95 research outputs found
Microbial diversity arising from thermodynamic constraints
The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilize different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first-principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments
Circulation and Oxygen Distribution in the Tropical Atlantic Cruise No. 80, Leg 1; October 26 to November 23, 2009 Mindelo (Cape Verde) to Mindelo (Cape Verde)
METEOR cruise 80/1 was a contribution to the SFB 754 “Climate-Biogeochemistry Interactions in the Tropical Ocean”. Shipboard, glider and moored observations are used to study the temporal and spatial variability of physical and biogeochemical parameters within the oxygen minimum zone (OMZ) of the tropical North Atlantic. As part of the BMBF “Nordatlantik” project, it further focuses on the equatorial current system including the Equatorial Undercurrent (EUC) and intermediate currents below. During the cruise, hydrographic station observations were performed using a CTD/O2 rosette, including water sampling for salinity, oxygen, nutrients and other biogeochemical tracers. Underway current measurements were successfully carried out with the 75 kHz ADCP borrowed from R/V POSEIDON during the first part of the cruise, and R/V METEOR’s 38 kHz ADCP during the second part. During M80/1, an intensive mooring program was carried out with 8 mooring recoveries and 8 mooring deployments. Right at the beginning of the cruise, a multidisciplinary mooring near the Cape Verde Islands was recovered and redeployed. Within the framework of SFB 754, two moorings with CTD/O2 profilers were recovered and redeployed with other instrumentation in the center and at the southern rim of the OMZ of the tropical North Atlantic. The equatorial mooring array as part of BMBF “North Atlantic” project consists of 5 current meter moorings along 23°W between 2°S and 2°N. It is aimed at quantifying the variability of the thermocline water supply toward the equatorial cold tongue which develops east of 10°W during boreal summer. Several glider missions were
performed during the cruise. One glider was recovered that was deployed two months earlier. Another glider was deployed for two short term missions, near the equator for about 8 days and near 8°N for one day. This glider was equipped with a new microstructure probe in addition to
standard sensors, i.e. CTD/O2, chlorophyll and turbidity
A stable genetic polymorphism underpinning microbial syntrophy
Syntrophies are metabolic cooperations, whereby two organisms co-metabolize a substrate in an interdependent manner. Many of the observed natural syntrophic interactions are mandatory in the absence of strong electron acceptors, such that one species in the syntrophy has to assume the role of electron sink for the other. While this presents an ecological setting for syntrophy to be beneficial, the potential genetic drivers of syntrophy remain unknown to date. Here, we show that the syntrophic sulfate-reducing species Desulfovibrio vulgaris displays a stable genetic polymorphism, where only a specific genotype is able to engage in syntrophy with the hydrogenotrophic methanogen Methanococcus maripaludis. This 'syntrophic' genotype is characterized by two genetic alterations, one of which is an in-frame deletion in the gene encoding for the ion-translocating subunit cooK of the membrane-bound COO hydrogenase. We show that this genotype presents a specific physiology, in which reshaping of energy conservation in the lactate oxidation pathway enables it to produce sufficient intermediate hydrogen for sustained M. maripaludis growth and thus, syntrophy. To our knowledge, these findings provide for the first time a genetic basis for syntrophy in nature and bring us closer to the rational engineering of syntrophy in synthetic microbial communities
Trabecular variation in the first metacarpal and manipulation in hominids
Objectives: The dexterity of fossil hominins is often inferred by assessing the comparative manual anatomy and behaviors of extant hominids, with a focus on the thumb. The aim of this study is to test whether trabecular structure is consistent with what is currently known about habitually loaded thumb postures across extant hominids.
Materials and methods: We analyze first metacarpal (Mc1) subarticular trabecular architecture in humans (Homo sapiens, n = 10), bonobos (Pan paniscus, n = 10), chimpanzees (Pan troglodytes, n = 11), as well as for the first time, gorillas (Gorilla gorilla gorilla, n = 10) and orangutans (Pongo sp., n = 1, Pongo abelii, n = 3 and Pongo pygmaeus, n = 5). Using a combination of subarticular and whole‐epiphysis approaches, we test for significant differences in relative trabecular bone volume (RBV/TV) and degree of anisotropy (DA) between species.
Results: Humans have significantly greater RBV/TV on the radiopalmar aspects of both the proximal and distal Mc1 subarticular surfaces and greater DA throughout the Mc1 head than other hominids. Nonhuman great apes have greatest RBV/TV on the ulnar aspect of the Mc1 head and the palmar aspect of the Mc1 base. Gorillas possessed significantly lower DA in the Mc1 head than any other taxon in our sample.
Discussion: These results are consistent with abduction of the thumb during forceful “pad‐to‐pad” precision grips in humans and, in nonhuman great apes, a habitually adducted thumb that is typically used in precision and power grips. This comparative context will help infer habitual manipulative and locomotor grips in fossil hominins
Methanocella conradii sp. nov., a Thermophilic, Obligate Hydrogenotrophic Methanogen, Isolated from Chinese Rice Field Soil
BACKGROUND: Methanocellales contributes significantly to anthropogenic methane emissions that cause global warming, but few pure cultures for Methanocellales are available to permit subsequent laboratory studies (physiology, biochemistry, etc.). METHODOLOGY/PRINCIPAL FINDINGS: By combining anaerobic culture and molecular techniques, a novel thermophilic methanogen, strain HZ254(T) was isolated from a Chinese rice field soil located in Hangzhou, China. The phylogenetic analyses of both the 16S rRNA gene and mcrA gene (encoding the α subunit of methyl-coenzyme M reductase) confirmed its affiliation with Methanocellales, and Methanocella paludicola SANAE(T) was the most closely related species. Cells were non-motile rods, albeit with a flagellum, 1.4-2.8 µm long and by 0.2-0.3 µm in width. They grew at 37-60 °C (optimally at 55 °C) and salinity of 0-5 g NaCl l(-1) (optimally at 0-1 g NaCl l(-1)). The pH range for growth was 6.4-7.2 (optimum 6.8). Under the optimum growth condition, the doubling time was 6.5-7.8 h, which is the shortest ever observed in Methanocellales. Strain HZ254(T) utilized H(2)/CO(2) but not formate for growth and methane production. The DNA G+C content of this organism was 52.7 mol%. The sequence identities of 16S rRNA gene and mcrA gene between strain HZ254(T) and SANAE(T) were 95.0 and 87.5% respectively, and the genome based Average Nucleotide Identity value between them was 74.8%. These two strains differed in phenotypic features with regard to substrate utilization, possession of a flagellum, doubling time (under optimal conditions), NaCl and temperature ranges. Taking account of the phenotypic and phylogenetic characteristics, we propose strain HZ254(T) as a representative of a novel species, Methanocella conradii sp. nov. The type strain is HZ254(T) ( = CGMCC 1.5162(T) = JCM 17849(T) = DSM 24694(T)). CONCLUSIONS/SIGNIFICANCE: Strain HZ254(T) could potentially serve as an excellent laboratory model for studying Methanocellales due to its fast growth and consistent cultivability
Importance of salt fingering for new nitrogen supply in the oligotrophic ocean.
The input of new nitrogen into the euphotic zone constrains the export of organic carbon to
the deep ocean and thereby the biologically mediated long-term CO2 exchange between
the ocean and atmosphere. In low-latitude open-ocean regions, turbulence-driven nitrate
diffusion from the ocean’s interior and biological fixation of atmospheric N2 are the main
sources of new nitrogen for phytoplankton productivity. With measurements across the
tropical and subtropical Atlantic, Pacific and Indian oceans, we show that nitrate diffusion
(171±190 mmolm 2 d 1) dominates over N2 fixation (9.0±9.4 mmolm 2 d 1) at the time
of sampling. Nitrate diffusion mediated by salt fingers is responsible for ca. 20% of the new
nitrogen supply in several provinces of the Atlantic and Indian Oceans. Our results indicate
that salt finger diffusion should be considered in present and future ocean nitrogen budgets,
as it could supply globally 0.23–1.00 TmolNyr 1 to the euphotic zone.MALASPINA (CSD2008-00077)Versión del editor10,015
Patterns of alcohol consumption among individuals with alcohol use disorder during the COVID-19 pandemic and lockdowns in Germany
Objective: To examine whether lockdown measures are associated with AC and consumption-related temporal and psychological within-person mechanisms. Design, setting, and participants: This quantitative, intensive, longitudinal cohort study recruited 1743 participants from 3 sites from February 20, 2020, to February 28, 2021. Data were provided before and within the second lockdown of the COVID-19 pandemic in Germany: before lockdown (October 2 to November 1, 2020); light lockdown (November 2 to December 15, 2020); and hard lockdown (December 16, 2020, to February 28, 2021). Main outcomes and measures: Daily ratings of AC (main outcome) captured during 3 lockdown phases (main variable) and temporal (weekends and holidays) and psychological (social isolation and drinking intention) correlates. Results: Of the 1743 screened participants, 189 (119 [63.0%] male; median [IQR] age, 37 [27.5-52.0] years) with at least 2 alcohol use disorder (AUD) criteria according to the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) yet without the need for medically supervised alcohol withdrawal were included. These individuals provided 14 694 smartphone ratings from October 2020 through February 2021. Multilevel modeling revealed significantly higher AC (grams of alcohol per day) on weekend days vs weekdays (β = 11.39; 95% CI, 10.00-12.77; P < .001). Alcohol consumption was above the overall average on Christmas (β = 26.82; 95% CI, 21.87-31.77; P < .001) and New Year's Eve (β = 66.88; 95% CI, 59.22-74.54; P < .001). During the hard lockdown, perceived social isolation was significantly higher (β = 0.12; 95% CI, 0.06-0.15; P < .001), but AC was significantly lower (β = -5.45; 95% CI, -8.00 to -2.90; P = .001). Independent of lockdown, intention to drink less alcohol was associated with lower AC (β = -11.10; 95% CI, -13.63 to -8.58; P < .001). Notably, differences in AC between weekend and weekdays decreased both during the hard lockdown (β = -6.14; 95% CI, -9.96 to -2.31; P = .002) and in participants with severe AUD (β = -6.26; 95% CI, -10.18 to -2.34; P = .002). Conclusions and relevance: This 5-month cohort study found no immediate negative associations of lockdown measures with overall AC. Rather, weekend-weekday and holiday AC patterns exceeded lockdown effects. Differences in AC between weekend days and weekdays evinced that weekend drinking cycles decreased as a function of AUD severity and lockdown measures, indicating a potential mechanism of losing and regaining control. This finding suggests that temporal patterns and drinking intention constitute promising targets for prevention and intervention, even in high-risk individuals
Selection for antimicrobial resistance is reduced when embedded in a natural microbial community
This is the final version. Available from Springer Nature via the DOI in this record.Antibiotic resistance has emerged as one of the most pressing, global threats to public health. In single-species experiments selection for antibiotic resistance occurs at very low antibiotic concentrations. However, it is unclear how far these findings can be extrapolated to natural environments, where species are embedded within complex communities. We competed isogenic strains of Escherichia coli, differing exclusively in a single chromosomal resistance determinant, in the presence and absence of a pig faecal microbial community across a gradient of antibiotic concentration for two relevant antibiotics: gentamicin and kanamycin. We show that the minimal selective concentration was increased by more than one order of magnitude for both antibiotics when embedded in the community. We identified two general mechanisms were responsible for the increase in minimal selective concentration: an increase in the cost of resistance and a protective effect of the community for the susceptible phenotype. These findings have implications for our understanding of the evolution and selection of antibiotic resistance, and can inform future risk assessment efforts on antibiotic concentrations.Medical Research Council (MRC)European Commissio
Widespread Distribution and Expression of Gamma A (UMB), an Uncultured, Diazotrophic, γ-Proteobacterial nifH Phylotype
Marine dinitrogen (N2) fixation studies have focused nearly exclusively on cyanobacterial diazotrophs; however γ-proteobacteria are an abundant component of the marine community and have been largely overlooked until recently. Here we present a phylogenetic analysis of all nifH γ-proteobacterial sequences available in public databases and qPCR data of a γ-proteobacterial phylotype, Gamma A (UMB), obtained during several research cruises. Our analysis revealed a complex diversity of diazotrophic γ-proteobacteria. One phylotype in particular, Gamma A, was described in several traditional and quantitative PCR studies. Though several γ-proteobacterial nifH sequences have been described as laboratory contaminants, Gamma A is part of a large cluster of sequences isolated from marine environments and distantly related to the clade of contaminants. Using a TaqMan probe and primer set, Gamma A nifH DNA abundance and expression were analyzed in nearly 1000 samples collected during 15 cruises to the Atlantic and Pacific Oceans. The data showed that Gamma A is an active, cosmopolitan diazotroph found throughout oxygenated, oligotrophic waters reaching maximum abundances of 8 × 104 nifH DNA copies l-1 and 5 × 105 nifH transcript copies l-1. Gamma A nifH transcript abundances were on average 3 fold higher than nifH DNA abundances. The widespread distribution and activity of Gamma A indicate that it has potential to be a globally important N2 fixing organism
Facets of diazotrophy in the oxygen minimum zone waters off Peru
Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2− and PO43− are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the futu
- …