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Abstract

RNA sequencing (RNA-seq) is a genomic approach for the detection and quantitative analysis of messenger RNA
molecules in a biological sample and is useful for studying cellular responses. RNA-seq has fueled much discovery
and innovation in medicine over recent years. For practical reasons, the technique is usually conducted on samples
comprising thousands to millions of cells. However, this has hindered direct assessment of the fundamental unit of
biology—the cell. Since the first single-cell RNA-sequencing (scRNA-seq) study was published in 2009, many more
have been conducted, mostly by specialist laboratories with unique skills in wet-lab single-cell genomics, bioinformatics,
and computation. However, with the increasing commercial availability of scRNA-seq platforms, and the rapid ongoing
maturation of bioinformatics approaches, a point has been reached where any biomedical researcher or clinician can
use scRNA-seq to make exciting discoveries. In this review, we present a practical guide to help researchers design their
first scRNA-seq studies, including introductory information on experimental hardware, protocol choice, quality control,
data analysis and biological interpretation.
Background
Medicine now exists in a cellular and molecular era,
where experimental biologists and clinicians seek to
understand and modify cell behaviour through targeted
molecular approaches. To generate a molecular under-
standing of cells, the cells can be assessed in a variety of
ways, for example through analyses of genomic DNA se-
quences, chromatin structure, messenger RNA (mRNA)
sequences, non-protein-coding RNA, protein expression,
protein modifications and metabolites. Given that the
absolute quantity of any of these molecules is very small
in a single living cell, for practical reasons many of these
molecules have been assessed in ensembles of thousands
to billions of cells. This approach has yielded much use-
ful molecular information, for example in genome-wide
association studies (GWASs), where genomic DNA as-
sessments have identified single-nucleotide polymor-
phisms (SNPs) in the genomes of individual humans
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that have been associated with particular biological traits
and disease susceptibilities.
To understand cellular responses, assessments of gene

expression or protein expression are needed. For protein
expression studies, the application of multi-colour flow
cytometry and fluorescently conjugated monoclonal
antibodies has made the simultaneous assessment of
small numbers of proteins on vast numbers of single
cells commonplace in experimental and clinical research.
More recently, mass cytometry (Box 1), which involves
cell staining with antibodies labelled with heavy metal
ions and quantitative measurements using time-of-flight
detectors, has increased the number of proteins that can
be assessed by five- to tenfold [1, 2] and has started to
reveal previously unappreciated levels of heterogeneity
and complexity among apparently homogeneous cell
populations, for example among immune cells [1, 3].
However, it remains challenging to examine simulta-
neously the entire complement of the thousands of pro-
teins (known as the ‘proteome’) expressed by the genome
that exist in a single cell.
As a proxy for studying the proteome, many researchers

have turned to protein-encoding, mRNA molecules
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Box 1. Glossary

Barcoding Tagging single cells or sequencing libraries with

unique oligonucleotide sequences (that is, ‘barcodes’), allowing

sample multiplexing. Sequencing reads corresponding to each

sample are subsequently deconvoluted using barcode sequence

information.

Dropout An event in which a transcript is not detected in

the sequencing data owing to a failure to capture or

amplify it.

Mass cytometry A technique based on flow cytometry and

mass spectrometry, in which protein expression is

interrogated using antibodies labelled with elemental

tags—allows parallel measurements of dozens of proteins on

thousands of single cells in one experiment.

Sequencing depth A measure of sequencing capacity spent on

a single sample, reported for example as the number of raw

reads per cell.

Spike-in A molecule or a set of molecules introduced to the

sample in order to calibrate measurements and account for

technical variation; commonly used examples include external RNA

control consortium (ERCC) controls (Ambion/Thermo Fisher

Scientific) and Spike-in RNA variant control mixes (SIRVs, Lexogen).

Split-pooling An approach where sample material is subjected

to multiple rounds of aliquoting and pooling, often used for

producing unique barcodes by step-wise introduction of distinct

barcode elements into each aliquot.

Transcriptional bursting A phenomenon, also known as

‘transcriptional pulsing’, of relatively short transcriptionally active

periods being followed by longer silent periods, resulting in

temporal fluctuation of transcript levels.

Unique molecular identifier A variation of barcoding, in which

the RNA molecules to be amplified are tagged with random

n-mer oligonucleotides. The number of distinct tags is

designed to significantly exceed the number of copies of

each transcript species to be amplified, resulting in uniquely

tagged molecules, and allowing control for amplification biases.
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(collectively termed the ‘transcriptome’), whose expression
correlates well with cellular traits and changes in cellular
state. Transcriptomics was initially conducted on ensem-
bles of millions of cells, firstly with hybridization-based
microarrays, and later with next-generation sequencing
(NGS) techniques referred to as RNA-seq. RNA-seq on
pooled cells has yielded a vast amount of information that
continues to fuel discovery and innovation in biomedicine.
Taking just one clinically relevant example—RNA-seq was
recently performed on haematopoietic stem cells to stra-
tify acute myeloid leukaemia patients into cohorts
requiring differing treatment regimens [4]. Nevertheless,
the averaging that occurs in pooling large numbers of cells
does not allow detailed assessment of the fundamental
biological unit—the cell—or the individual nuclei that
package the genome.
Since the first scRNA-seq study was published in 2009

[5], there has been increasing interest in conducting
such studies. Perhaps one of the most compelling rea-
sons for doing so is that scRNA-seq can describe RNA
molecules in individual cells with high resolution and on
a genomic scale. Although scRNA-seq studies have been
conducted mostly by specialist research groups over the
past few years [5–16], it has become clear that biome-
dical researchers and clinicians can make important new
discoveries using this powerful approach as the tech-
nologies and tools needed for conducting scRNA-seq
studies have become more accessible. Here, we pro-
vide a practical guide for biomedical researchers and
clinicians who might wish to consider performing
scRNA-seq studies.

Why consider performing scRNA-seq?
scRNA-seq permits comparison of the transcriptomes of
individual cells. Therefore, a major use of scRNA-seq
has been to assess transcriptional similarities and diffe-
rences within a population of cells, with early reports re-
vealing previously unappreciated levels of heterogeneity,
for example in embryonic and immune cells [9, 10, 17].
Thus, heterogeneity analysis remains a core reason for
embarking on scRNA-seq studies.
Similarly, assessments of transcriptional differences

between individual cells have been used to identify rare
cell populations that would otherwise go undetected in
analyses of pooled cells [18], for example malignant
tumour cells within a tumour mass [19], or hyper-
responsive immune cells within a seemingly homoge-
neous group [13]. scRNA-seq is also ideal for exami-
nation of single cells where each one is essentially
unique, such as individual T lymphocytes expressing
highly diverse T-cell receptors [20], neurons within the
brain [15] or cells within an early-stage embryo [21].
scRNA-seq is also increasingly being used to trace lineage
and developmental relationships between heterogeneous,
yet related, cellular states in scenarios such as embryonal
development, cancer, myoblast and lung epithelium diffe-
rentiation and lymphocyte fate diversification [11, 21–25].
In addition to resolving cellular heterogeneity, scRNA-

seq can also provide important information about funda-
mental characteristics of gene expression. This includes
the study of monoallelic gene expression [9, 26, 27], spli-
cing patterns [12], as well as noise during transcriptional
responses [7, 12, 13, 28, 29]. Importantly, studying gene
co-expression patterns at the single-cell level might allow
identification of co-regulated gene modules and even
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inference of gene-regulatory networks that underlie func-
tional heterogeneity and cell-type specification [30, 31].
Yet, while scRNA-seq can provide answers to many re-

search questions, it is important to understand that the
details of any answers provided will vary according to
the protocol used. More specifically, the level of detail
that can be resolved from the mRNA data, such as how
many genes can be detected, and how many transcripts
of each gene can be detected, whether a specific gene of
interest is expressed, or whether differential splicing has
occurred, depends on the protocol. Comparisons bet-
ween protocols in terms of their sensitivity and specifi-
city have been discussed by Ziegenhain et al. [32] and
Svensson et al. [33].

What are the basic steps in conducting scRNA-seq?
Although many scRNA-seq studies to date have reported
bespoke techniques, such as new developments in wet-
lab, bio-informatic or computational tools, most have
adhered to a general methodological pipeline (Fig. 1).
The first, and most important, step in conducting
scRNA-seq has been the effective isolation of viable, sin-
gle cells from the tissue of interest. We point out here,
however, that emerging techniques, such as isolation of
single nuclei for RNA-seq [34–36] and ‘split-pooling’
(Box 1) scRNA-seq approaches, based on combinatorial
indexing of single cells [37, 38], provide certain benefits
over isolation of single intact cells, such as allowing ea-
sier analyses of fixed samples and avoiding the need for
expensive hardware. Next, isolated individual cells are
lysed to allow capture of as many RNA molecules as
possible. In order to specifically analyse polyadenylated
mRNA molecules, and to avoid capturing ribosomal
RNAs, poly[T]-primers are commonly used. Analysis of
non-polyadenylated mRNAs is typically more challen-
ging and requires specialized protocols [39, 40]. Next,
poly[T]-primed mRNA is converted to complementary
DNA (cDNA) by a reverse transcriptase. Depending on
the scRNA-seq protocol, the reverse-transcription primers
will also have other nucleotide sequences added to them,
such as adaptor sequences for detection on NGS plat-
forms, unique molecular identifiers (UMIs; Box 1) to mark
unequivocally a single mRNA molecule, as well as se-
quences to preserve information on cellular origin [41].
The minute amounts of cDNA are then amplified either
by PCR or, in some instances, by in vitro transcription
followed by another round of reverse transcription—some
protocols opt for nucleotide barcode-tagging (Box 1) at
this stage to preserve information on cellular origin [42].
Then, amplified and tagged cDNA from every cell is
pooled and sequenced by NGS, using library preparation
techniques, sequencing platforms and genomic-alignment
tools similar to those used for bulk samples [43]. The ana-
lysis and interpretation of the data comprise a diverse and
rapidly developing field in itself and will be discussed fur-
ther below.
It is important to note that commercial kits and re-

agents now exist for all the wet-lab steps of a scRNA-seq
protocol, from lysing cells through to preparing samples
for sequencing. These include the ‘switching mechanism
at 5’ end of RNA template’ (SMARTer) chemistry for
mRNA capture, reverse transcription and cDNA amplifi-
cation (Clontech Laboratories). Furthermore, commer-
cial reagents also exist for preparing barcoded cDNA
libraries, for example Illumina’s Nextera kits. Once sin-
gle cells have been deposited into individual wells of a
plate, these protocols, and others from additional com-
mercial suppliers (for example, BD Life Sciences/Cellular
Research), can be conducted without the need for fur-
ther expensive hardware other than accurate multi-
channel pipettes, although it should be noted that, in the
absence of a microfluidic platform in which to perform
scRNA-seq reactions (for example, the C1 platform from
Fluidigm), reaction volumes and therefore reagent costs
can increase substantially. Moreover, downscaling the re-
actions to nanoliter volumes has been shown to improve
detection sensitivity [33] and quantitative accuracy [44].
More recently, droplet-based platforms (for example,

Chromium from 10x Genomics, ddSEQ from Bio-Rad
Laboratories, InDrop from 1CellBio, and μEncapsulator
from Dolomite Bio/Blacktrace Holdings) have become
commercially available, in which some of the companies
also provide the reagents for the entire wet-lab scRNA-seq
procedure. Droplet-based instruments can encapsulate
thousands of single cells in individual partitions, each con-
taining all the necessary reagents for cell lysis, reverse
transcription and molecular tagging, thus eliminating the
need for single-cell isolation through flow-cytometric sor-
ting or micro-dissection [45–47]. This approach allows
many thousands of cells to be assessed by scRNA-seq.
However, a dedicated hardware platform is a prerequisite
for such droplet-based methods, which might not be rea-
dily available to a researcher considering scRNA-seq for
the first time. In summary, generating a robust scRNA-
seq dataset is now feasible for wet-lab researchers with lit-
tle to no prior expertise in single-cell genomics. Careful
consideration must be paid, however, to the commercial
protocols and platforms to be adopted. We will discuss
later which protocols are favoured for particular research
questions.

What types of material can be assessed by
scRNA-seq?
Many of the initial scRNA-seq studies successfully exami-
ned human or mouse primary cells, such as those from
embryos [17], tumours [14], the nervous system [15, 48]
and haematopoietically derived cells, including stem cells
and fully differentiated lymphocytes [8, 16, 49, 50]. These



Fig. 1 General workflow of single-cell RNA-sequencing (scRNA-seq) experiments. A typical scRNA-seq workflow includes most of the following
steps: 1) isolation of single cells, 2) cell lysis while preserving mRNA, 3) mRNA capture, 4) reverse transcription of primed RNA into complementary
DNA (cDNA), 5) cDNA amplification, 6) preparation of cDNA sequencing library, 7) pooling of sequence libraries, 8) use of bio-informatic tools to
assess quality and variability, and 9) use of specialized tools to analyse and present the data. t-SNE t-distributed stochastic neighbour embedding
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studies suggested that, in theory, any eukaryotic cell
can be studied using scRNA-seq. Consistent with this,
a consortium of biomedical researchers has recently
committed to employ scRNA-seq for creating a tran-
scriptomic atlas of every cell type in the human
body—the Human Cell Atlas [51]. This will provide a
highly valuable reference for future basic research and
translational studies.
Although there is great confidence in the general uti-
lity of scRNA-seq, one technical barrier must be care-
fully considered—the effective isolation of single cells
from the tissue of interest. While this has been relatively
straightforward for immune cells in peripheral blood or
loosely retained in secondary lymphoid tissue, and cer-
tainly has been achievable for excised tumours, this
could be quite different for many other tissues, in which



Haque et al. Genome Medicine  (2017) 9:75 Page 5 of 12
single cells can be cemented to extracellular-scaffold-like
structures and to other neighbouring cells. Although
commercial reagents exist for releasing cells from such
collagen-based tethers (for example, MACS Tissue Dis-
sociation kits from Miltenyi Biotec), there remains sig-
nificant theoretical potential for these protocols to alter
mRNA levels before single-cell capture, lysis and poly[T]
priming. In addition, although communication between
neighbouring cells can serve to maintain cellular states,
scRNA-seq operates under the assumption that isolation
of single cells away from such influences does not trigger
rapid artefactual transcriptomic changes before mRNA
capture. Thus, before embarking on a scRNA-seq study,
researchers should aim to optimize the recovery of single
cells from their target tissue, without excessive alteration
to the transcriptome. It should also be noted that emer-
ging studies have performed scRNA-seq on nuclei ra-
ther than intact single cells, which requires less tissue
dissociation, and where nuclei were isolated in a man-
ner that was less biased by cell type than single-cell dis-
sociation [34, 35].
With regard to preserving single-cell transcriptomes

before scRNA-seq, most published scRNA-seq studies
progressed immediately from single-cell isolation to cell
lysis and mRNA capture. This is clearly an important
consideration for experimental design as it is not trivial to
process multiple samples simultaneously from biological
replicate animals or individual patients if labour-intensive
single-cell isolation protocols such as FACS-sorting or
micro-dissection are employed. Commercial droplet-based
platforms might offer a partial solution as a small number
of samples (for example, eight samples on the Chromium
system) can be processed simultaneously. For samples
derived from different individuals, SNP information might
allow processing as pools, followed by haplotype-based
deconvolution of cells [52]. Another possible solution
might be to bank samples until such time as scRNA-seq
processing can be conducted. To this end, recent studies
have explored the effect of cryopreservation on scRNA-seq
profiles and indeed suggest that high-fidelity scRNA-seq
data can be recovered from stored cells [47, 53]. Further-
more, over the past few years, protocols compatible
with certain cell-fixation methods have started to
emerge [34, 35, 38, 54, 55].

Which protocol should be employed?
As stated above, the nature of the research question plays
an important role in determining which scRNA-seq proto-
col and platform should be employed. For example, pro-
spective studies of poorly characterized heterogeneous
tissues versus characterization of transcriptional responses
within a specific cell population might be optimally served
by different experimental approaches. Approximately 20
different scRNA-seq protocols have been published to
date, the fine details of which have been thoroughly dis-
cussed elsewhere [56]. A key difference among these
methods is that some provide full-length transcript data,
whereas others specifically count only the 3’-ends of the
transcripts (Table 1). Recent meta-analyses indicate that
all of the widely used protocols are highly accurate at de-
termining the relative abundance of mRNA transcripts
within a pool [32, 33]. By contrast, significant variation
was revealed in the sensitivity of each protocol. More spe-
cifically, the minimum number of mRNA molecules re-
quired for confident detection of gene expression varied
between protocols, indicating that, for a given depth of
sequencing (Box 1), some protocols are better than others
at detecting weakly expressed genes [33]. In addition, cer-
tain transcripts that are expressed at low levels have been
shown to be preferentially detected by using full-length
transcript methods, potentially owing to having 3’-pro-
ximal sequence features that are difficult to align to the
genome [32].
Given that there are several scRNA-seq protocols, a

few issues need to be considered in order to decide
which one suits any particular researcher’s needs best.
The first issue relates to the type of data that are re-
quired. Researchers interested in having the greatest
amount of detail per cell should opt for protocols that are
recognized for their high sensitivity, such as SMART-seq2
[32, 33, 57]. We emphasize, however, that almost all pub-
lished scRNA-seq protocols have been excellent at deter-
mining the relative abundance of moderately to highly
expressed transcripts within one cell. In some cases,
including for splice-variant analysis, full-length transcript
information is required, meaning that the 3’-end counting
protocols would be discounted. In other applications, such
as identification of cell types from complex tissues, maxi-
mising the throughput of cells is key. In such cases, the
droplet-based methods hold an advantage, having re-
latively low cost per cell, which has an accompanying
trade-off in reduced sensitivity.
A major issue common to all protocols is how to ac-

count for technical variation in the scRNA-seq process
from cell to cell. Some protocols ‘spike-in’ (Box 1) a
commercially available, well-characterized mix of polya-
denylated mRNA species, such as External RNA Control
Consortium (ERCC) controls (Ambion/Thermo Fisher
Scientific) [58] or Spike-in RNA Variant Control Mixes
(SIRVs, Lexogen). The data from spike-ins can be used
for assessing the level of technical variability and for
identifying genes with a high degree of biological va-
riability [7]. In addition, spike-ins are valuable when
computationally correcting for batch effects between
samples [59]. However, the use of spike-ins is itself not
without problems. First, one has to carefully calibrate
the concentration that results in an optimal fraction of
reads from the spike-ins. Second, spike-in mixes are



Table 1 Brief overview of scRNA-seq approaches

Protocol example C1
(SMARTer)

Smart-
seq2

MATQ-
seq

MARS-seq CEL-seq Drop-seq InDrop Chromium SEQ-well SPLIT-seq

Transcript data Full length Full
length

Full
length

3’-end
counting

3’-end
counting

3’-end
counting

3’-end
counting

3’-end
counting

3’-end
counting

3’-end
counting

Platform Microfluidics Plate-
based

Plate-
based

Plate-based Plate-based Droplet Droplet Droplet Nanowell
array

Plate-based

Throughput (number
of cells)

102–103 102–103 102–103 102–103 102–103 103–104 103–104 103–104 103–104 103–105

Typical read depth
(per cell)

106 106 106 104–105 104–105 104–105 104–105 104–105 104–105 104

Reaction volume Nanoliter Microliter Microliter Microliter Nanoliter Nanoliter Nanoliter Nanoliter Nanoliter Microliter

Reference [63] [57] [39] [10] [64] [45] [46] [47] [101] [38]
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sensitive to degradation, which can manifest as batch
differences across temporally separated samples. Finally,
spike-ins have been shown to be captured less efficiently
than endogenous transcripts [33]. An increasingly popu-
lar method involves the use of UMIs, which effectively
tags every mRNA species recovered from one cell with a
unique barcode [41]. Theoretically, this allows estima-
tion of absolute molecule counts, although the UMIs
can be subject to saturation at high expression levels
[33]. Nevertheless, the use of UMIs can significantly re-
duce amplification bias and therefore improve precision
[32]. Both of these current techniques—spike-ins and
UMIs—are generally accepted by the field, but it should
be appreciated that they are not available for every
protocol. In general, spike-in RNAs are not compatible
with droplet-based approaches, whereas UMIs are typi-
cally used in protocols where only the 3’-ends of tran-
scripts are sequenced, such as CEL-seq2, Drop-seq and
MARS-seq [10, 45, 60].

How many cells must I sequence and to what
depth?
Two important questions that researchers face are ‘how
many cells must I analyse?’ and the seemingly unrelated
question ‘to what depth must my sequencing analysis be
performed?’ The answers to these questions are in fact
intertwined. Given that most scRNA-seq data are gene-
rated by sequencing cDNA libraries from single cells
that are barcoded and pooled, the depth of single-cell se-
quencing (that is, the number of transcripts detected
from each cell) diminishes as the number of libraries in-
cluded in a sequencing run is increased, owing to a
finite sequencing capacity per run.
As a rule of thumb, the required number of cells in-

creases with the complexity of the sample under inves-
tigation. In a heterogeneous population of cells, for
example T lymphocytes that express highly diverse anti-
gen receptors, it might be difficult to observe relation-
ships between transcriptomes, and, in such instances, a
larger number of cells will provide greater statistical
power and opportunity to observe patterns. In some
cases, heterogeneity can be reduced by experimental
design. For example, in recent studies of murine T-cell
responses in vivo, this issue was circumvented by
employing transgenic T-cell receptor cells that expressed
the same antigen receptor [24, 61]. Clearly, it can be dif-
ficult to predict the degree of heterogeneity that will be
revealed by a scRNA-seq study. However, it might be
possible, for example, to perform power calculations and
group size estimates if other single-cell data, such as
flow- or mass-cytometric data, are available [62].
While the required number of cells is dependent on

the number of distinct cell states within the population,
the required sequencing depth also depends on the mag-
nitude of differences between these states. For example,
unbiased cell-type classification within a mixed popula-
tion of distinct cell types can be achieved with as few as
10,000 to 50,000 reads per cell [10, 63]. Indeed, increa-
sing the cell numbers to be assessed, yet keeping the
read depth relatively low, provides increasing power at
detecting populations that exist at a frequency of < 1% of
the total population. Therefore, opting for a lower read
depth is practical and economical if the goal of the study
is to identify rare cell populations or to scan cells for
evidence of mixed populations. However, lower read
depths will not necessarily provide detailed information
on gene expression within any given single cell, and
many biological processes associated with more-subtle
transcriptional signatures necessitate deeper sequencing.
It is at this point that the ‘zero or dropout problem’ (Box 1)
of scRNA-seq should be raised. The efficiency with which
poly-adenylated mRNA species are captured, converted
into cDNA and amplified is currently unclear, and, de-
pending on the study, can range between 10 and 40%
[13, 44, 64, 65]. This means that, even if a gene is being
expressed, perhaps at a low level, there is a certain
probability that it will not be detected by current
scRNA-seq methods. A partial solution to this issue is
to increase read depth. However, beyond a certain
point, this strategy leads to diminishing returns as the
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fraction of PCR duplicates increases with deeper se-
quencing. Current data suggest that single-cell libraries
from all common protocols are very close to saturation
when sequenced to a depth of 1,000,000 reads, and a
large majority of genes are detected already with
500,000 reads, although the exact relationships are
protocol specific [32, 44].
However, the confidence in whether a gene is truly

expressed, or not, depends on how many mRNA mole-
cules are detectable, which is dependent on many fac-
tors, including mRNA stability. The data suggest that, if
the main goal of the study is to characterize the tran-
scriptome of a particular cell with the greatest possible
resolution, then a median read depth of around one mil-
lion is essential. It should be noted that researchers can
also employ lower read-depth datasets to explore on a
population level whether a given gene appears to be
expressed within cell populations. Thus, gene-specific
information can be extracted from lower read-depth
datasets. However, more-detailed examination of gene–
gene co-expression and co-regulation or differential gene
splicing requires high read depths.
To date, most scRNA-seq studies employing higher

read depths examined hundreds to thousands of cells,
for reasons of cost and platform availability. Increasingly,
lower read-depth-based studies are emerging that exa-
mine 10–100-fold more cells [10, 45–47], particularly
with droplet-based technologies. Researchers should
consider which of these ranges best suits their biological
system, their questions and their budget.
How does single-cell data differ from bulk
RNA-seq?
While scRNA-seq workflows are conceptually closely re-
lated to population-level transcriptomics protocols, data
from scRNA-seq experiments have several features that
require specific bioinformatics approaches. First, even
with the most sensitive platforms, the data are relatively
sparse owing to a high frequency of dropout events (lack
of detection of specific transcripts). Moreover, owing to
the digital nature of gene expression at the single-cell
level, and the related phenomenon of transcriptional
bursting (in which pulses of transcriptional activity are
followed by inactive refractory periods; Box 1), transcript
levels are subject to temporal fluctuation, further con-
tributing to the high frequency of zero observations in
scRNA-seq data. Therefore, the numbers of expressed
genes detected from single cells are typically lower com-
pared with population-level ensemble measurements.
Because of this imperfect coverage, the commonly used
unit of normalized transcript levels used for bulk RNA-
seq, expressed as ‘reads per kilobase per million’
(RPKM), is biased on a single-cell level, and instead the
related unit ‘transcripts per million’ (TPM) should be
used for scRNA-seq [66].
Second, scRNA-seq data, in general, are much more

variable than bulk data. scRNA-seq data typically include
a higher level of technical noise (such as dropout events),
but also reveal much of the biological variability that is
missed by RNA-seq on pooled cells. Biological variation is
present on many levels, and which of these are considered
as nuisance variation depends on the underlying biological
question being asked. For example, at the gene level, tran-
scriptional bursting causes variation in transcript quan-
tities [67], whereas at the global level, the physical size of
individual cells can vary substantially, affecting absolute
transcript numbers and reflected in the number of de-
tected genes per cell [68, 69]. Cell-size variation can also
be closely related to proliferative status and cell-cycle
phase. Several computational approaches have been de-
vised that account for such variability [59, 70, 71]. Typi-
cally, the most biologically interesting heterogeneity
among cells, other than heterogeneity in lineage identity,
is due to different intermediate transcriptional states,
which can provide information about whether the regula-
tion of individual cells is normal or aberrant. Although the
distinction between these states can in some cases be
blurred, in general these are associated with subtle tran-
scriptional changes that warrant greater sequencing depth
for their resolution [72].
Finally, distributions of transcript quantities are often

more complex in single-cell datasets than in bulk RNA-seq.
In general, single-cell expression measurements follow a
negative binomial distribution [73], and, in heterogeneous
populations, multimodal distributions are also observed
[74]. As a consequence, statistical tests that assume nor-
mally distributed data (used for example for detecting
differentially expressed genes) are likely to perform subopti-
mally on scRNA-seq data.

Once I have sequenced my single-cell cDNA libraries,
how do I analyse the data?
Although scRNA-seq is now more accessible to ‘first-
time’ researchers through commercial reagents and plat-
forms, this is less true for the crucial bio-informatic and
computational demands of a scRNA-seq study. There
are currently very few, if any, ‘plug-and-play’ packages
that allow researchers to quality control (QC), analyse
and interpret scRNA-seq data, although companies that
sell the wet-lab hardware and reagents for scRNA-seq
are increasingly offering free software (for example,
Loupe from 10x Genomics, and Singular from Fluidigm).
These are user-friendly but have the drawback that they
are to some extent a ‘black box’, with little transparency
as to the precise algorithmic details and parameters
employed. Nevertheless, this is a highly dynamic area,
where gold-standard analysis platforms are yet to
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emerge. Recent reports indicate that more-user-friendly,
web-browser-based interfaces will become available soon
[75]. However, the precise functionalities that need to be
offered continue to be an area of active development. In
summary, an understanding of the bioinformatic and
computational issues involved in scRNA-seq studies is
needed, and specialist support for biomedical researchers
and clinicians from bio-informaticians who are comfor-
table with handling scRNA-seq datasets would be
beneficial.
Before further analyses, scRNA-seq data typically re-

quire a number of bio-informatic QC checks, where
poor-quality data from single cells (arising as a result of
many possible reasons, including poor cell viability at
the time of lysis, poor mRNA recovery and low effi-
ciency of cDNA production) can be justifiably excluded
from subsequent analysis. Currently, there is no consen-
sus on exact filtering strategies, but most widely used
criteria include relative library size, number of detected
genes and fraction of reads mapping to mitochondria-
encoded genes or synthetic spike-in RNAs [76, 77]. Re-
cently, sophisticated computational tools for identifying
low-quality cells have also been introduced [78–81].
Other considerations are whether single cells have ac-
tually been isolated or whether indeed two or more cells
have been mistakenly assessed in a particular sample.
This can sometimes be assessed at the time of single-cell
isolation, but, depending on the chosen technique, this
might not always be possible.
Once the scRNA-seq data are filtered for poor sam-

ples, they can be interpreted by an ever-increasing range
of bio-informatic and computational methods, which
have been reviewed extensively elsewhere [74, 82]. The
crux of the issue is how to examine tens of thousands of
genes possibly being expressed in one cell, and provide a
meaningful comparison to another cell expressing the
same large number of genes, but in a very different man-
ner. Most approaches seek to reduce these ‘multi-dimen-
sional’ data, with each dimension being the expression of
one gene, into a very small number of dimensions that
can be more easily visualised and interpreted. Principal
component analysis (PCA) is a mathematical algorithm
that reduces the dimensionality of data, and is a basic and
very useful tool for examining heterogeneity in scRNA-
seq data. This has been augmented by a number of
methods involving different machine-learning algorithms,
including for example t-distributed stochastic neighbour
embedding (t-SNE) and Gaussian process latent variable
modelling (GPLVM), which have been reviewed in detail
elsewhere [74, 82, 83].
Dimensionality reduction and visualization are, in many

cases, followed by clustering of cells into subpopulations
that represent biologically meaningful trends in the data,
such as functional similarity or developmental relationship.
Owing to the high dimensionality of scRNA-seq data,
clustering often requires special consideration [84], and
a number of bespoke methods have been developed
[45, 85–88]. Likewise, a variety of methods exist for
identifying differentially expressed genes across cell
populations [89].
An increasing number of algorithms and computational

approaches are being published to help researchers define
the molecular relationships between single cells characte-
rized by scRNA-seq and thus extend the insights gained
by simple clustering. These trajectory-inference methods
are conceptually based on identification of intermediate
cell states, and the most recent tools are able to trace both
linear differentiation processes as well as multipronged
fate decisions [22, 24, 90–95]. While these approaches
currently require at least elementary programming skills,
the source codes for these methods are usually freely avai-
lable for bio-informaticians to download and use. This re-
inforces the need to cultivate a good working relationship
with bio-informaticians if scRNA-seq data are to be ana-
lysed effectively.
What will the next 5 years hold for scRNA-seq?
Over the past 6 or so years, there has been an explosion
of interest in using scRNA-seq to provide answers to bio-
logically and medically related questions, both in experi-
mental animals and in humans. Many of the studies from
this period either pioneered new wet-lab scRNA-seq proto-
cols and methodologies or reported novel bio-informatic
and computational approaches for quality-controlling and
interpreting these unique datasets. Some studies also pro-
vided tantalizing glimpses of new biological phenomena
that could not have been easily observed without scRNA-
seq. Here, we consider what the next 5 years might hold
for scRNA-seq from the perspective of clinical and ex-
perimental researchers looking to use this technology for
the first time.
Given that the field of single-cell genomics is experien-

cing rapid growth, aside from being confident that nu-
merous advances will be made, exactly what these will
be remains difficult to predict. Nevertheless, we point
towards various areas in which we hope and expect nu-
merous advances to be made. First, most scRNA-seq
studies have tended to examine freshly isolated cells. We
expect many more studies will explore cryopreserved
and fixed tissue samples using scRNA-seq, which will
further open up this technology to clinical studies.
As isolation of single cells is of paramount importance

to this approach, we expect more advances in wet-lab
procedures that rapidly dissociate tissue into individual
cells without perturbing their transcriptomes. In addition,
while many scRNA-seq studies have employed expensive
hardware, including microfluidic and droplet-based
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platforms, future studies will reduce costs by further redu-
cing reaction volumes, and perhaps also by avoiding the
need for bespoke pieces of equipment [38]. Currently,
much of the cost associated with conducting a scRNA-seq
study is associated with cDNA library preparation and
NGS. Given ongoing trends for decreasing sequencing
costs, we anticipate that these cost benefits will also make
scRNA-seq more affordable on a per-cell basis. This will
likely drive another trend—the ever-increasing number of
cells examined in a given study. While early studies exam-
ined a few hundred cells, with reduced costs and the wide-
spread adoption of newer droplet-based technologies, we
anticipate that analysis of millions to billions of cells will
become commonplace within the next 5 years [96]. The
Human Cell Atlas project [51], with the ultimate goal of
profiling all human cell states and types, is evidence of this
trend. With the accumulation of such enormous datasets,
the issue arises regarding how to use them to their
full potential. Many researchers would without doubt
benefit from centralized repositories where data could
be easily accessed at the cellular level instead of just
sequence level [97].
Next, as mentioned above, the ‘drop-out’ problem that

occurs even in high-resolution scRNA-seq datasets illus-
trates that weakly or even moderately expressed genes can
be missed, partly owing to the currently modest efficien-
cies for mRNA capture. We expect that mRNA capture
rates will continue to improve over the next 5 years, to an
extent where perhaps almost all mRNA molecules will be
captured and detected. This will permit more-sensitive
analysis of gene expression in individual cells and might
also serve to reduce the number of cells required in any
given study.
Given the unique analytical challenges posed by

scRNA-seq datasets, we expect great advances in bio-
informatic and computational approaches in the coming
years. In particular, user-friendly, web-browser-like inter-
faces will emerge as gold-standard packages for dealing
with scRNA-seq data. These will contain all the neces-
sary functionality to allow researchers first to QC their
data and then to extract biological information relating
to heterogeneity, the existence of rare populations,
lineage tracing, gene–gene co-regulation and other
parameters.
Recent studies are providing exciting possibilities for

combining scRNA-seq with other modalities. For instance,
the use of CRISPR–Cas9 genome-editing techniques
alongside barcoded guide RNA species has allowed
high-throughput assessment of gene function in single
cells [98, 99]. We expect that many new combination
approaches will emerge using proteomics, epigenomics
and analysis of non-coding RNA species alongside
scRNA-seq (reviewed in [100]). We speculate that the
next decade will take us closer to a truly holistic
examination of single cells, which takes into account
not only mRNA, but also the genome, epigenome, pro-
teome and metabolome.
Finally, we believe that several clinical applications will

emerge for scRNA-seq in the next 5 or so years. For
example, resected tumours might be routinely assessed
for the presence of rare malignant and chemo-resistant
cancer cells. This information will provide crucial diag-
nostic information and will guide decisions regarding
treatment. Next, as an extension to a full blood count,
scRNA-seq assessments will provide in-depth informa-
tion on the response of immune cells, which again will
inform diagnoses and the choice of therapy. Finally, the
relatively small numbers of cells present in a range of
other tissue biopsies, for example from the skin and gut
mucosal surfaces, will be ideal for providing molecular
data that informs on diagnosis, disease progression and
appropriate treatments. Thus, scRNA-seq will progress
out of specialist research laboratories and will become
an established tool for both basic scientists and clini-
cians alike.
Conclusions
This decade has marked tremendous maturation of the
field of single-cell transcriptomics. This has spurred the
launch of numerous easily accessible commercial so-
lutions, increasingly being accompanied by dedicated
bioinformatics data-analysis suites. With the recent
advances in microfluidics and cellular barcoding, the
throughput of scRNA-seq experiments has also in-
creased substantially. At the same time, protocols
compatible with fixation and freezing have started to
emerge. These developments have made scRNA-seq
much better suited for biomedical research and for
clinical applications. For example, the ability to study
thousands of cells in a single run has greatly facili-
tated prospective studies of highly heterogeneous
clinical samples. This can be expected to have a pro-
found impact on both translational applications as
well as our understanding of basic tissue architecture
and physiology. With these increasing opportunities
for single-cell transcriptome characterization, we have
witnessed remarkable diversification of experimental
protocols, each coming with characteristic strengths
and weaknesses. Researchers therefore face decisions
such as whether to prioritize cell throughput or se-
quencing depth, whether full-length transcript infor-
mation is required, and whether protein-level or
epigenomic measurements are to be performed from
the same cells. Having clearly defined biological ob-
jectives and a rational experimental design are often
vital for making an informed decision about the opti-
mal approach.
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