155 research outputs found
Cosmic Microwave Background Dipole induced by double inflation
The observed CMBR dipole is generally interpreted as the consequence of the
peculiar motion of the Sun with respect to the reference frame of the CMBR.
This article proposes an alternative interpretation in which the observed
dipole is the result of isocurvature perturbations on scales larger than the
present Hubble radius. These perturbations are produced in the simplest model
of double inflation, depending on three parameters. The observed dipole and
quadrupole can be explained in this model, while severely constraining its
parameters.Comment: Latex, 9 pages, no figure, to appear in Phys. Rev.
Dipole Anisotropy from an Entropy Gradient
It is generally accepted that the observed CMBR dipole arises from the motion
of the local group relative to the CMBR frame. An alternative interpretation is
that the dipole results from an ultra-large scale (
isocurvature perturbation. Recently it was argued that this alternative
possibility is ruled out. We examine the growth of perturbations on scales
larger than the Hubble radius and in view of this analysis, we show that the
isocurvature interpretation is still a viable explanation. If the dipole is due
to peculiar motion then it should appear in observations of other background
sources provided that they are distant enough.Comment: 32 uuencoded including two figures, also available at
ftp://shemesh.fiz.huji.ac.il or at http://shemesh.fiz.huji.ac.il/lan_pir.p
Antimatter from the cosmological baryogenesis and the anisotropies and polarization of the CMB radiation
We discuss the hypotheses that cosmological baryon asymmetry and entropy were
produced in the early Universe by phase transition of the scalar fields in the
framework of spontaneous baryogenesis scenario. We show that annihilation of
the matter-antimatter clouds during the cosmological hydrogen recombination
could distort of the CMB anisotropies and polarization by delay of the
recombination. After recombination the annihilation of the antibaryonic clouds
(ABC) and baryonic matter can produce peak-like reionization at the high
redshifts before formation of quasars and early galaxy formation. We discuss
the constraints on the parameters of spontaneous baryogenesis scenario by the
recent WMAP CMB anisotropy and polarization data and on possible manifestation
of the antimatter clouds in the upcoming PLANCK data.Comment: PRD in press with minor change
First-year Sloan Digital Sky Survey-II (SDSS-II) Supernova Results: Hubble Diagram and Cosmological Parameters
We present measurements of the Hubble diagram for 103 Type Ia supernovae
(SNe) with redshifts 0.04 < z < 0.42, discovered during the first season (Fall
2005) of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. These data
fill in the redshift "desert" between low- and high-redshift SN Ia surveys. We
combine the SDSS-II measurements with new distance estimates for published SN
data from the ESSENCE survey, the Supernova Legacy Survey, the Hubble Space
Telescope, and a compilation of nearby SN Ia measurements. Combining the SN
Hubble diagram with measurements of Baryon Acoustic Oscillations from the SDSS
Luminous Red Galaxy sample and with CMB temperature anisotropy measurements
from WMAP, we estimate the cosmological parameters w and Omega_M, assuming a
spatially flat cosmological model (FwCDM) with constant dark energy equation of
state parameter, w. For the FwCDM model and the combined sample of 288 SNe Ia,
we find w = -0.76 +- 0.07(stat) +- 0.11(syst), Omega_M = 0.306 +- 0.019(stat)
+- 0.023(syst) using MLCS2k2 and w = -0.96 +- 0.06(stat) +- 0.12(syst), Omega_M
= 0.265 +- 0.016(stat) +- 0.025(syst) using the SALT-II fitter. We trace the
discrepancy between these results to a difference in the rest-frame UV model
combined with a different luminosity correction from color variations; these
differences mostly affect the distance estimates for the SNLS and HST
supernovae. We present detailed discussions of systematic errors for both
light-curve methods and find that they both show data-model discrepancies in
rest-frame -band. For the SALT-II approach, we also see strong evidence for
redshift-dependence of the color-luminosity parameter (beta). Restricting the
analysis to the 136 SNe Ia in the Nearby+SDSS-II samples, we find much better
agreement between the two analysis methods but with larger uncertainties.Comment: Accepted for publication by ApJ
DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton
Dimethylsulfoniopropionate (DMSP) is a globally important organosulfur molecule and the major precursor for dimethyl sulfide. These compounds are important info-chemicals, key nutrients for marine microorganisms, and are involved in global sulfur cycling, atmospheric chemistry and cloud formation1,2,3. DMSP production was thought to be confined to eukaryotes, but heterotrophic bacteria can also produce DMSP through the pathway used by most phytoplankton4, and the DsyB enzyme catalysing the key step of this pathway in bacteria was recently identified5. However, eukaryotic phytoplankton probably produce most of Earth’s DMSP, yet no DMSP biosynthesis genes have been identified in any such organisms. Here we identify functional dsyB homologues, termed DSYB, in many phytoplankton and corals. DSYB is a methylthiohydroxybutryate methyltransferase enzyme localized in the chloroplasts and mitochondria of the haptophyte Prymnesium parvum, and stable isotope tracking experiments support these organelles as sites of DMSP synthesis. DSYB transcription levels increased with DMSP concentrations in different phytoplankton and were indicative of intracellular DMSP. Identification of the eukaryotic DSYB sequences, along with bacterial dsyB, provides the first molecular tools to predict the relative contributions of eukaryotes and prokaryotes to global DMSP production. Furthermore, evolutionary analysis suggests that eukaryotic DSYB originated in bacteria and was passed to eukaryotes early in their evolution
Genetic Reporter System for Positioning of Proteins at the Bacterial Pole
Spatial organization within bacteria is fundamental to many cellular processes, although the basic mechanisms underlying localization of proteins to specific sites within bacteria are poorly understood. The study of protein positioning has been limited by a paucity of methods that allow rapid large-scale screening for mutants in which protein positioning is altered. We developed a genetic reporter system for protein localization to the pole within the bacterial cytoplasm that allows saturation screening for mutants in Escherichia coli in which protein localization is altered. Utilizing this system, we identify proteins required for proper positioning of the Shigella autotransporter IcsA. Autotransporters, widely distributed bacterial virulence proteins, are secreted at the bacterial pole. We show that the conserved cell division protein FtsQ is required for localization of IcsA and other autotransporters to the pole. We demonstrate further that this system can be applied to the study of proteins other than autotransporters that display polar positioning within bacterial cells
Reducing the Read Noise of H2RG Detector Arrays by more Efficient use of Reference Signals
We present a process for characterizing the correlation properties of the noise in large two-dimensional detector arrays, and describe an efficient process for its removal. In the case of the 2k x 2k HAWAII-2RG detectors (H2RG) detectors from Teledyne which are being used on the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), we find that we can reduce the read noise by thirty percent. Noise on large spatial scales is dramatically reduced. With this relatively simple process, we provide a performance improvement that is equivalent to a significant increase in telescope collecting area for high resolution spectroscopy with NIRSpec
Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family
Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes
Effect of Intervention With the Self-Determined Learning Model of Instruction on Access and Goal Attainment
Promoting self-determination has been identified as best practice in special education and transition services and as a means to promote goal attainment and access to the general education curriculum for students with disabilities. There have been, however, limited evaluations of the effects of interventions to promote self-determination on outcomes related to access to the general education curriculum. This article reports findings from a cluster or group-randomized trial control group study examining the impact of intervention using the Self-Determined Learning Model of Instruction on students’ academic and transition goal attainment and on access to the general education curriculum for students with intellectual disability and learning disabilities. Findings support the efficacy of the model for both goal attainment and access to the general education curriculum, though students varied in the patterns of goal attainment as a function of type of disability.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
- …
