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ABSTRACT  

The biological interactions of graphene have been extensively investigated over the last 10 

years. However, very little is known about graphene interactions with the cell surface and how 

the graphene internalization process is driven and mediated by specific recognition sites at the 

interface with the cell. In this work, we propose a methodology to investigate direct molecular 

correlations between the biomolecular corona of graphene and specific cell receptors, showing 

that key protein recognition motifs, presented on the nanomaterial surface, can engage 

selectively with specific cell-receptors. We consider the case of apolipoprotein A-I, found to 

be very abundant in the graphene protein corona, and observe that the uptake of graphene 

nanoflakes is somewhat increased in cells with greatly elevated expression of scavenger 

receptors B1, suggesting a possible mechanism of endogenous interaction. The uptake results, 

obtained by flow cytometry, have been confirmed using Raman microspectroscopic mapping, 

exploiting the strong Raman signature of graphene. 

KEYWORDS: graphene,protein corona, scavenger receptors, nanobio interactions 

 

When nanoparticles come into contact with a biological milieu, it is typical that biomolecules 

derived from the environment associate to and modify their surface. This environmentally 

derived surface modification has been named the “biomolecular corona”.1-2 

This idea, coupled with the privileged role of the nanoscale in endogenous biological 

processing, lead us to expect that synthetic objects will engage with a very broad range of living 

processes. The detailed nature of the initial and subsequent exchange processes by which this 

corona is formed depend on context and details, but typically leads to particle populations with 

varying biomolecular corona compositions and organization at the surface.3-4  
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Still, it is observed that typical organizations lead to several key proteins on the surface 

presenting receptor recognition domains and the interactions of these with target receptors are 

believed to form the basis of a mechanistic understanding of in vivo biodistribution and 

clearance outcomes.5-10 It is also now believed that more complex forms of receptor-corona 

engagements involving scavenger and pattern recognition interactions are relevant.11 In 

parallel, shape, on the nanoscale, is being investigated as a defining factor in framing biological 

interactions,12-15 and therefore it can be hypothesized that this combination of shape and surface 

biomolecular presentation could form the basis of a broader view of biological recognition. 

We stress that the biological recognition (in the context discussed here) may go considerably 

beyond association with a single simple recognition domain, involving complex mixtures of 

receptor recognition, shape, and potentially other factors yet unexplored. Nevertheless, in the 

short term, from a more practical point of view the ideas can be applied (on a case-by-case 

basis) to map explicit complex material shapes and coronas with specific endogenous bio-

assemblies. This pragmatic approach, which we call nanoscale-biomimetics, seeks to identify 

shared features between endogenous bio-assemblies, and thereby form a link to known 

interactions with relevant receptors and pathways. 

Among the range of nanomaterials, graphene has attracted growing attention over the last 10 

years, due to its remarkable properties such as, amongst others, high surface area, inherent 

strength, high thermal and electrical conductivity, mechanical strength and flexibility, excellent 

chemical and mechanical stability and good optical transparency.16-19 However, understanding 

the biological interactions of heterogeneous graphitic substances (such as fullerenes20, carbon 

nanotubes21, etc.) with cell membranes is challenging and recent reports have suggested that 

these materials can enter cells22 either through direct penetration,23 endocytosis,15 (including 

clathrin-mediated endocytosis, caveolae-mediated endocytosis and macropinocytosis24) or 

phagocytic uptake.25  

https://en.wikipedia.org/wiki/Clathrin
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Several reports in the literature have shown in vivo accumulation of both micro and nano-sized 

graphene oxide (GO) in filter organs, especially the liver.26-27 This is consistent with a general 

trend for nanoparticles and could suggest a role for receptor mediated uptake by liver-related 

cells. Recent progress in direct dispersion graphene in biological media has allowed the serum-

derived protein corona to be explored in some detail, identifying a significant presence of 

apolipoprotein A-I (Apo A-I), whereas apolipoprotein B-100 (in contrast to many other 

common nanomaterials) was found to be nearly completely absent.28 This might suggests that 

the graphene-protein complexes could interact with Scavenger Receptors B1 (SR-B1) that 

constitute a class of pattern-recognition receptors with a high affinity for mature high density 

lipoprotein (HDL), of which Apo A-I is the major protein component, and are expressed on the 

surface of a variety of cell types including macrophages (such as Kuppfer cells in the liver).29-

30 However, we should alert the reader to the challenges (and limitations) of working with these 

materials in a biological context, as implementing high levels of controls and characterization 

for any nanomaterial in this context is difficult,11, 31-32 but for graphene-like materials those 

difficulties are magnified greatly, and even obtaining reasonable quality of dispersion requires 

some attention.28 

Here, we explore the graphene-corona receptor interactions, using a HEK host-cell fusion 

protein platform5 in order to over-express the receptor of interest (SR-B1 in this case) on the 

cell surface. We propose a protocol for the investigation of internalization mechanisms for 

graphene nanoflakes using flow cytometry, demonstrating that we can investigate possible 

links between endogenous motives presented on the graphene-based nanomaterials surface and 

the recognition pathways. Raman microspectroscopic mapping and Z-stack profiling was used 

to confirm cellular internalisation of the graphene nanoflakes. 
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Graphene nanoflakes exfoliated in full serum have shown a tendency to adsorb and present 

apolipoprotein A-I (Apo A-I) in a favourable orientation to be recognized and interact with 

monoclonal anti Apo A-I antibody.28 This antibody is able to recognize amino acids 113-243 

of Apo A-I of human origin, considered proxy for the HDL receptor binding domains.33 

As mentioned previously, graphene enters the cells via different endocytosis pathways, one of 

which involves clathrin-mediated endocytosis or receptor-mediated endocytosis. Therefore, for 

the graphene nanoflakes to be internalized by these pathways, specific biomolecules or ligands 

need to be present and retain function on the surface of the graphene. After adsorption, these 

biomolecules on the surface of the graphene nanoflakes are available for interaction with cell 

surface receptors specifically. Once graphene nanoflakes-biomolecular complexes have 

interacted with cell surface receptors, cellular uptake machinery will be triggered to complete 

graphene flake internalization.34 The potential recognition fragment of Apo A-I, found to be 

extensively present on the graphene surface, might therefore allow for the graphene binding to 

the SR-B1 receptor.35-37 In a previous study, the receptor knock-down approach was 

investigated.39 However, significant regulatory couplings (reciprocal up and down regulation 

of other scavenger receptors after knock-down of a specific scavenger receptor) was found for 

these conditions, leading to a difficult interpretation of the results. This issue suggested that 

silenced cells may not be a reliable model for this investigation, excluding the use of liver cells 

in the present study. Therefore, in this work, we made use of vector assisted transfection in 

order to overexpress specific receptors of interest on the surface of the cells. The HEK-293T 

cell line was chosen because of the very low endogenous expression levels of scavenger 

receptors, and capability for high transfection efficiency and protein production.38 

The cells were transfected with SR-B1 receptors (see scheme in Figure 1.a) and the efficacy of 

the transfection was assessed by mean of HaloTag® ligand staining (as reported in Figure S1 

and S2). Western blot and reverse transcription polymerase chain reaction (RT-PCR) analysis 

https://en.wikipedia.org/wiki/Clathrin
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were used as a further control for the transfection and the functionality of the overexpressed 

receptors was confirmed by the uptake of SR-B1 ligand acetylated LDL (see Figure S2.a-b). 

The receptor expression can vary widely among individual cells, creating distinct sub-

populations with high, low and no receptor expression levels. Therefore, if the complete 

ensemble of cells is used to evaluate the graphene flake uptake levels, having heterogeneous 

receptor expression across the cellular population will lead to difficulties in defining a direct 

correlation between receptor expression and graphene nanoflake recognition. As reported in 

Methods, the receptors can be labelled with a fluorescent ligand (Tetramethylrhodamine, TMR) 

by mean of the HaloTag® function with which they are fused. The TMR fluorescence intensity 

can be considered an intrinsic measure of receptor expression on a cell-by-cell basis. Therefore, 

only a subpopulation of cells with high receptor expression levels sorted at the flow cytometry 

(on the basis of the TMR intensity, see Figure S2.d and S3) was considered for the following 

experiments. The ligand uptake was higher in the cells with high expression level of the 

receptors (high TMR subpopulation), therefore confirming the choice of the experimental 

conditions (see Figure S2.c-d and S3).  

Stable graphene dispersions were produced following a previously reported protocol28 

optimized to obtain endotoxin-free material. The produced graphene nanoflakes were 

characterized in terms of size distribution, morphology, protein corona profile and stability 

overtime, in the same condition used for the in vitro test (see Figures S4 and S5). The measured 

endotoxin level after synthesis is reported in Figure S6. The SR-B1 overexpressed cells were 

then exposed to two different concentrations (50 µg/ml and 100 µg/ml) of exfoliated graphene. 

After 7 h of incubation, the cell viability was measured using MTS assay. Results showed no 

decrease in the cell viability after exposure to graphene nanoflakes under the conditions applied 

for the study, as reported in Figure S7.  
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The uptake was evaluated by flow cytometry using side scatter to detect the presence of 

graphene inside the cell. The increase in the cellular uptake of graphene was correlated to the 

increase in the granularity of the cells, reflected by an increase of the side scatter. This approach 

was previously described to estimate the uptake of metal nanoparticles and carbon based 

nanomaterials40-41 and the results are reported in Figure 1.b and 1.c. The side scattering 

intensity was normalized by the signal obtained for the cell transfected SR-B1 not exposed to 

graphene, which is considered the baseline. The reported uptake is therefore presented as fold 

increase. The control is represented by HEK-293T cells transfected with an empty vector, 

therefore not presenting any overexpression of SR-B1 receptors on the surface. 
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Figure 1: Evaluation of graphene uptake in transfected cells. a) Schematics of the experimental 

conditions showing SR-B1 and LDLR overexpressed membrane receptors in HEK-293T cells 

in presence of both full and delipidized serum. b) Cellular uptake as measured by side scattering 

in flow cytometry for SR-B1 and empty vector control transfected cells exposed to graphene 

nanoflakes (50 µg/ml) for 4h and 7h in 30% v/v of full human serum. c) Cellular uptake as 

measured by side scattering in flow cytometry for cells transfected with SR-B1 receptor 

exposed to graphene nanoflakes at the concentration of 50 µg/ml and 100 µg/ml in presence of 

both full human serum (HS) and lipoproteins depleted human serum (delipidized, De-HS). 

Cells transfected with empty vector were used as a control. Uptake values for LDLR transfected 

cells exposed to 50 µg/ml of graphene nanoflakes are also reported in presence of both full 

(orange dot) and delipidized (green dot) serum. For all the experiments the cells were exposed 

for 7h and the milieu was supplemented with 30% v/v of serum.  

 

For all the experiments, the use of high amounts of human serum (30% v/v) aimed to set the 

experiment closer to an in vivo scenario.42 Two particular serum conditions, illustrated in the 

schematic in Figure 1.a, were evaluated: full human serum and lipoproteins depleted human 

serum (delipidized serum). This last condition allowed to evaluate the uptake when free HDL 

complexes are removed from the milieu, therefore in the absence of competitive binding. 

Different graphene flakes sizes did not show remarkable differences therefore all the 

experiment here presented are referred to graphene nanoflakes called Large in Supporting 

Information (see Figures S4 and S8). In Figure 1.c, the effect of the competition on the receptor 

recognition and mediated uptake can be clearly appreciated. As a general trend, the graphene 

uptake is concentration dependent and it is significant for SR-B1 transfected cells in full serum 

(see Figure S9). However, a large increase on the uptake can be appreciated in absence of 

competition (see Figure 1.c and Figure S9).  
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As mentioned before, apolipoprotein B-100 (Apo B-100) was nearly totally absent on the 

graphene nanoflakes biomolecular corona.28 Low Density Lipoprotein Receptor (LDLR) 

recognizes LDL complexes in which Apo B-100 is the major protein component, therefore 

cells transfected with LDLR were chosen as additional negative control (see scheme in Figure 

1.a). After incubation with graphene nanoflakes under the same conditions used for SR-B1 

transfected cells, very little uptake was found for the cells transfected with LDLR when 

compared to the cells transfected with empty vector (Figure 1.c).  

Graphene nanoflakes are covered in a rich tapestry of proteins and ligands. For transfected 

cells, an unavoidable background is expected, since SR-B1 (as other scavenger receptors) also 

recognises a number of other ligands, and complex organizations of them, on the surface of the 

nanomaterials (see Figure S10). These effects cannot be fully eliminated with the proposed 

model. However, it was possible to observe a dominant effect conferred by the interactions 

with Apolipoprotein A-I that we hypothesized here.   

It must be taken into account that the side scattering, used to evaluate the uptake in flow 

cytometry, is an intrinsically weaker signal compared to the commonly used fluorescence 

emission. However, biorecognition is a complex process, sensitive to any form of surface 

modification, including fluorescent labelling, which could disturb the interactions. Therefore, 

to further confirm the significance of the increased uptake for SR-B1 transfected cells, the 

results obtained by flow cytometry were qualitatively confirmed by Raman microspectroscopic 

mapping (Figure 2). Graphene possesses a very strong Raman signature due to the sp2 

hybridization (see graphene spectra in Figure S11), stronger than the intrinsic cellular signals 

and therefore Raman spectroscopy is considered a highly valuable tool for label free graphene 

detection.43-46 Raman confocal microspectroscopy is an optical technique, and has equivalent 

optical resolution to Confocal Laser Scanning Fluorescence microscopy, depending on the 

wavelength used in each, and has previously been successfully employed for intracellular 
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localization of diverse carbon-based nanomaterials, also coupled with Confocal Laser 

Scanning Microscope (CLSM) imaging.47  

 

Figure 2. Raman microspectroscopic xy mapping. a) Schematic representation, b) 

representative optical micrographs (nucleus highlighted) and c) related Raman 

microspectroscopic xy mapping of the cytoplasmic areas of SR-B1 (left) and empty vector 

(right) transfected HEK-293T cells exposed to graphene nanoflakes (50 µg/ml for 7h). The 

hotspots presenting light blue colour indicate the presence of graphene nanoflakes calculated 

as the ratio of the intensity of G band (~1580 cm-1) and amide 1 band (~1600-1700 cm-1) for 

each recorded spectrum.  
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By performing xy Raman microspectroscopic mapping on random cytoplasmic areas, we were 

able to detect several hotspots revealing the presence of graphene, by means of its G band 

signal, in cells transfected with SR-B1 (Figure 2). Despite the proven stability in biological 

media (see Figure S4),28 the presence of some larger graphene aggregates can be detected by 

optical microscopy. These aggregates, being simply deposited on the cell surface, can be 

displaced using the energy provided by the laser during the Raman measurements. 

Nevertheless, a consistent population of nanoflakes (not visible at the optical microscope) is 

enough stable as suspension to allow for the internalization process. In the case of cells 

transfected with empty vector (Figure 2) or LDL receptor (Figure S12), random scans of 

cytoplasmic areas never revealed graphene hotspots.  

The identified hotspots in the map were subjected to Z-stack mapping to confirm that the signal 

detected was actually due to the presence of internalized graphene (Figure 3.a). When the 

closest proximity to the graphene nanoflakes is reached, graphene features dominate the Raman 

spectrum, compared to the cell signal. However, although graphene signal can be also detected 

at different depths, the ratio between the graphene peaks and cell peaks gets progressively 

lower. The spectra recorded at different depths in the cell cytoplasm showed typical cellular 

features which are partially obscured when the characteristic graphene D and G peaks start to 

appear, as can be seen in Figure 3.a.  
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Figure 3: Z-stack analysis on hotspots in cell transfected with SR-B1 receptors and exposed 

to graphene nanoflakes at the concentration of 50 µg/ml for 7h. a). Example of Raman spectra 

recorded each µm from -20 µm (bottom of the dish) to 20 µm (top of the cell). Starting from -

10 µm depth, the contribution from the glass substrate can be recorded around 1000 cm-1, 

indicating that we are reaching the bottom of the dish. Spectra are offset for clarity. b) 

Normalized intensities for the G band (1580 cm-1, black) and amide group band (1600-1700 

cm-1, blue dotted) over the Z-stack (measure taken every µm). c) Example of deconvolution of 

graphene G band and amide group band for a spectrum recorded at z = -5 μm by LabSpec 5 

software analysis. The baseline was subtracted for the whole spectrum then data in the range 

of 1400 cm-1 to 1800 cm-1 were extracted. d) The two peaks centered respectively at 1580 cm-

1 and ~1600 cm-1 at different Z levels (every 5 μm), were deconvoluted using a Gaussian-

Lorentzian fitting and the so-obtained peak areas were normalized and used for the plot.  
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To better illustrate that the so identified graphene nanoflakes were actually inside the cell, we 

analysed the intensities of G band (~1580 cm-1), indicative of the presence of graphene, and 

the protein amide I band (~1600-1700 cm-1), related to the presence of proteins inside the 

cytoplasm (Figure 3.b). In addition, after subtraction of the spectral baselines, the two peaks of 

interest were fitted and deconvoluted (Figure 3.c) in order to obtain the values of area at 

different depths. By plotting both the normalized peak areas (Figure 3.d) as a function of focal 

position, it can be easily visualized how the maximum presence of graphene was detected in 

the middle of cell features.  

Cellular features, as exemplified by the amide I band at ~1640 cm-1, are clearly observed to 

extend over a z range of −15 ─ +20 µm, whereas the graphene related features at ~1580 cm-1 

is clearly resolved within a region of (FWHM) 0 ─ +10 µm. Raman confocal microscopic 

lateral profiling at 785 nm, with a similar x100 water immersion objective, yielding a resolution 

of ~1µm, has previously been demonstrated to differentiate and localise nucleoli within the 

nuclei of cells in vitro,48 and even to localise polystyrene within endosomes and lysosomes in 

cells.49-50 The technique can readily be extended to depth and 3D profiling, with similar 

resolution.51  

The Z-stack illustrated in Figure 3 represents an example where the cells were transfected with 

SR-B1 receptors and exposed to graphene nanoflakes at the concentration of 50 µg/ml for 7h. 

In all the SR-B1 transfected samples, it was very easy to find graphene through its Raman 

signature in the cytoplasmic zone, where no aggregates were visible by optical microscope. In 

contrast, for cells transfected with empty vector or LDLR, it was not possible to identify 

hotspots from the mapping and therefore to perform Z-stack analysis. 
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These data qualitatively confirmed the results obtained by flow cytometry, demonstrating that 

graphene nanoflakes were uptaken significantly more by cell transfected with SR-B1 receptors 

and it was possible to detect them in the intracellular space. 

We first stress, once again, that our discussions are in the context of graphene in the presence 

of an abundance of protein, such as might be found in typical biological contexts. The 

interaction of graphene in the absence (or low abundance) of biomolecules is likely to be quite 

different, and those issues have long been discussed in the literature.52-55 Notably, although 

other carbon-based nanomaterials have been found to present similar protein corona,56-57 with 

the data available to date, it is premature to hypnotize a general trend based uniquely on the 

protein composition, considering the complexity of the recognition patterns in a competitive in 

vivo environment. 

The adsorption of biomolecules on the graphene surface generates biological motifs that 

potentially allow for the identification of these exogenous objects, leading to partial recognition 

as endogenous (e.g., lipoproteins) objects and subsequent initiation of biological signalling 

pathways. Certainly, the system discussed here exhibits a complex combination of phenomena, 

including nanoflake shape and size distribution and biocorona organization, and there are likely 

different modes of cell-material interaction involved simultaneously. Nevertheless, it is likely 

that recognition motifs derived from the proteins adsorbed to the surface mediate the biological 

interactions, and the results presented here suggest that those interactions could be quite 

different for graphene from most other materials, possibly linking them to other endogenous 

structures processed by the liver.  

Still, it is important to recognize that these are the earliest days of studies in graphene-biology, 

and it may be appropriate to offer very cautious and reserved judgements, on the larger scale 

of the implications of work such as presented here.   
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Graphene nanoflakes preparation and characterization 

Biological dispersion of graphene nanoflakes was produced using ultrasonic exfoliation in full 

serum, following a protocol previously developed.28 Special attention was devoted to the 

preparation of the material in endotoxin-free conditions, since it has been reported that the 

presence of lipopolysaccharide (LPS) can down regulate the mRNA expression of SR-B1.58-60 

Dispersions of graphene in aqueous solution were prepared by 2h ultrasonication of 50 mg of 

natural flake graphite (Asbury, grade 3763) 10% w/V dispersed in a solution of human serum 

(HS) at 50% v/v in Phosphate Buffer Saline (PBS). A bath sonicator, Fisherbrand FB11207, 

was used, at the frequency of 37 kHz and 100% of power. The temperature was kept around 

15º C by a mixture of water and ice (70:30) in the bath, which was frequently replaced. HS off 

the clot was purchased from Millipore (catalogue number S1-100).  The synthesis was 

performed in a Class 2 laminar flow hood by following all the strict precaution normally 

adopted during cell culture. A preventive depyrogenation of the graphite via dry heat treatment 

in oxygen-free conditions was performed. Briefly, the graphite was first dried from the air 

humidity under vacuum at 80° C (using a Schleck line) and then heated at 200° C for 4 hours. 

All the vials used in the synthetic and the purification procedures were endotoxin-free certified, 

and all the glassware were previously cleaned with aqua regia and thoroughly rinsed with 

endotoxin-free water. The PBS buffer (TMS-012-A, Merk Millipore) and water (TMS-011, 

Merk Millipore) used were both endotoxin-free certified and all the reagents (including serum) 

and solutions for graphene preparation were strictly opened inside the laminar flow fumehood. 

For each synthesis, two main fractions were separated, following two centrifugation steps 

(1500 rpm for 60 min and 3000 rpm for 60 min). Finally, the samples were washed three times 

with fresh PBS by high speed centrifugation in order to separate unadsorbed proteins from the 

ones tightly bound to the surface, resulting in a stable graphene water dispersion. The 
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centrifugation steps for size selection were performed using an Eppendorf 5810R centrifuge. 

An Eppendorf 5410R centrifuge with fixed rotor 1195-A and 1.5 ml LoBind protein Eppendorf 

were used for the washing procedure.  

The final graphene dispersions were characterized by Differential Centrifugal Sedimentation 

(DCS) and Transmission Electron Microscopy (TEM) as reported in Figure S4.  

The DCS experiments were performed with a CPS Disc Centrifuge DC24000 (CPS 

Instruments). 100 μL of sample were injected in an 8-24 % PBS based sucrose gradient. 

Density values of 1.75 g mL-1, refractive index of 2.377 and non-sphericity factor of 3 were 

used. The rotational speed of the disk was set to 20000 rpm. 

Endotoxin level test 

The Lipopolysaccharides (LPS) content in the sample was tested prior each experiment using 

Limulus Amebocite Lysate (LAL) chromogenic. The starting graphite powder and the 

exfoliated were tested by the Pierce™ LAL Chromogenic Endotoxin Quantitation Kit (88282) 

in BD Falcon Polystyrene Non-pyrogenic 96 well-plates (353072). 50 μL of each sample (at 

the concentration 100 µg/ml) was tested in duplicate following exactly the manufacturers 

protocol. After the reaction occurred graphite and graphene were removed by centrifugation 

(20000 rcf for 20 min) and only the supernatants absorbance red at the plate reader. The FDA 

limit for LPS is set at 0.5 EU/mL. The results are reported in Figure S6. 

Cell Culture 

Human Embryonic Kidney 293T (HEK-293T) cells (passage 1-25 after defrosting from liquid 

nitrogen; original batch from ATCC, item number CRL-3216) were cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM, high glucose, GlutaMAX™ Supplement, pyruvate) 

(GIBCO, 31966021), supplemented with 10% Foetal Bovine Serum (FBS,GIBCO) in a 

humidified chamber at 37°C under 5 % CO2. Cells were grown in their preferred environment 
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and passaged three times a week, as they approached 70-80 % surface coverage. Cells were 

tested regularly and confirmed to be mycoplasma negative using the MycoAler Mycoplasma 

Detection Kit (Lonza Inc, Allendale, NJ). 

Cell Transfection  

HEK-293T cells were plated at a density of 104,000 cells in 1 mL of cDMEM medium in a 12 

wells tissue culture plate (Cellstar® Greiner bio-one) for flow cytometry measurement and in 

35 mm imaging dish with a glass bottom (ibidi) for Raman microscopy. After 24 h, cells were 

transfected using FuGENE 6 at a FuGENE® 6: DNA ratio of 2.5:1 and 3.5:1 for SR-B1 and 

LDLR respectively. Plasmid DNA was diluted in Opti-MEM medium to final concentration of 

0.02 μg μL-1. FuGENE® 6 reagent was then added to the diluted DNA and mixed gently by 

pipetting for 15 times. The transfection complex was incubated for 10 min at room temperature 

(RT) and 50 μl was then added dropwise to the cells and incubated for 24 h at 37 °C and 5% 

CO2 before performed the uptake experiment.  

The receptor is fused with HaloTag®, which can be labelled with a fluorescent ligand 

(Tetramethylrhodamine, TMR). TMR fluorescence intensity was used as an intrinsic measure 

of receptor expression on a cell-by-cell basis using flow cytometry and confocal imaging. 

Exposure of cells to Graphene 

To expose the cells to the graphene, the medium of the cells was replaced by 1 mL of serum-

free DMEM in each well and incubated for 30 min at 37°C and 5% CO2. The medium was then 

replaced by the freshly prepared graphene dispersions. Experiments were performed by 

diluting the concentrated graphene stock solution into 30% v/v Human Serum or 30% v/v 

Delipidized Human Serum at room temperature, immediately before exposure to cells. Cells 

were incubated with graphene nanoflakes at 37 °C and 5% CO2 for 7 h.  
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Flow Cytometric Measurement of Cellular Uptake 

After 7 h of exposure to graphene, the medium containing the graphene was discarded and cells 

were then stained with HaloTag® TMR ligand at a final concentration of 200 nM in 1 mL 

cDMEM and incubated for 15 min at 37 °C, 5% CO2. After that, cells were washed once with 

cDMEM and twice with PBS and harvested with trypsin. Cell pellets were re-dispersed in 

cDMEM and placed on ice. Cell fluorescence intensity and side scatter was measured using 

Beckman Coulter CyAn ADP flow cytometry equipped with a 561 nm laser coupled with a 

516/20 nm filter. The fluorescence intensity of TMR reflects the receptor expression level; high 

TMR intensity indicates high expression level of the receptors. The intensity of side scattering 

reflects the increase in the cell uptake of graphene. Data were analysed using Summit Software. 

Results are reported as the median of Side scatter of transfected cells (population of high TMR 

intensity) ± standard deviation of duplicates. At least 15000 cells were analyzed in each sample. 

Cell Viability  

The Cell viability was measured using the MTS Cell Proliferation Assay. Cells were plated 24 

h prior to transfection at a density of 1000 cells/well of a 96-wells plate (Ginger) in 100 µl of 

cDMEM. After 24 h of transfection, the cells were exposed to 50 µg/ml of graphene for 7 h. 

The medium was then discarded, and cells were incubated with 20 µl of the CellTiter 96® 

AQueous One Solution (Promega) in 100 µl of culture medium at 37° C for 2 hours. 

Absorbance was measured at 490nm using a multimode microplate spectrophotometer 

(Varioskan Flash, Thermo Scientific, USA). 

Western Blotting 

Cells transfected with either SR-B1 or Empty vector were washed 3 times with PBS and lysed 

with radioimmunoprecipitation assay (RIPA) lysis buffer. The total protein concentration was 

measured using BCA assay, and all samples were normalized, and the same amount of protein 
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extracts was loaded for the separation on 10% sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS–PAGE) and then transferred to a PVDF membrane using Mini-

PROTEAN Tetra Trans-Blot Module under a constant voltage of 100 V for 1 h. Membranes 

were then incubated at RT for 1 h in blocking solution of 5% skimmed milk in TBS TWEEN 

(150 mM NaCl, 10 mM Tris-HCl, 0.1 % Tween, pH 7.5). The membrane was then incubated 

with anti-SR-B1 (ab106572) and anti-GAPDH primary antibodies in 1% skimmed milk 

overnight at 4 °C with a gentle. Afterward, the membranes were washed 3-4 times with TBST 

and then incubated with anti-Goat HRP secondary antibody in 1% skimmed milk for 1 h. Then, 

the membranes were washed 4 times with TBST and incubated with the substrate solution for 

chemiluminescent reaction (ECL Western Blotting Substrate mix, Pierce) for 1 minute and 

visualized in Syngene G: BOX imaging system. 

Reverse Transcription Polymerase Chain Reaction Analysis 

RNA was extracted from sorted cells using InviTrap®Spin Cell RNA Mini Kit from Stratec 

(0711). The concentration and purity of the RNA samples were determined using Thermo 

Scientific NanoDrop 2000 spectrophotometer. The total RNA was reverse transcribed (RT) 

with High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems™, 4368814). The 

expression of SR-BI and GAPDH mRNAs was determined using real-time PCR. Each cDNA 

sample was amplified using Power SYBR® Green PCR Master Mix (Applied Biosystems™, 

4368708) on Applied Biosystems 7500 Fast Dx Real-Time PCR. GAPDH was used as an 

endogenous control to normalize each sample. The primers were as follows: SR-B1 forward 

5'- -3'; reverse 5'- -3'; GAPDH forward 5'-ccctacaccatggagggatac-3'; reverse 5'-

gcttcacccaagaagttcca-3'. Comparative CT method (2−ΔΔCT) was used to perform the 

calculations. The CT (Cycle Threshold) of SR-B1 was normalized with the CT of the GAPDH 
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to obtain its ΔCT. The value of ΔCT of SR-B1 was further normalized with the ΔCT of the 

control cells (i.e., untransfected cells), the result of which generated the final data set (ΔΔCT).  

Raman microspectroscopic mapping and Z-stack profiling 

After cell incubation with graphene and fixation with glutaraldehyde, Raman spectroscopy was 

performed using a Horiba-Jobin Yvon LabRam HR800 instrument equipped with a 532nm 

laser diode (50mW) and samples are measured in MilliQ water by using x100 water immersion 

objective (LUMPlanF1, Olympus, N.A. 1). The lateral spatial resolution is ~1µm, and a 100 

μm confocal pinhole was used thorough out the study, resulting in a depth resolution of 

~1.5µm. The scattered light is collected by the objective in a confocal geometry and is 

dispersed onto an air-cooled CCD detector by 600 lines/mm grating, providing approximately 

1.5 cm1 per pixel spectral dispersion. To avoid sample heating, Raman experiments were 

carried out at 10% of maximum laser power (<5 mW). The spectra were acquired for 20 

seconds x3 for each spot to obtain a representative mean. 
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