116 research outputs found

    Graphene Nanoflake Uptake Mediated by Scavenger Receptors

    Get PDF
    The biological interactions of graphene have been extensively investigated over the last 10 years. However, very little is known about graphene interactions with the cell surface and how the graphene internalization process is driven and mediated by specific recognition sites at the interface with the cell. In this work, we propose a methodology to investigate direct molecular correlations between the biomolecular corona of graphene and specific cell receptors, showing that key protein recognition motifs, presented on the nanomaterial surface, can engage selectively with specific cell receptors. We consider the case of apolipoprotein A-I, found to be very abundant in the graphene protein corona, and observe that the uptake of graphene nanoflakes is somewhat increased in cells with greatly elevated expression of scavenger receptors B1, suggesting a possible mechanism of endogenous interaction. The uptake results, obtained by flow cytometry, have been confirmed using Raman microspectroscopic mapping, exploiting the strong Raman signature of graphene

    Enter exitrons

    Get PDF
    Staiger D, Simpson GG. Enter exitrons. Genome Biology. 2015;16(1): 136.Exitrons are exon-like introns located within protein-coding exons. Removal or retention of exitrons through alternative splicing increases proteome complexity and thus adds to phenotypic diversity

    The SERRATE protein is involved in alternative splicing in <em>Arabidopsis thaliana</em>

    Get PDF
    Howalternative splicing (AS) is regulated in plants has not yet been elucidated. Previously, we have shown that the nuclear cap-binding protein complex (AtCBC) is involved in AS in Arabidopsis thaliana. Here we show that both subunits of AtCBC (AtCBP20 and AtCBP80) interact with SERRATE (AtSE), a protein involved in the microRNA biogenesis pathway. Moreover, using a high-resolution reverse transcript-ase-polymerase chain reaction AS system we have found that AtSE influences AS in a similar way to the cap-binding complex (CBC), preferentially affecting selection of 50 splice site of first introns. The AtSE protein acts in cooperation with AtCBC: many changes observed in the mutant lacking the correct SERRATE activity were common to those observed in the cbp mutants. Interestingly, significant changes in AS of some genes were also observed in other mutants of plant microRNA biogenesis pathway, hyl1-2 and dcl1-7, but a majority of them did not cor-respond to the changes observed in the se-1mutant. Thus, the role of SERRATE in AS regulation is distinct from that of HYL1andDCL1, and is similar to the regu-lation of AS in which CBC is involved

    Medicago truncatula contains a second gene encoding a plastid located glutamine synthetase exclusively expressed in developing seeds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitrogen is a crucial nutrient that is both essential and rate limiting for plant growth and seed production. Glutamine synthetase (GS), occupies a central position in nitrogen assimilation and recycling, justifying the extensive number of studies that have been dedicated to this enzyme from several plant sources. All plants species studied to date have been reported as containing a single, nuclear gene encoding a plastid located GS isoenzyme per haploid genome. This study reports the existence of a second nuclear gene encoding a plastid located GS in <it>Medicago truncatula</it>.</p> <p>Results</p> <p>This study characterizes a new, second gene encoding a plastid located glutamine synthetase (GS2) in <it>M. truncatula</it>. The gene encodes a functional GS isoenzyme with unique kinetic properties, which is exclusively expressed in developing seeds. Based on molecular data and the assumption of a molecular clock, it is estimated that the gene arose from a duplication event that occurred about 10 My ago, after legume speciation and that duplicated sequences are also present in closely related species of the Vicioide subclade. Expression analysis by RT-PCR and western blot indicate that the gene is exclusively expressed in developing seeds and its expression is related to seed filling, suggesting a specific function of the enzyme associated to legume seed metabolism. Interestingly, the gene was found to be subjected to alternative splicing over the first intron, leading to the formation of two transcripts with similar open reading frames but varying 5' UTR lengths, due to retention of the first intron. To our knowledge, this is the first report of alternative splicing on a plant GS gene.</p> <p>Conclusions</p> <p>This study shows that <it>Medicago truncatula </it>contains an additional GS gene encoding a plastid located isoenzyme, which is functional and exclusively expressed during seed development. Legumes produce protein-rich seeds requiring high amounts of nitrogen, we postulate that this gene duplication represents a functional innovation of plastid located GS related to storage protein accumulation exclusive to legume seed metabolism.</p

    A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications.

    Get PDF
    RNA sequencing (RNA-seq) is a genomic approach for the detection and quantitative analysis of messenger RNA molecules in a biological sample and is useful for studying cellular responses. RNA-seq has fueled much discovery and innovation in medicine over recent years. For practical reasons, the technique is usually conducted on samples comprising thousands to millions of cells. However, this has hindered direct assessment of the fundamental unit of biology-the cell. Since the first single-cell RNA-sequencing (scRNA-seq) study was published in 2009, many more have been conducted, mostly by specialist laboratories with unique skills in wet-lab single-cell genomics, bioinformatics, and computation. However, with the increasing commercial availability of scRNA-seq platforms, and the rapid ongoing maturation of bioinformatics approaches, a point has been reached where any biomedical researcher or clinician can use scRNA-seq to make exciting discoveries. In this review, we present a practical guide to help researchers design their first scRNA-seq studies, including introductory information on experimental hardware, protocol choice, quality control, data analysis and biological interpretation

    Lessons from non-canonical splicing

    Get PDF
    Recent improvements in experimental and computational techniques that are used to study the transcriptome have enabled an unprecedented view of RNA processing, revealing many previously unknown non-canonical splicing events. This includes cryptic events located far from the currently annotated exons and unconventional splicing mechanisms that have important roles in regulating gene expression. These non-canonical splicing events are a major source of newly emerging transcripts during evolution, especially when they involve sequences derived from transposable elements. They are therefore under precise regulation and quality control, which minimizes their potential to disrupt gene expression. We explain how non-canonical splicing can lead to aberrant transcripts that cause many diseases, and also how it can be exploited for new therapeutic strategies
    corecore