1,574 research outputs found

    Coccidioidomycosis: a reemerging infectious disease.

    Get PDF
    Coccidioides immitis, the primary pathogenic fungus that causes coccidioidomycosis, is most commonly found in the deserts of the southwestern United States and Central and South America. During the early 1990s, the incidence of coccidioidomycosis in California increased dramatically. Even though most infections are subclinical or self-limited, the outbreak is estimated to have cost more than $66 million in direct medical expenses and time lost from work in Kern County, California, alone. In addition to the financial loss, this pathogen causes serious and life-threatening disseminated infections, especially among the immunosuppressed, including AIDS patients. This article discusses factors that may be responsible for the increased incidence of coccidioidomycosis (e.g., climatic and demographic changes and the clinical problems of coccidioidomycosis in the immunocompromised) and new approaches to therapy and prevention

    A rapid change in virulence gene expression during the transition from the intestinal lumen into tissue promotes systemic dissemination of Salmonella.

    Get PDF
    Bacterial pathogens causing systemic disease commonly evolve from organisms associated with localized infections but differ from their close relatives in their ability to overcome mucosal barriers by mechanisms that remain incompletely understood. Here we investigated whether acquisition of a regulatory gene, tviA, contributed to the ability of Salmonella enterica serotype Typhi to disseminate from the intestine to systemic sites of infection during typhoid fever. To study the consequences of acquiring a new regulator by horizontal gene transfer, tviA was introduced into the chromosome of S. enterica serotype Typhimurium, a closely related pathogen causing a localized gastrointestinal infection in immunocompetent individuals. TviA repressed expression of flagellin, a pathogen associated molecular pattern (PAMP), when bacteria were grown at osmotic conditions encountered in tissue, but not at higher osmolarity present in the intestinal lumen. TviA-mediated flagellin repression enabled bacteria to evade sentinel functions of human model epithelia and resulted in increased bacterial dissemination to the spleen in a chicken model. Collectively, our data point to PAMP repression as a novel pathogenic mechanism to overcome the mucosal barrier through innate immune evasion

    Soil bacterial and fungal communities across a pH gradient in an arable soil

    Get PDF
    Soils collected across a long-term liming experiment (pH 4.0-8.3), in which variation in factors other than pH have been minimized, were used to investigate the direct influence of pH on the abundance and composition of the two major soil microbial taxa, fungi and bacteria. We hypothesized that bacterial communities would be more strongly influenced by pH than fungal communities. To determine the relative abundance of bacteria and fungi, we used quantitative PCR (qPCR), and to analyze the composition and diversity of the bacterial and fungal communities, we used a bar-coded pyrosequencing technique. Both the relative abundance and diversity of bacteria were positively related to pH, the latter nearly doubling between pH 4 and 8. In contrast, the relative abundance of fungi was unaffected by pH and fungal diversity was only weakly related with pH. The composition of the bacterial communities was closely defined by soil pH; there was as much variability in bacterial community composition across the 180-m distance of this liming experiment as across soils collected from a wide range of biomes in North and South America, emphasizing the dominance of pH in structuring bacterial communities. The apparent direct influence of pH on bacterial community composition is probably due to the narrow pH ranges for optimal growth of bacteria. Fungal community composition was less strongly affected by pH, which is consistent with pure culture studies, demonstrating that fungi generally exhibit wider pH ranges for optimal growth. The ISME Journal (2010) 4, 1340-1351; doi: 10.1038/ismej.2010.58; published online 6 May 2010&nbsp

    Contrasting environmental preferences of photosynthetic and non‐photosynthetic soil cyanobacteria across the globe

    Get PDF
    Aim: Cyanobacteria have shaped the history of life on Earth and continue to play important roles as carbon and nitrogen fixers in terrestrial ecosystems. However, their global distribution and ecological preferences remain poorly understood, particularly for two recently discovered non‐photosynthetic cyanobacterial classes (Sericytochromatia and Melainabacteria). Location: Two hundred and thirty‐seven locations across six continents encompassing multiple climates (arid, temperate, tropical, continental and polar) and vegetation types (forests, grasslands and shrublands). Time period: Sampling was carried out between 2003 and 2015. Major taxa studied: Photosynthetic and non‐photosynthetic cyanobacterial taxa. Methods: We conducted a field survey and used co‐occurrence network analysis and structural equation modelling to evaluate the distribution and environmental preferences of soil cyanobacteria across the globe. These ecological preferences were used to create a global atlas (predictive distribution maps) of soil cyanobacteria. Results: Network analyses identified three major groups of cyanobacterial taxa, which resembled the three main cyanobacterial classes: the photosynthetic Oxyphotobacteria‐dominated cluster, which were prevalent in arid and semi‐arid areas, and the non‐photosynthetic Sericytochromatia‐ and Melainabacteria‐dominated clusters, which preferred hyper‐arid oligotrophic and acidic/humid environments, respectively. Main conclusions: This study provides new insights into the environmental preferences of non‐photosynthetic cyanobacteria in soils globally. Our findings highlight the contrasting environmental preferences among the three clusters of cyanobacteria and suggest that alterations in environmental conditions linked to climate change might result in important changes in the ecology and biogeography of these functionally important microorganisms.M.D.-B. is supported by a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018-025483-I), and by the BES grant agreement No LRB17\1019 (MUSGONET). The work of C.C.-D. and F.T.M. and the global drylands database were supported by the European Research Council [ERC Grant Agreements 242658 (BIOCOM) and 647038 (BIODESERT)] and by the Spanish Ministry of Economy and Competitiveness (BIOMOD project, ref. CGL2013-44661-R). F.T.M. acknowledges support from Generalitat Valenciana (BIOMORES project, ref. CIDEGENT/2018/041). Research on biodiversity by B.K.S. is supported by the Australian Research Council (DP170104634). R.D.B. was supported by the U.K. Department of Environment, Food and Rural Affairs (DEFRA) project no. BD5003 and a Biotechnology and Biological Sciences Research Council (BBSRC) International Exchange Grant (BB/L026406/1)

    Exploring the boundaries of microbial habitability in soil

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dragone, N. B., Diaz, M. A., Hogg, I., Lyons, W. B., Jackson, W. A., Wall, D. H., Adams, B. J., & Fierer, N. Exploring the boundaries of microbial habitability in soil. Journal of Geophysical Research: Biogeosciences, 126(6), (2021): e2020JG006052, https://doi.org/10.1029/2020JG006052.Microbes are widely assumed to be capable of colonizing even the most challenging terrestrial surface environments on Earth given enough time. We would not expect to find surface soils uninhabited by microbes as soils typically harbor diverse microbial communities and viable microbes have been detected in soils exposed to even the most inhospitable conditions. However, if uninhabited soils do exist, we might expect to find them in Antarctica. We analyzed 204 ice-free soils collected from across a remote valley in the Transantarctic Mountains (84–85°S, 174–177°W) and were able to identify a potential limit of microbial habitability. While most of the soils we tested contained diverse microbial communities, with fungi being particularly ubiquitous, microbes could not be detected in many of the driest, higher elevation soils—results that were confirmed using cultivation-dependent, cultivation-independent, and metabolic assays. While we cannot confirm that this subset of soils is completely sterile and devoid of microbial life, our results suggest that microbial life is severely restricted in the coldest, driest, and saltiest Antarctic soils. Constant exposure to these conditions for thousands of years has limited microbial communities so that their presence and activity is below detectable limits using a variety of standard methods. Such soils are unlikely to be unique to the studied region with this work supporting previous hypotheses that microbial habitability is constrained by near-continuous exposure to cold, dry, and salty conditions, establishing the environmental conditions that limit microbial life in terrestrial surface soils.This work was supported by grants from the U.S. National Science Foundation (ANT 1341629 to B. J. Adams, N. Fierer, W. Berry Lyons, and D. H. Wall and OPP 1637708 to B. J. Adams) with additional support provided to N. B. Dragone from University Colorado Department of Ecology and Evolutionary Biology

    Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient

    Get PDF
    Tropical soils contain huge carbon stocks, which climate warming is projected to reduce by stimulating organic matter decomposition, creating a positive feedback that will promote further warming. Models predict that the loss of carbon from warming soils will be mediated by microbial physiology, but no empirical data are available on the response of soil carbon and microbial physiology to warming in tropical forests, which dominate the terrestrial carbon cycle. Here we show that warming caused a considerable loss of soil carbon that was enhanced by associated changes in microbial physiology. By translocating soils across a 3000 m elevation gradient in tropical forest, equivalent to a temperature change of ± 15 °C, we found that soil carbon declined over 5 years by 4% in response to each 1 °C increase in temperature. The total loss of carbon was related to its original quantity and lability, and was enhanced by changes in microbial physiology including increased microbial carbon‐use‐efficiency, shifts in community composition towards microbial taxa associated with warmer temperatures, and increased activity of hydrolytic enzymes. These findings suggest that microbial feedbacks will cause considerable loss of carbon from tropical forest soils in response to predicted climatic warming this century
    corecore