
dense subset of Σ. This is a lattice for the pointwise order but is not in general
a vector space for pointwise addition and scalar multiplication. There may,
however, be many vector subspaces. The proofs of Lemma 2.4 and Theorem
2.5 of [13] suffice to prove the following result, so we do not repeat them here.

Proposition 2.1. Let Σ be a topological space, E ⊂ C∞(Σ) a vector lattice
and T : E → C∞(Σ) be such that

1. If x ≥ 0 then Tx ≥ 0.
2. For all α, β ∈ R and x, y ∈ E, αTx + βTy is defined in C∞(Σ) and is

equal to T (αx + βy).
3. If x, y ∈ E with x ⊥ y implies that Tx ⊥ y.

Set Υ = {σ ∈ Σ : ∃x ∈ E with 0 < |x(σ)| < ∞} then there is q ∈ C∞(Υ)
such that for any x ∈ E

Tx(υ) = q(υ)x(υ)

for any υ ∈ Υ for which the product is defined.

Remark 2.2. Compared with Theorem 2.5 of [13], the differences in this result
are that the operator T takes values only in C∞(Σ) rather than in E and that
the set Υ is not assumed to be the whole of Σ. As a consequence, we have
no information about Tx on Σ \ Υ. The price we pay for this generalization
is that we must assume that T is positive rather than order bounded.

Proposition 2.3. Let (A, �) be an f-algebra, H a vector sublattice of A, and G
a vector sublattice of H such that G � G ⊆ H. Let x �→ x̂ be a representation
of H in some C∞(Σ) and let Υ = {σ ∈ Σ : ∃x ∈ G with 0 < |x̂(σ)| < ∞}.
Then, there is w ∈ C∞(Υ)+, such that, for all x, y ∈ G

(̂x � y)(υ) = w(υ)x̂(υ)ŷ(υ)

at all points υ ∈ Υ for which the pointwise product is defined.
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Proof. We will identify H with a sublattice of C∞(Σ) and suppress the x �→ x̂
notation during this proof. For each x ∈ G+, the map Mx : y �→ x � y :
G → H ⊆ C∞(Σ) satisfies the hypotheses of Proposition 2.1, so there is
qx ∈ C∞(Υ) with (x � y)(υ) = (Mxy)(υ) = qx(υ)y(υ) for all υ ∈ Υ for
which the pointwise product is defined. For general x ∈ G, this argument can
be applied to x+ and x− separately to obtain qx+ and qx− in C∞(Υ). As
x+ ⊥ x−, Mx+y ⊥ Mx−y for all y ∈ G. Picking any υ ∈ Υ at which both qx+

and qx− are finite, we may find y ∈ G+ with 0 < y(σ) < ∞ and we see that
at least one of qx+ and qx− must vanish at υ. By continuity, qx+ ⊥ qx− and
we may form qx = qx+ − qx− ∈ C∞(Υ). It is routine to verify that we now
have the equality, (x�y)(υ) = qx(υ)y(υ) for all υ ∈ Υ for which the pointwise
product is defined, for all x ∈ G.

Now, consider the map Q : x �→ qx mapping G into C∞(Υ). From this
point on, we regard G as a subspace of C∞(Υ) in the obvious manner. We
show that Q is both linear and positive. It is clear that Q respects multi-
plication by reals. If x, x′ ∈ G, to prove that qx+x′ = qx + qx′ it suffices to
prove that this equality holds on the dense subset of Υ consisting of points
υ for which all three functions are finite. However, if we choose y ∈ G+ with
0 < y(υ) < ∞, then the equality

qx+x′(υ)y(υ) =
(
(x + x′) � y

)
(υ) = (x � y)(υ) + (x′ � y)(υ)

= qx(υ)y(υ) + qx′(υ)y(υ) =
(
qx(υ) + qx′(υ)

)
y(υ)

makes that clear. A similar argument shows that Q is positive. If υ ∈ Υ, pick
y ∈ G+ with 0 < y(υ) < ∞.

We next show that if x, y ∈ G and x ⊥ y, then Qx ⊥ y. Suppose that
y(υ) �= 0 and use the admissibility of G to find z ∈ A with 0 < z(υ) < ∞.
There is a neighbourhood U of υ on which both sets of inequalities persist.
As x ⊥ y, x � z ⊥ y. For τ in the dense subset of Υ, where the pointwise
product is defined, Qx(τ)z(τ) = (x � z)(τ). As x � z ⊥ y, Qx(τ)z(τ) = 0 on
a dense subset of U and hence Qx(τ) = 0 on that dense subset of U . By
continuity, Qx ≡ 0 on U and in particular Qx(υ) = 0.

We may thus apply Proposition 2.1 again to Q to obtain w ∈ C∞(Υ)+,
such that Qx(υ) = qx(υ) = w(υ)x(υ) whenever the product is defined. Hence,
for all x, y ∈ G, we have

(x � y)(υ) = qx(υ)y(υ) = w(υ)x(υ)y(υ)

for all υ ∈ Υ for which the pointwise product is defined. �
If the sublattice H has an order unit, then we have a rather simpler

representation. The representation mentioned here exists by the Kakutani
representation.

Corollary 2.4. Let (A, �) be an f-algebra, H a sublattice of A with an or-
der unit, and G a sublattice of H such that G � G ⊆ H. Let x �→ x̂ be a
representation of H in some C(Σ), where Σ is compact Hausdorff, and let
Υ = {σ ∈ Σ : ∃x ∈ G with 0 < |x̂(σ)|}. Then, there is w ∈ C(Υ)+, such that,
for all x, y ∈ G and all υ ∈ Υ,

(̂x � y)(υ) = w(υ)x̂(υ)ŷ(υ).
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Proof. We need only note that w is locally a quotient of Tx by the corre-
sponding (non-vanishing) x to see that w is real-valued. �

In particular, we have the following consequence of Proposition 2.3 giv-
ing a global representation of f -algebras.

Corollary 2.5. Let Σ be a topological space and A ⊂ C∞(Σ) is a vector lattice,
such that for all σ ∈ Σ, there is x ∈ A with 0 < |x(σ)| < ∞. If � is an f-
algebra multiplication on A, then there is w ∈ C∞(Σ)+, such that, for all
x, y ∈ A

(x � y)(σ) = w(σ)x(σ)y(σ)

for all σ ∈ Σ for which the pointwise product is defined.
Conversely, if there is w ∈ C∞(Σ), such that for all x, y ∈ A, there is

an element x�y of A with (x�y)(σ) = w(σ)x(σ)y(σ) whenever that pointwise
product is defined, then � is an f-algebra multiplication on A.

Proof. Use Proposition 2.3 taking G = H = A and note that in this case,
Υ = Σ. The converse is elementary. �

Of course, every Archimedean vector lattice possesses many represen-
tations as such sublattices of C∞(Σ). Theorem 6 of [3] proves this corollary
under the additional assumption that Σ is Stonean. Specialising somewhat,
we have:

Corollary 2.6. For every semi-prime f-algebra (A, �), there is a vector lattice
representation of A in some C∞(Υ), with image a vector lattice, and a strictly
positive w ∈ C∞(Υ)+, such that, for all x, y ∈ A

(x � y)(υ) = w(υ)x(υ)y(υ)

for all υ ∈ Υ for which the pointwise product is defined.

Proof. Start with any suitable representation of A in C∞(Σ) and produce w
as in Corollary 2.5, then set Υ = {σ ∈ Σ : w(σ) > 0}. The restriction of the
representation on Σ to Υ will do what we want, as soon as we show that this
restriction is one-to-one. However, if x ∈ A and x|Υ = 0, then w(σ)x(σ)2 = 0
for all σ ∈ Σ, which says that x�x = 0 and x = 0 as (A, �) is semi-prime. �

For the work below, Corollary 2.5 is not quite good enough. We will
work with representations not in a space C∞(Σ), which as we have already
commented is not a vector space in any natural way, but in the space that
we will denote by S(Σ). This is the space of continuous real-valued functions
defined on dense open subsets of Σ, modulo the equivalence relation that
f ∼ g if f and g coincide on the intersection of their domains. There is a
natural embedding π of C∞(Σ) into S(Σ) obtained by restricting f ∈ C∞(Σ)
to the subset of Σ on which it is finite. However, the set S(Σ) is strictly
larger and in particular is easily verified to be a vector space under the
pointwise operations on the intersections of domains. In particular, S(Σ) is
a vector lattice under the pointwise order. By taking a representation of an
Archimedean vector lattice E in C∞(Σ) and composing with the embedding
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π we obtain a representation of E in S(Σ). For such representations, Corollary
2.5 takes the following form.

Corollary 2.7. Let A be an admissible vector sublattice of S(Σ) for some
topological space Σ. If � is an f-algebra multiplication on A, then there is
w ∈ S(Σ)+ such that, for all x, y ∈ A

(x � y)(σ) = w(σ)x(σ)y(σ) (†)
on the intersection of all the relevant domains.

Conversely, if there is w ∈ S(Σ)+, such that for all x, y ∈ A, there is
an element x � y of A satisfying (†) on the intersection of the domains, then
� is an f-algebra multiplication on A.

In particular, for any w ∈ S(Σ)+, we may define an f-algebra multipli-
cation on the whole of S(Σ) by (†) on the intersection of the domains of w, x
and y.

It is immediate that if the w in Corollary 2.7 is strictly positive, then
(A, �) is semi-prime. Conversely, we have as a consequence of Corollary 2.6:

Corollary 2.8. For every semi-prime f-algebra (A, �), there is a vector lattice
representation of A as a vector sublattice of some S(Υ) and a strictly positive
w ∈ S(Υ)+, such that, for all x, y ∈ A

(x � y)(υ) = w(υ)x(υ)y(υ)

on the intersection of all the relevant domains.

Proof. Start with any suitable representation of A in C∞(Σ) and produce w
as in Corollary 2.5, then set Υ = {σ ∈ Σ : w(σ) > 0}. The restriction of the
representation on Σ to Υ will do what we want, as soon as we show that this
restriction is one-to-one. However, if x ∈ A and x|Υ = 0, then w(σ)x(σ)2 = 0
for all σ ∈ Σ, which says that x�x = 0 and x = 0 as (A, �) is semi-prime. �

3. Tensor Products

We actually prove rather more than that there exists a tensor product of
Archimedean f -algebras A and B, namely, that the Fremlin positive pro-
jective tensor product of A and B itself, A⊗B, can be given an f -algebra
multiplication that does what is required. We refer the interested reader to
Fremlin’s original paper [4] for the basics of this construction. The basis for
our construction is a simple description of the Fremlin tensor product using
representations in S(Σ).

Proposition 3.1. Let E and F be vector sublattices of S(Σ) and S(Ω), respec-
tively. Then, the Fremlin tensor product of E and F , E⊗F is vector lattice
isomorphic to the vector sublattice of S(Σ × Ω) generated by the functions of
the form (σ, ω) �→ x(σ)y(ω) for x ∈ E and y ∈ F .

Proof. The bilinear map ψ : E × F → S(Σ × Ω) defined by the property
ψ(x, y)(σ, ω) = x(σ)y(ω) certainly has the property that if 0 � x ∈ E and
0 � y ∈ F , then 0 � ψ(x, y). The claim now follows from Corollary 4.4 of
[4]. �
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Remark 3.2. Note that any Archimedean vector lattices may be represented
in this way. Note also that this argument does most emphatically not give a
simple construction of the Fremlin tensor product as it depends critically on
Fremlin’s work in [4].

If (A, �) and (B, •) are Archimedean f -algebras, then the algebraic ten-
sor product, A ⊗ B, has a natural algebraic multiplication × characterized
by

(a ⊗ b) × (a′ ⊗ b′) = (a � a′) ⊗ (b • b′).

Unfortunately, in general, A ⊗ B is much smaller than A⊗B.

Theorem 3.3. If A and B are Archimedean f-algebras, then the multiplication
× on A ⊗ B has a unique extension to an f-algebra multiplication on the
Fremlin positive tensor product A⊗B.

Proof. Using Proposition 2.7 and any suitable representation theorem for
Archimedean vector lattices, we may identify A and B with admissible vec-
tor sublattices of S(Σ) and S(Ω), respectively, with there being v ∈ S(Σ)+
and w ∈ S(Ω)+, such that (a � a′)(σ) = v(σ)a(σ)a′(σ) and (b • b′)(ω) =
w(ω)b(ω)b′(ω) whenever the pointwise products are defined. On the algebra-
ic tensor product, we have

(
(a ⊗ b) � (a′ ⊗ b′)

)
(σ, ω) =

(
(a � a′) ⊗ (b • b′)

)
(σ, ω)

= (a � a′)(σ)(b • b′)(ω)

=
(
v(σ)a(σ)a′(σ)

)(
w(ω)b(ω)b′(ω)

)

=
(
v(σ)w(ω)

)
(a ⊗ b)(σ, ω)(a′ ⊗ b′)(σ, ω).

Let us define u(σ, ω) to be (the equivalence class of) the function v(σ)w(ω)
on the Cartesian product U ×V of dense open subsets U ⊂ Σ and V ⊂ Ω) on
which v and w, respectively, are defined. As U × V is certainly a dense open
subset of Σ × Ω, it is clear that u ∈ S(Σ × Ω)+. It follows from Corollary 2.7
that

f × g(σ, ω) = u(σ, ω)f(σ, ω)g(σ, ω)

defines an f -algebra multiplication on S(Σ,Ω), which extends the original
multiplication × on A × B. By Theorem 2.1 (B) of [6], the sublattice of
S(Σ,Ω) generated by A ⊗ B, which is precisely A⊗B, is an f -algebra under
the multiplication ×.

To see the uniqueness, we recall that multiplication by a positive element
in an f -algebra is a lattice homomorphism. Using the fact that any element
of A⊗B is a finite supremum of a finite infimum of elements of A⊗B, we see
that any f -algebra extension of the multiplication × on A⊗B must coincide
with our product when a ∈ (A⊗B)+ and a′ ∈ (A⊗B). Repeat this argument
to see that we have equality when a ∈ A⊗B and a′ ∈ (A⊗B)+ and the final
step is straightforward. �

In view of the canonical nature of this construction, we will henceforth
refer to it as the f -algebra tensor product of A and B. As is well known, nice
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order theoretic properties of A and B are seldom inherited by A⊗B. It turns
out, however, that the situation is rather better for algebraic properties.

Theorem 3.4. The f-algebra tensor product (A⊗B,×) of non-zero f-algebras
(A, �) and (B, •) is semi-prime if and only if both (A, �) and (B, •) are semi-
prime.

Proof. Recall that an f -algebra is semi-prime if and only if x2 = 0 ⇒ x = 0.
If, for example, A fails to be semi-prime there is 0 �= a ∈ A with a � a = 0.
Taking any non-zero b ∈ B, 0 �= a ⊗ b ∈ A⊗B but (a ⊗ b) × (a ⊗ b) =
(a � a) ⊗ (b • b) = 0 ⊗ (b • b) is zero so that A⊗B is not semi-prime.

If A and B are semi-prime represent (A, �) in S(Σ) and (B, •) in S(Δ)
with the multiplication weights v ∈ S(Σ)+ and w ∈ S(Δ)+ being strictly pos-
itive, using Corollary 2.8. The construction of the multiplication in A⊗B in
Theorem 3.3 involved the weight (σ, δ) �→ v(σ)w(δ) which is strictly positive,
so the remark after Corollary 2.7 tells us that (A⊗B,×) is semi-prime. �

Recall that if X is a vector subspace of a vector lattice, then X∨ is the
set of all finite suprema from X, X∧ is the set of all finite infima from X,
and that the vector sublattice generated by X is precisely X∨∧ = X∧∨.

Theorem 3.5. The f-algebra tensor product of f-algebras A and B has a mul-
tiplicative identity if and only if both A and B have multiplicative identities.

Proof. If A and B have multiplicative identities eA and eB , respectively, then
eA ⊗ eB is a multiplicative identity on A ⊗ B and it is clear, given that in
an f -algebra multiplication by positive elements is a lattice homomorphism,
that it remains a multiplicative identity in A⊗B.

Now, suppose that A⊗B has a multiplicative identity e, and is hence
semi-prime. Then, A and B are semi-prime and we may represent (A, �) in
S(Σ), with strictly positive weight v, and (B, •) in S(Δ), with strictly positive
weight w and identify (A⊗B,×) with the vector sublattice of S(Σ × Δ)
generated by A⊗B with the multiplication being given by the weight u(σ, δ) =
v(σ)w(δ) (on the product of dense open sets on which v and w are defined.)

As e is a multiplicative identity we certainly have e × (a ⊗ b) = a ⊗ b
for all a ∈ A and b ∈ B. Let e be defined (at least) on the dense open set
U ⊂ Σ × Δ. For any (σ, δ) ∈ U , we may choose a ∈ A and b ∈ B with
a(σ) �= 0 �= b(δ). As

v(σ)w(δ)e(σ, δ)a(σ)b(δ) = (e × (a ⊗ b)(σ, δ) = (a ⊗ b)(σ, δ) = a(σ)b(δ)

we see that e(σ, δ) =
(
v(σ)w(δ)

)−1 on U . As
(
v(σ)w(δ)

)−1 is actually defined
on the whole of Σ×Δ (remembering that both weights are strictly positive),
we may take U to be the whole of Σ × Δ. It will be clear from the represen-
tations of the multiplications that eA(σ) = v(σ)−1 and eB(δ) = w(δ)−1 are
multiplicative identities for A and B, respectively, once we show that they do
lie in the appropriate space.

We do this by showing that any element h ∈ A⊗B is defined on a set
of the form U × V , where U (resp. V ) is a dense open subset of Σ (resp.
Δ) and that, for example, if δ ∈ V then σ �→ h(σ, δ) is an element of A
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(defined at least on U .) The claim that eA ∈ A and that eB ∈ B will then be
obvious. Suppose first that h ∈ A ⊗ B, then we may write h =

∑n
k=1 fk ⊗ gk

with each fk defined on a dense open Uk ⊂ Σ and gk defined on a dense
open Vk ⊂ Δ. Then, h is certainly defined on U × V , where U =

⋂n
k=1 Uk

and V =
⋂n

k=1 Vk are dense open subsets of Σ and Δ, respectively. For
any δ ∈ V , h(σ, δ) =

∑n
k=1 gk(δ)fk(σ) is just a finite linear combination of

elements fk ∈ A, so lies in A. Given this, a similar argument shows that if
h ∈ (A ⊗ B)∧, then h has the appropriate domain and that σ �→ h(σ, δ) is
a finite infimum of elements from A so lies in A. Finally, a third step shows
the same for elements of (A ⊗ B)∧∨ = A⊗B and the proof is complete. �

It is clear that there is no other sensible way to define an f -algebra
structure on A⊗B, but we may still ask what nice categorical properties
does it have? In a purely algebraic setting, the normal universal property
for a tensor product of two algebras A and B is that if TA : A → C and
TB : B → C are algebra homomorphisms with commuting ranges, then
they induce an algebra homomorphism S : A ⊗ B → C with S(a ⊗ b) =
TA(a)TB(b). Often, there is some assumption about identity elements as well.
In our setting, the commutativity of the ranges is automatic, but we should
take the order structure into account in some way. Order boundedness of
the algebra homomorphisms is about the least that we could ask. Bearing
in mind Theorem 5.1 of [8], which tells us that both the domain and range
are semi-prime and the domain is uniformly complete, and then every f -
algebra homomorphism is a lattice homomorphism; this is not such a strong
restriction. We do not, thankfully, need to assume anything about identities,
so that we do not need to open the can of worms of unital embeddings of
f -algebras.

Much of the work of proving the required universal property is contained
in the following specialized, but quite general, lemma. We also need the fact
that in any f -algebra (A, �) if x ≥ 0 then x � (y ∨ z) = (x � y) ∨ (x � z) and
x � (y ∧ z) = (x � y) ∧ (x � z) for any y, z ∈ A.

Lemma 3.6. Let (A, �) and (B, •) be f-algebras, X a sub-algebra of A, such
that X = X∩A+−X∩A+, T : A → B a lattice homomorphism, such that T|X
is an algebra homomorphism, then T|X∧∨ is also an algebra homomorphism.

Proof. We start by proving that if Y and Z are positively generated subspaces
of A with

T (y � z) = Ty • Tz (†)
for all y ∈ Y and all z ∈ Z, then also (†) holds for all y ∈ Y and z ∈ Z∧. If
zk ∈ Z for 1 ≤ k ≤ n and y ∈ Y ∩ A+, then

Ty • T (∧n
k=1zk) = Ty • ∧n

k=1Tzk

= ∧n
k=1Ty • Tzk

= ∧n
k=1T (y � zk)

= T (∧n
k=1y � zk)

= T (y � ∧n
k=1zk)
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and then linearity gives the same conclusion for any y ∈ Y . A similar ar-
gument proves the corresponding result for z ∈ Z∨, Now, starting with
Y = Z = X, we see that (†) holds in succession for y ∈ X, z ∈ X∧;
y ∈ X∧, z ∈ X∧; y ∈ X∧, z ∈ X∧∨ and finally for y ∈ X∧∨, z ∈ X∧∨. �

Theorem 3.7. If (A, �), (B,�) and (C, •) are f-algebras, and TA : A → C
and TB : B → C are order bounded algebra homomorphisms, then there is
a unique positive algebra and lattice homomorphism S : A⊗B → C with
S(a ⊗ b) = TA(a) • TB(b) for all a ∈ A and b ∈ B.

Proof. Let N = {c ∈ C : c • c = 0} which is a band and algebra ideal in C.
The quotient C/N is naturally a semi-prime f -algebra. Let Q : C → C/N be
the quotient map. We know (see Proposition 10.2 of [11]) that all products
c • c′ lie in Nd, the band complementary to N . Both Q ◦ TA and Q ◦ TB are
order bounded algebra homomorphisms into the semi-prime f -algebra C/N
so are actually lattice homomorphisms by Theorem 4.5 of [12]. The map
(a, b) �→ TA(a) • TB(b) : A × B → Nd ⊂ C is now easily seen to be a lattice
bimorphism, as Q : Nd → C/N is a one-to-one f -algebra homomorphism
and Q ◦ (

TA(a) • TB(b)
)

=
(
Q ◦ TA(a)

) • (
Q ◦ TB(b)

)
. Now, by Theorem 4.2

of [4], there is a linear lattice homomorphism S : A⊗B → Nd ⊂ C with
S(a⊗b) = TA(a)•TB(b). Routine algebra shows that, on the algebraic tensor
product A ⊗ B, S is an algebra homomorphism. As A ⊗ B is a positively
generated subspace of A⊗B, Lemma 3.6 shows that T is actually an algebra
homomorphism on (A⊗B)∧∨ = A⊗B. The uniqueness follows from S being a
lattice homomorphism that is specified on the lattice generating subset A⊗B
or A⊗B. �

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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