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Abstract

It is generally accepted that the observed CMBR dipole arises from the

motion of the local group relative to the CMBR frame. An alternative inter-

pretation is that the dipole results from an ultra-large scale (� > 100c=H0)

isocurvature perturbation. Recently it was argued that this alternative pos-

sibility is ruled out. We examine the growth of perturbations on scales larger

than the Hubble radius and in view of this analysis, we show that the isocur-

vature interpretation is still a viable explanation. If the dipole is due to

peculiar motion then it should appear in observations of other background

sources provided that they are distant enough.

I. INTRODUCTION

The dipole moment is the most prominent feature in the Cosmic Microwave Background

Radiation (CMBR) anisotropy [1]. The dipole, which is larger by two orders of magnitude

than all other multipoles, is generally accepted to result from the earth's motion relative to

the CMBR frame. The main purpose of this paper is to emphasize the fact that the origin

of the dipole is not necessarily a Doppler e�ect. This idea has already been put forward

by a few authors ( [2], [3], [4]). However, it was recently claimed that these arguments
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were wrong [5]. We show here that a large scale isocurvature model for the dipole is a viable

alternative to the Doppler origin. Current observations of the CMBR dipole and quadrupole

are consistent with this possibility. We examine other potential implications of this scenario

and suggest observations that would con�rm or rule out the Doppler origin of the dipole.

Our starting point here will be the paper by Paczynski and Piran [3], hereafter denoted

PP. This paper is based on a Tolman-Bondi model (spherical symmetry and dust), which

contains a (gravitationally negligible) spherical distribution of radiation. It is shown that

a non centered observer can measure a signi�cant dipole due to such a radially varying

speci�c entropy (i.e. the ratio of the number density of photons to the number density of

baryons). These results were obtained by integrating numerically the light geodesics in the

Tolman-Bondi model.

The phenomenon described in PP can appear to the reader a bit arti�cial by the choice of

a very particular space-timemodel and the results are not intuitive in view of the complicated

numerical integration involved. Moreover, there was a recent claim [5] that the results of PP

are wrong and that it is impossible to obtain a dipole far larger than the quadrupole from

either isocurvature or adiabatic perturbations. It is, therefore, the purpose of this paper to

demonstrate that the phenomenon described in PP is on one hand true and on the other

hand is more general than it seems at �rst glance. To do so we show that the results of PP

can be obtained in the context of a linearly perturbed Friedmann-Robertson-Walker (FRW)

universe, within which the computation of the dipole and of the quadrupole can be carried

out analytically. These results depend, in fact, only on one crucial argument: the presence

of very large scale isocurvature perturbations (by very large scales, we mean scales far larger

than the Hubble radius today). It is essential to stress that the modes that contribute to

the observed CMBR dipole and quadrupole anisotropy are much larger than the Hubble

radius at last scattering. Therefore, we will focus our analysis only on the evolution of the

perturbation modes outside the Hubble radius.
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We also wish to answer to another objection which could have been made against the

model of PP, namely the fact that they consider our universe only in the phase of matter

domination and that they add an ad hoc isocurvature perturbation at the time of the last

scattering. A question of interest is whether some primordial isocurvature perturbations can

survive during the evolution of the universe and be su�ciently important at the time of last

scattering to produce e�ects comparable to those in PP. We show that this indeed the case

by considering the inuence of a pure isocurvature primordial perturbation on the dipole

and quadrupole moments.

The plan of this paper is the following. In the section 2, we introduce the concept of adi-

abatic and isocurvature linear perturbations in a at FRW background and we rederive the

equations governing their evolution. In section 3, we give the expression for the anisotropy

of the CMBR. In section 4, we make the connection between the Tolman-Bondi model used

by PP and our cosmological perturbations approach. Finally we summarize in section 5 the

observational implications of these results.

II. ADIABATIC AND ISOCURVATURE PERTURBATIONS

There are several formalisms for dealing with cosmological linear perturbations. The

oldest is due to Lifschitz [6] and uses the synchronous gauge. Another is the so-called

gauge-invariant formalism of Bardeen [7], which employs arbitrary gauge and constructs

gauge invariant quantities out of linear combinations of the perturbations. Finally there

is also a covariant approach of cosmological perturbations, pioneered by Hawking [8] and

developed recently by several authors [9] (see also references in [10]). We use here this

latter formalism which we �nd more convenient: it employs quantities with a clear physical

meaning, and in particular it provides a direct de�nition of the peculiar velocity, which turns

out to be useful in interpreting the Sachs-Wolfe e�ect (see [11]).

We begin by reviewing this cosmological perturbation theory for a single uid. Consider
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a space-time, endowed with a metric g�� , �lled with a perfect uid with a number density, n,

an energy density, �, a pressure, p and a four-velocity u�. One de�nes the comoving gauge

as a particular foliation of space-time into hypersurfaces that are orthogonal to the matter

ow u�. This foliation is identi�ed with the preferred foliation of the FRW spacetime (which

we take to be at for simplicity) representing the homogeneous approximation of the real

spacetime. Note that such a foliation always exists in the linear approximation (whereas, in

general, it requires a vorticity free ow).

We de�ne a local Hubble parameter by

3H = r�u
�: (1)

Using this de�nition, the local conservation of matter,

r� (nu
�) = 0; (2)

can be written as

d�

d�
= �3H(�+ p); (3)

where d=d� is the derivative along the ow lines u�r�. One can, then, write the Raychaud-

huri equation, ignoring the terms involving the shear and the vorticity which are second

order in the perturbations, as

dH

d�
= �H2 � 4�G

3
(�+ 3P )� 1

3

D2p

� + p
: (4)

The operator, D2, stands for D�D
� where D� is the covariant derivative projected on the

hypersurface orthogonal to the ow u�, i.e. D� = (g�� + u�u
�)r�. Equations 3 and 4 can be

combined to a single equation governing the time evolution of � = ��=�:

d2

dt2
� +H

�
2 + 3c2s � 6w

� d
dt
� � 3

2
H2

�
1 + 8w � 3w2 � 6c2s

�
� =

D2�p

�
; (5)

where t is the time parameter of the comoving hypersurfaces. It is related to the proper

time by ( [12])
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d�

dt
=

 
1� �p

�+ p

!
: (6)

The previous analysis deals only with a single perfect uid. One can extend this treat-

ment to several uncoupled perfect uids (see [13] and [12]), each speci�ed by its four-velocity

u�a, its energy density �a and its pressure Pa. We are interested only in �rst order deviations

from the FRW con�guration where all the uids have a common four-velocity. For each uid

one can de�ne a Hubble parameter Ha by an equation similar to (1). Moreover each uid

satis�ed a conservation equation similar to (3) since the uids are decoupled. It can then

be shown [12] that the Raychaudhuri equation for each uid becomes, ignoring higher order

perturbative terms,

dHa

d�
+H2

a +
4�G

3
(�+ 3p) = �1

3

D2pa

�a + pa
+
H �Ha

�a + pa
_pa: (7)

By linearizing the conservation equation and the Raychaudhuri equation, one �nds a system

of coupled �rst order di�erential equations,

d

dt
�a = 3Ha�a

�p

�a
� 3 (1 + wa) �Ha + 3Ha

�
wa � c2a

�
�a; (8)

and

d

dt
�Ha = �2H�Ha � 4�G

3
��� 1

3

D2pa

�a + pa
+

P
a �a�Ha � �Ha

�a + pa
_pa; (9)

where one has de�ned

�a =
�a + pa

�+ p
; wa =

pa

�a
: (10)

A dot denotes the time derivation for the homogeneous background quantities.

If one considers only two uids, it is useful to introduce the perturbation in the ratio of

the number density

S =
�1

1 + w1

� �2

1 + w2

; (11)
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and the total density perturbation

� =
��1 + ��2

�1 + �2
=
�1

�
�1 +

�2

�
�2: (12)

A general perturbation can be described by the pair (�1; �2) or alternatively by the pair

(S; �). An adiabatic perturbation satis�es S = 0 and an isocurvature perturbation satis�es

� = 0. Unfortunately, these conditions are not invariant with time and a perturbation that

begins as an isocurvature perturbation generates an adiabatic component and vice versa.

This was the origin of the claim of [5] that the analysis of PP is wrong. However, as we

show later, and [5] fail to realize, for perturbations larger than the horizon, if S ' 0 initially

S will remain very small with respect to � and vice versa. In particular this decomposition

is meaningful for primordial uctuations.

We now rewrite equations (8) and (9), adapted to the variables (�1; �2), as evolution

equations for the quantities � and S. Using (8) and _wa = �3H(c2a � wa)(1 + wa) (where

c2a =
_Pa= _�a), one �nds that

d

dt
S = �3 (�H1 � �H2) : (13)

Di�erentiating this equation and using (9), we obtain a second order di�erential equation

for S:

d2S

dt2
+
�
2� 3c2z

�
H
dS

dt
= c2zD

2S +
�
c21 � c22

� D2�

1 + w
; (14)

where c2z = c21�2 + c22�1. Finally the equation for the evolution of the density perturbations

� follows from (5) when one expresses �P in terms of � and S:

d2�

dt2
+H

�
2 + 3c2s � 6w

� d�
dt
� 3

2
H2

�
1 + 8w � 3w2 � 6c2s

�
� = c2sD

2� + (c21 � c22)�1�2(1 + w)D2S:

(15)

The physical situation, which we consider from now on, is the case where uid 1 is

pressureless (c21 = 0) and uid 2 is radiation (c22 = 1=3). We de�ne aeq as the scale factor at
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the matter-radiation transition, i.e. when the energy densities of the two uids are equal.

Then, by using �1=�2 = a=aeq, one has

c2s =
1

3

 
1 +

3

4

a

aeq

!
�1

; c2z =
1

3

�
1 +

4

3

aeq

a

�
�1

; (16)

and

w =
1

3

 
1 +

a

aeq

!
�1

; (c21 � c22)�1�2(1 + w) = �1

3

 
1 +

3

4

a

aeq

!
�1 �

1 +
aeq

a

�
�1

: (17)

Note that with this choice of uids 1 and 2 our de�nition of S corresponds to the opposite

of the variation of the speci�c entropy, i.e. the ratio of the number density of photons to

the number density of dust (denoted S in PP).

It is convenient to introduce the Fourier decomposition of the perturbations according

to the de�nition

S~k =
Z

d3x

(2�)3=2
e�i

~k:~xS(~x); (18)

with a similar de�nition for �~k. The evolution equations for the Fourier modes are simply

equations (14) and (15) modi�ed with the substitution of �k2=a2 in place of D2. Each

Fourier mode evolves independently of all the other modes, and one can thus study each

mode individually. In standard cosmology the matter satis�es the strong energy condition

3p + � > 0 and the comoving Hubble radius (aH)�1 increases with time as the universe

expands (the inverse is true during ination). This implies that any given Fourier mode

was outside the Hubble radius at su�ciently early time. Consequently, it is traditional,

in standard cosmology, to de�ne the initial conditions for the perturbations during the

radiation dominated era at a stage when the relevant mode was outside the Hubble radius,

i.e. when k � aH. During this stage, the r.h.s. of equation (14) can be neglected and the

corresponding solutions are S~k � const: and S~k � ln(t). The second solution is singular in

the past and can be ignored. We see that primordial isocurvature perturbations are constant

in time when they are outside the horizon:
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S~k(t) ' S
p
~k
; (19)

where the superscript 'p' denotes the primordial value. This remains true even after the

transition between radiation domination and matter domination, as long as the modes are

outside the Hubble radius (see Figure 1).

The isocurvature mode generates an adiabatic perturbation. We have integrated nu-

merically the evolution of the density mode �k produced by a pure isocurvature primordial

perturbation (�k = 0). We �nd that �k grows. However, as long as the mode remains outside

the Hubble radius, the value of �k is small with respect to the corresponding value of Sk.

During the radiation era (see [10]),

�k �
 
a

aeq

!2  
k

aH

!2

Spk: (20)

The amplitude of the density perturbation mode continues to grow after the radiation-matter

transition, but as long as the mode is outside the Hubble radius, the amplitude is bounded

from above by the asymptotic limit (see Fig. 2 and also [10])

�k =
2

15

 
k

aH

!2

Spk : (21)

These results contradict the claim in [5] that the isocurvature perturbation is converted

into an adiabatic perturbation after the equivalence. Our results are in agreement with other

works (see [10] and references therein). To summarize, for the primordial isocurvature modes

that remain outside the Hubble radius, Sk remains constant during the whole evolution,

whereas the density perturbations �k, initially zero, grows like a4 during the radiation era,

then like a during the matter era, while remaining small with respect to Sk. Once the

perturbations enter the Hubble radius both Sk and �k grow rapidly (see Fig. 1).

The same analysis for a primordial adiabatic perturbation reveals that, in the initial era,

�k grows like a
2 while Sk, initially zero, evolves like

Sk � a

aeq

 
k

aH

!2

�k: (22)
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During the matter era, �k grows like a. We refer the reader to [10] for a more detailed

discussion on adiabatic perturbations.

III. THE COSMIC MICROWAVE BACKGROUND RADIATION

We turn now to the relation between the perturbations, discussed in section 2, and the

observed CMBR anisotropy. The observed CMBR is the image of the last scattering surface

which arrives today to our eyes (or in fact to our radio antennas). The uctuations in the

observed temperature are the consequence of both the perturbations in the matter content

of the universe at the time of the last scattering and the perturbations of the geometry in

the regions between the last scattering and us.

The temperature uctuations due to the matter perturbations at the time of last scat-

tering are intrinsic uctuations. Since the radiation energy density is proportional to T 4 one

always has:

�T

T
=

1

4

��r

�r
: (23)

For an adiabatic perturbation (S = 0), (11) implies

�r =
4

3
�m: (24)

The last scattering occurs during the matter dominated era, i.e. when �r < �m, hence

�� ' ��m and therefore

�
�T

T

�
int

' 1

3
�; adiabatic perturbation; matter era: (25)

For an isocurvature perturbation, ��r = ���m. Hence during the matter era, �m can be

neglected with respect to �r and (11) yields S ' �(3=4)�r. Therefore
�
�T

T

�
int

' �1

3
S; isocurvature perturbation; matter era: (26)
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The second source of the CMBR temperature uctuations is the so-called Sachs-Wolfe

e�ect [14]. It corresponds to the inuence of the metric perturbations on the light rays during

their travel between the last scattering surface and \our eyes". To express the Sachs-Wolfe

e�ect we introduce the gravitational �eld  and the peculiar velocity ~v. The gravitational

�eld,  , is given by the relativistic generalization of the Newtonian Poisson equation with a

FRW background,

3

2
H2� = D2 : (27)

During the matter dominated era, as stated in section 2, the dominant solution for the

density perturbation grows like � � a and therefore the gravitational �eld is constant in

time. Ignoring the decaying mode, the peculiar velocity �eld is de�ned as (see e.g. [10])

~v = �t ~D : (28)

Using  and ~v one can write the Sachs-Wolfe contribution to the CMBR anisotropy as

�
�T

T

�
SW

(~e) =
1

3
[ em �  0] + ~e: [~vem � ~v0] ; (29)

where ~e is the unit vector corresponding to the direction of observation on the celestial

sphere. The subscript em means that the corresponding quantity is evaluated at the point

on the last scattering surface that is observed today in the direction ~e. The subscript 0

refers to the observer today.

The combination of equations (25) and/or (26) with equation (29) gives us the total

CMBR anisotropy observed today (at least for large angular scales) for any con�guration of

the adiabatic and isocurvature perturbations, which is here speci�ed in terms of the functions

 (r) and S(r) at the time of last scattering.

The observed CMBR temperature uctuations are generally decomposed in spherical

harmonics :

�T

T
(�; �) =

1X
l=1

lX
m=�l

almYlm(�; �); (30)
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where � (varying between 0 and �) and � (varying between 0 and 2�) are the usual angle co-

ordinates on the two-sphere. One can express the individual coe�cients of the decomposition

as

alm =
Z
d� sin � d�

�T

T
(�; �)Y �

lm(�; �); (31)

In the particular spherically symmetric case, which we examine in the following, the

temperature uctuations depend only on the angle �, and all the coe�cients with m 6= 0

vanish ( [15]). The non vanishing dipole and quadrupole coe�cients are

a10 =
Z 1

�1

�T

T
(u)Y10(u)du; (32)

and

a20 =
Z 1

�1

�T

T
(u)Y20(u)du; (33)

with

Y10(u) =

s
3

4�
u; Y20(u) =

s
5

4�

�
3

2
u2 � 1

2

�
; (34)

where u = cos �.

In the expression (31) the temperature anisotropy �T
T

can also be seen as a function of

~x and can thus be decomposed in terms of its Fourier modes de�ned according to (18). We

obtain

alm =
Z

d3k

(2�)3=2
d
xY

�

lm(
x)e
i~k:~x

�
�T

T

�
~k

: (35)

where 
x is the solid angle corresponding to ~x. x is the norm of ~x and represents the

comoving distance between the observer and the last scattering surface. To a very good

approximation, x ' 2(H0a0)
�1 (the exact expression is given in (56)). Using then the

identities

ei
~k:~x = 4�

X
l;m

iljl(kx)Ylm(
x)Y
�

lm(
k) (36)
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and Z
d
Yl1m1

(
)Y �

l2m2
(
) = �l1l2�m1m2

; (37)

one �nds

alm = 4�
Z

d3k

(2�)3=2
iljl(kx)Y

�

lm(
k)

�
�T

T

�
~k

: (38)

For kx� l(l+ 1)=2,

jl(kx) � 1

kx
sin(kx� l�=2): (39)

In the expression (38) the small scales are suppressed due to the presence of the factor

jl(kx). A rough estimate of the coarse graining scale is x for the dipole and x=3 for the

quadrupole. In any case the modes that contribute to (32) and (33) are large scale modes,

whose wavelength is far larger than the Hubble radius at the time of last scattering. The

latter corresponds to an angular scale of 1o today. In practice we are thus allowed to work

with the perturbations smoothed on a scale of the order of a few times the (comoving)

Hubble radius at the last scattering. On one hand, these smoothed perturbations will not

change the results in (32) and (33) at the notable exception of the dipole term due to �~e:~v0.
On the other hand, these smoothed perturbations contain only Fourier modes that remain

outside the Hubble radius until the last scattering and are thus far easier to handle, as shown

in the previous section.

To conclude this section we recall here that the satellite COBE [16] has measured the

dipole and quadrupole components of the CMBR anisotropy to be:

D �
vuut 1

4�

1X
m=�1

ja1mj2 ' 2� 10�3; (40)

Q �
vuut 1

4�

2X
m=�2

ja2mj2 ' 5 � 10�6: (41)

In fact the directly measured dipole is of the order D ' 1:23�10�3 but we have extrapolated

this result, as is usually done, to get a dipole measured with respect to the Local Group

frame [17].
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IV. THE TOLMAN-BONDI MODEL

The purpose of this section is to recover the numerical results of PP by an analytical

method which is based on the linear theory presented in the previous sections. Indeed,

although PP treated the complete non linear Tolman-Bondi (TB) problem, one can see from

the order of magnitude of their quantities that one can study the same problem within the

linear approximation. We begin, therefore, with the complete TB solution and we linearize

it around the background solution of a at FRW model.

The TB solution is given by the metric

ds2 = �dt2 +X2(r; t)dr2 +R2(r; t)d
2; (42)

where the coordinate r is a comoving coordinate attached to an element of the dust uid.

The solution is characterized by two arbitrary functions of r. The �rst, W (r), expresses how

bound is a given shell r with the binding energy being W (r)� 1. The second ts(r) describes

the time in which the radius of a given shell vanishes and, following PP, we will consider

here only solutions with ts = 0. We de�ne the gravitational mass as

mb(r) �
Z r

0
3r2W (r)dr: (43)

The metric functions X and R satisfy then

X =
R0

W (r)
; (44)

_R2 = W 2(r)� 1 +
2mb(r)

R
; (45)

where a dot denotes a partial derivative with respect to the time coordinate t and a prime

denotes a partial derivative with respect to the radial coordinate r. The mass density �m(r; t)

is given by the expression

�(r; t) =
3r2

4�XR2
: (46)
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Our background model is a dust dominated at FRW universe, corresponding to the

particular TB solution with W (r) = 1. One can easily solve (44) and (45) in this case, and

with the initial condition R(r; 0) = 0, one �nds

X = a(t); R = a(t)r: (47)

The FRW scale factor a(t) is explicitly given by

a(t) = �t2=3; � = (9=2)1=3: (48)

Consider now a small deviation from this at FRW model:

W (r) = 1 + �W (r): (49)

Then the linearization of equations (44) and (45) yields

�X = �R0 � a�W; (50)

and

_ar _�R +
r

a2
�R = �W +

2

ar

Z
3r2�Wdr: (51)

The second term on the right hand of this last equation decays like a�1 with respect to the

�rst one. Dropping it, one can easily �nd the dominant solution:

�R =
9

10�

�W

r
t4=3: (52)

The dominant solution for �X follows immediately:

�X =
9

10�

 
�W

r

!
0

t4=3: (53)

One can also obtain the dominant solution for the matter energy density �m:

�m = � 9

10�2
(r�W )0

r2
t2=3 = �9t

2=3
0

10�2
(1 + z)�1

(r�W )0

r2
: (54)
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Substitution of expression (54) for �m in the Poisson equation (27) and using (48) yields

an expression for the gravitational potential:

 (r) = � 3

5r

Z
dr
(r�W )

0

r
: (55)

 is time independent as expected.

It remains to calculate the temperature anisotropy for this spherical symmetric model.

Consider an observer located at r0 at time t0. There is a preferred axis which links this

observer to the center r = 0. Since there is an axial symmetry around this axis, one can

restrict oneself to the meridional plan. One then denotes � the angle between the preferred

axis and the direction of observation (� varies between 0 and �). Let d be the comoving

distance between the observer and the last scattering surface:

d = 2H�1
0 a�10

h
1� (1 + z)�1=2

i
= 3��1t

1=3
0

h
1 � (1 + z)�1=2

i
; (56)

where z is the redshift corresponding to the last scattering surface (for the numerical appli-

cation, we shall take 1+ z = 1000). Then the radial distance of a point of the last scattering

surface corresponding to the angle of observation � is given by

r2 = d2 sin2 � + (r0 + d cos �)2 : (57)

Finally, using (29) and (28) the temperature anisotropy of the CMBR is given by

�T

T
(�) =

�
�T

T

�
int

(rem) +
1

3
[ (rem)�  (r0)] +

�
t

a

�
em

d 

dr
(rem)

r0 cos � + d

r
�
�
t

a

�
0

d 

dr
(r0) cos �:

(58)

If the function �T=T varies su�ciently slowly one can expand it in a Taylor series and

evaluate analytically the integrals (32) and (33). Starting with the Sachs-Wolfe part of the

temperature uctuation, one can see that there is a cancellation in the non symmetric terms

(i.e. the dipole terms) at the order (d2=r20) and that one must therefore go to the following
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order (d3=r30), which also implies that terms proportional to u3 will appear. One �nally

obtains

�
�T

T

�
SW

(u) ' D1SWu+D2SWu
3 +QSWu

2; (59)

with

D1SW =

"
�1

2
r0
d 

dr
(r0) +

r20
2

d2 

dr2
(r0)

#
d2

r20

 
d

3
+ 3��1t

1=3
0 (1 + z)�1=2

!
+O

 
d4

r40

!
; (60)

D2SW =

"
1

2
r0
d 

dr
(r0)� r20

2

d2 

dr2
(r0) +

r30
6

d3 

dr3

#
d2

r20

 
d

3
+ 3��1t

1=3
0 (1 + z)�1=2

!
+O

 
d4

r40

!
(61)

and

QSW = d

"
d2 

dr2
(r0)� r�10

d 

dr
(r0)

# 
d

6
+ ��1t

1=3
0 (1 + z)�1=2

!
+O

 
d3

r30

!
: (62)

The intrinsic temperature uctuation is simpler to evaluate. If we note (�T=T )int = I,

where I is either �=3 in the adiabatic case and �S=3 in the isocurvature case, then the

Taylor expansion yields

�
�T

T

�
int

(u) ' DIu+QIu
2; (63)

with

DI =
dI

dr
(r0)d +O

 
d2

r20

!
; (64)

QI =
d2

2

"
d2I

dr2
(r0)� r�10

dI

dr
(r0)

#
+O

 
d3

r30

!
: (65)

Finally the total dipole and quadrupole, expresses in terms of the above coe�cients, are

D =
1p
3

�
DI +D1SW +

3

5
D2SW

�
; (66)

and
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Q =
2

3
p
5
(QI +QSW ) : (67)

The expression seems similar for both the isocurvature and adiabatic perturbations.

However, the Poisson equation (27) with the expression (56) shows that � is always of the

order (d=r0)
2(1+z)�1 times  . Therefore the intrinsic dipole contribution due to � is smaller

than the Sachs-Wolfe dipole by a factor of the order (1 + z)�1 and is thus always negligible.

But when there is an isocurvature perturbation, one sees, in contrast, that the intrinsic

dipole will be in general the dominant term.

A. PP results

We are now in position to compute analytically the results of PP. Their speci�c model

corresponds here to

�W (r) = �1

2

1� r2

1 + r2
r2; (68)

and

S(r) =
1

2

r2

1 + r2
: (69)

It turns out that this expression for �W (r) yields an explicit expression for  (r):

 (r) =
3

10

"
1 � r2

1 + r2
r � r

2
+
ln(1 + r2)

r

#
: (70)

The numerical results are the following (with t0 = 10�6):

DI (iso) ' �1:47 � 10�3; D1SW ' �1:26 � 10�7; D2SW ' 5:09 � 10�7 (71)

QI(iso) ' 2:58� 10�5; QSW ' �6:94 � 10�6: (72)

For the model without isocurvature perturbation, one �nds D ' 1:0 � 10�7 and Q '
2:1� 10�6, whereas for the model with isocurvature perturbation, one �nds D ' 8:5� 10�4

17



and Q ' 1:9� 10�5. These numerical results should be compared with the results obtained

by numerical integration of the light rays, and given in the �gures 3 and 4 of PP. Our results

here are limited to r0 = 1 since we have assumed a at space from the beginning. The

numerical values given above correspond to t0 = 10�6 but the corresponding values for a

di�erent t0 can be obtained immediately by noticing that the dependence on t0 of DI is

due to an overall multiplicative term t
1=3
0 whereas D1SW and D2SW are proportional to t0,

and QSW and QI proportional to t
2=3
0 . Comparison with PP shows a good agreement, thus

con�rming the conclusions of PP, although there are small discrepancies between the precise

numerical values, which we cannot explain.

One could have argued against the results of PP that their two perturbations are a priori

completely independent. The question arises what will happen if one considers an initial set

of primordial perturbations and let it evolve in time until the time of last scattering. Will

it be possible to reproduce similar results with these more stringent conditions? In [5], it is

argued that it will be impossible to recover PP results. What we show in the next subsection

is that indeed we can recover the same behavior.

B. Primordial isocurvature perturbation

We turn now to consider the extreme case where primordial isocurvature perturbations

on extremely large scale (i.e. scales much larger than the horizon) are the only source of the

observed dipole and quadrupole. We denote by Spk the modes of the primordial isocurvature

perturbation (k < a0H0). It follows from the analysis of Section 2 that:

Sk(tls) ' Spk (73)

where ls stands for the last scattering. The primordial isocurvature perturbation has also

generated a energy density perturbation given by

�k =
2

15

 
k

aH

!2

Spk ; (74)
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and a corresponding gravitational potential:

 k = �1

5
S
p
k: (75)

We choose, as an example, a primordial isocurvature perturbation of the form

Sp(r) = as
(r=rs)

2

1 + (r=rs)2
: (76)

One can adjust the two parameters of the perturbation, namely the amplitude as and the

wavelength rs, to reproduce exactly the measured dipole and quadrupole. One �nds as '
2:94 and rs ' 2:80, which means that the wavelength of the perturbation must be roughly

150 times larger than the Hubble radius today. Note that such adjustment is possible only

for isocurvature modes. This would be impossible with an adiabatic mode, as will be shown

clearly in the next section.

V. INTERPRETATION OF THE RESULTS

Before turning to observational implications, we wish to extract, in this section, the

essential arguments which explain why the isocurvature perturbation and the adiabatic per-

turbation produce such di�erent results. To show this we consider a plane wave perturbation

and obtain rough estimates for all terms involved. We show in particular that the ratio D=Q

for a very large scale perturbation is inverted when one goes from an adiabatic to an isocur-

vature perturbation.

A. Adiabatic perturbations

We have already emphasized that the main contribution to the dipole or even to the

quadrupole arises from large scales. We shall restrict, therefore, our analysis to the Fourier

modes outside the Hubble radius (at the time of the last scattering). The Fourier transform

of the relativistic Poisson equation (27) reads
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�k = �2

3

 
k

aH

!2

 k: (77)

Assuming a monochromatic perturbation of the form � � �ke
ikx, the intrinsic dipole contri-

bution is, therefore, of the order

DIf�g �
 

k

a0H0

!
�k �

 
k2

a2H2

!
ls

 
k

aH

!
0

 k: (78)

The dipole contribution of  =3 is given by ( [11])

Df1
3
 g = � < ~v(t0)� ~v(tls) >; (79)

where the average is taken over the comoving volume de�ned as the intersection of our past

light-cone with the last scattering hypersurface

< ~v(t) >= V �1
ls

Z
ls
d3x~v(t; ~x): (80)

Finally, we recall that the peculiar velocity evolves like t=a. Thus, the peculiar velocity

at the last scattering is negligible with respect to the peculiar velocity today and the main

contribution to the Sachs-Wolfe dipole for adiabatic perturbations is

DSW ' ~e: (~v0� < ~v > (t0)) : (81)

This result corresponds to the standard statement that the dipole is due to the relative

motion of the Earth. Note that this calculation gives a precise de�nition of the relative

velocity of the Earth and in particular with respect to which frame.

Using a Taylor expansion within the integral in (80) one obtains:

DSW ' ~e: (~v0� < ~v > (t0)) �
 

k2

a20H
2
0

!
vk(t0) �

 
k

a0H0

!3

 k: (82)

~v0 corresponds, in this formula, to our peculiar velocity induced only by the single very large

scale mode under consideration. If one takes into account the contribution of small scale

modes to our peculiar velocity then one sees that the net measured velocity (and hence the
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measured dipole) will be dominated by the contribution of the sub-horizon modes. Moreover,

comparison of (78) with (81) and (82) shows that DIf�g � (1 + z)�1DSW and therefore the

total dipole is D ' DSW .

The expected dipole can be evaluated given a power spectrum (the adiabatic pertur-

bations are supposed to be distributed like a Gaussian random �eld). Using the power

spectrum P of  de�ned by

h ~k �~k0
i = 2�2k�3P (k)�(~k � ~k0); (83)

we �nd, taking into account only the (dominant) term ~e:~v0,

hja10j2i = 16�

27

Z
dk

k

 
k2

(a0H0)2

!
P (k): (84)

For the most common spectrum, namely the scale invariant Harrison-Zeldovich spectrum,

P is a constant and we express it as a function of the expected quadrupole

P =
27

�
�2
2; (85)

with �2
2 = hja2mj2i. The contribution to the rms-dipole of the uctuations of scales larger

than a given scale is obtained by integrating the above expression (84) with a lower cut-o�

�k. Hence

hv2i1=2 =
s

3

4�
hja10j2i1=2 =

s
6

�
�2

�k

a0H0

: (86)

This gives for the peculiar velocity

vrms ' 250km s�1 (Qrms�PS(n = 1)=17�K)
�
�=50h�1Mpc

�
�1

; (87)

where h is the Hubble constant in units 100 km s�1Mpc�1 and � is the smoothing scale

for the uctuations (the relation between Qrms�PS(n = 1) such as it is de�ned in [16] and

�2 is �2 =
q
4�=5(Qrms�PS=T0), where T0 = 2:73K is the CMBR monopole temperature).

Instead of using a cut-o� in the Fourier space, one may wish to introduce a cut-o� in the
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real space, i.e. use a top hat window function, in which case the expression (86) should be

multiplied by the factor
p
4:5 ' 2. This relation shows that our velocity measured with

respect to a given frame is inversely proportional to the distance of this frame from us.

The CMBR quadrupole is given by the quadrupole part of  =3 which is of the order

Qad �
 

k2

a20H
2
0

!
 k: (88)

The expected ratio between the dipole and quadrupole contributions arising from a single

mode very large scale adiabatic perturbation is, therefore, of the order

 
D

Q

!
ad

�
 

k

a0H0

!
: (89)

This is less than unity, by de�nition, hence the observed dipole and quadrupole cannot be

explained by such a perturbation. In the context of adiabatic perturbations, the origin of

the dipole must be only peculiar velocity.

Note �nally that, since aH = (1 + z)1=2a0H0 and aH � t
�1=3
0 in the matter dominated

era, expressions (82) and (88) show that D � t0, Q � t
2=3
0 and (D=Q)ad � t

1=3
0 . This is in

agreement with the numerical dependence observed by PP.

B. Isocurvature perturbations

We turn now to isocurvature perturbations. Whereas the dependence on the gravitational

potential  of the Sachs-Wolfe term due to a primordial isocurvature perturbation is the same

as that due to a primordial adiabatic perturbation, the intrinsic contribution is drastically

di�erent. In particular the dipole of the intrinsic anisotropy,

Df�1

3
Sg �

 
k

a0H0

!
 k; (90)

is dominant with respect to the Sachs-Wolfe dipole for scales larger than the Hubble radius

today. The total quadrupole, on the other hand, is comparable to the adiabatic one:
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Qiso �
 

k2

a20H
2
0

!
 k: (91)

Combining the last two expressions, we �nd that the expected ratio between the dipole and

quadrupole is

 
D

Q

!
iso

�
 

k

a0H0

!
�1

: (92)

Once more, a comparison with the numerical behaviours observed in PP is instructive. The

quadrupole Q has the same form as in the adiabatic case: Q � t
2=3
0 . The dipole is di�erent

and it follows from the above expression that it evolve like D � t
1=3
0 . The ratio behaves now

like (D=Q)iso � t
�1=3
0 . All these dependences are con�rmed by the numerical results of PP.

C. Continuous isocurvature spectrum

So far we have dealt only with ultra large scale monochromatic perturbations. One can

wonder what will be modi�ed when one considers a continuous spectrum instead of a single

mode. We examine here only a pure isocurvature primordial spectrum. The case of an

adiabatic power spectrum is extensively treated in the literature (see e.g. [10]).

We consider primordial isocurvature perturbations that are described by a homogeneous

and isotropic Gaussian random �eld, which is completely speci�ed by its power spectrum

PS(k):

hS~kS�~k0
i = 2�2k�3PS(k)�(~k � ~k0): (93)

In particular one can compute the variance of the distribution of the multipoles as a function

of the power spectrum PS:

�2
l = hjalmj2i = 4�

9

Z
dk

k
PS(k)j2l (2k=a0H0); (94)

where it is assumed that the intrinsic contribution is the dominant one in the temperature

anisotropy. The dipole and quadrupole correspond roughly to �1 and �2 respectively. We
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now assume that the power spectrum is a power law PS(k) ' Akn, which is a standard

assumption made in cosmology, and moreover that this power spectrum as an upper cut-o�

�k.

If the cut-o� �k is such that �k � a0H0, then it is legitimate to use the approximation

jl(x) ' xl

(2l + 1)!!
; x� 1: (95)

One can then calculate explicitly the dipole and the quadrupole:

D � �k(n+1)=2(a0H0)
�1; Q � �k(n+3)=2(a0H0)

�2: (96)

The ratio between the dipole and quadrupole due to a very large scale (power-law) power

spectrum should thus be of the order

D

Q
�
 

�k

a0H0

!
�1

; (97)

which is of the same order as in the case of a monochromatic perturbation.

If there is no cut-o� in the power spectrum or if the cut-o� is smaller than the Hubble

radius today, i.e. �k � a0H0, then the dominant contribution in the integral (94) both for

l = 1 and l = 2 will come from the wavelengths roughly of the same order than the Hubble

radius (today), as explained at the end of section 3. Therefore the corresponding dipole and

quadrupole should be of the same order of magnitude in this case. Beware that the dipole and

quadrupole here are computed by taking into account only the intrinsic contribution. For

the scales smaller than the Hubble radius (today), the primordial isocurvature modes have

produced adiabatic perturbations with corresponding gravitational potential and peculiar

velocity �eld. The dipole can therefore be dominated by the Doppler e�ect due to our

peculiar velocity, as in the standard interpretation of the dipole, and we thus �nd that the

dipole can be large relative to all other multipoles, even in this case.

Finally we must mention the hybrid possibility that the observed dipole could result

of a combination of a Doppler e�ect (due to either adiabatic or isocurvature primordial

perturbations) and of an intrinsic ultra large scale isocurvature contribution.
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VI. CONCLUSION

We have shown that it is possible that the observed CMBR dipole, or a signi�cant frac-

tion of it, has a non Doppler origin. This can happen if there is a suitable ultra large scale

(typically beyond 100 times the size of the present Hubble radius) isocurvature perturbation.

That is an ultra large scale uctuation in the ratio of photons to baryons. This uctuation

will induce predominantly a dipole component in the observed horizon, without inducing

higher order multipoles. This uctuation should not be accompanied by isocurvature per-

turbations on smaller scales (between 100H�1
0 and 0:1H�1

0 ), because these would induce

higher order moments which would then be comparable to the dipole.

It is clear from the above analysis that if the observed CMBR has a non Doppler origin

then there should be a unique mechanism that would produce these very large scale isocur-

vature perturbations and will distinguish them from the rest of the power spectrum. A

priori there are several possible origins for these ultra large scale perturbations. They could

have been produced during an ination era: the model of ination (see e.g. [18]) must then

include several scalar �elds in order to allow for isocurvature perturbations in addition to

the always present adiabatic ones. Another explanation would be that these perturbations

are the remnants of the preinationary epoch of the universe, as was suggested by Turner

[4]. Indeed, if the duration of ination is slightly more than what is needed to solve the

\horizon" problem, then the scales that were larger than the Hubble radius at the onset of

ination would be today also larger than the Hubble radius but not by a large amount.

Is it possible to distinguish between an isocurvature dipole and a dipole due to our

peculiar velocity? Luckily, there is a clear direct observational test. We have seen in the

last section that the dominant contribution to our peculiar velocity arises from small scale

modes and hence it should converge to the same velocity when it is measured relative to

di�erent distant frames. Thus a peculiar velocity dipole will induce the same dipolar pattern

in other background �elds, such as the X-ray background or -ray bursts which are located
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at z � 1� 2. Depending of the power spectrum even nearer frames such as optical galaxies,

IRAS galaxies, distant supernovae and Abell clusters should display similar peculiar motion

pattern. Note however, that for distances smaller than the horizon the intrinsic contribution

to the dipole might not be negligible and uctuations in the density of sources should be

included [19]. A convergence of all those peculiar velocities will support the Doppler origin

of the CMBR. A �nal con�rmation should arise if the observed peculiar motion is consistent

with the expected r.m.s. value of this quantity, given by Equation (86), as calculated from

the observed power spectrum of the matter uctuations (one has of course to be careful here

about cosmic variance). If this interpretation is con�rmed then the measured quadrupole

shows that the Universe is homogeneous at least on scales that are larger by 105 than the

current horizon. This will immediately rule out the existence of signi�cant ultra large scale

isocurvature perturbations and cosmological scenarios that produce them.

If, on the other hand, the observed dipole is due to extremely large scale isocurvature

uctuations, it should not have any corresponding signature on small scales. We expect, in

this case that the observed dipole relative to the nearer frames, mentioned earlier, will still

converge, but now to a di�erent velocity in both magnitude and direction than the velocity

implied by the CMBR dipole. We should point out that failure of the peculiar velocity to

converge on those nearer scale would imply that the primordial power spectrum has some

peculiar behavior on intermediate scales, a behavior that causes the integral in equation (94)

to uctuate.

The observed CMBR dipole implies a velocity of the local group of 627� 22 km s�1 and

it points towards the galactic coordinates (l = 276o � 3o; b = 33o � 3:o). The magnitude

of this velocity is larger than the expected r.m.s. value for a Harrison-Zel'dovich spectrum

normalized by COBE, which is several hundred km s�1. The measured dipole in the X-

ray background [20], which arises from sources at z � 1:5 is within the statistical errors.

The dipole has not been measured relative to any other sources at comparable distances.
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However, it has been measured relative to nearby galaxies [21], IRAS galaxies [22] and distant

supernovae [23] which are all at z < 0:03. The COBE observations are within the statistical

errors of all those measurements. This suggests that we are observing the convergence of the

dipole on smaller scales. The observed dipole in distant Abell clusters [24] whose magnitude

is 561 � 284 km s�1 towards (l = 220o � 27o; b = �28o � 27o) is, however, inconsistent with

the CMBR dipole. It is also inconsistent with the distant supernovae dipole [23] which is

measured relative to objects at the same distances. Hence we can conclude that at present

the observational situation tends towards the conventional Doppler origin but the situation

is inconclusive yet. Further measurement in the future of dipole relative to additional frames

or re�nement of current measurements should provide a conclusive answer in the future.
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FIGURES

Fig. 1: The amplitude of the entropy perturbation (Sk) and the density perturbation

(�k) as a function of log(a=aeq), for an initial pure isocurvature perturbation with an initial

amplitude 10�2. Three di�erent wavelengths are shown. The �rst (solid curve for S and

dotted curve for �) remains always larger than the horizon. The second (short-dashed curve

for S and long-dashed curve for �) enters the horizon at a � 1:5aeq, which is marked in the

�gure by a square. The third perturbation (dashed-dotted curve for S and curve dashed-dotted

line for �) enters the horizon at a � 0:05aeq, which is marked by a triangle.

Fig. 2: The quantity (aH=k)2�k as a function of log(a=aeq) for a primordial pure isocur-

vature perturbation with �ve di�erent wavelengths. The two long wavelengths (dotted curve

and long-dashed-short-dashed curve) overlap. These modes do not enter the horizon and they

approach the asymptotic limit (straight solid curve) 2/15. An intermediate wavelength per-

turbation (short dashed curve) deeps slightly before going up after it has entered the horizon

at a � aeq. The same behaviour is seen in the two short wavelength perturbations (solid curve

and long-dashed curve) which deep �rst and then grow rapidly after entering the horizon at

a < 0:1aeq.

30


