3,423 research outputs found
Are covered bonds a substitute for mortgage-backed securities?
Covered bonds and mortgage-backed securities both allow mortgages to be financed with duration-matched bonds. Given the problems in the MBS market during the financial crisis, some suggest that covered bonds might be a substitute for MBS. We examine the use of covered bonds and MBS in the U.S. and Europe, finding that the two are used for different purposes. Covered bonds are used more to increase liquidity than are MBS. MBS are more often used in ways consistent with exploiting some kinds of agency problems.Bonds ; Mortgage-backed securities
Was There a Cambrian Explosion on Land? The Case of Arthropod Terrestrialization
Arthropods, the most diverse form of macroscopic life in the history of the Earth, originated in the sea. Since the early Cambrian, at least ~518 million years ago, these animals have dominated the oceans of the world. By the Silurian-Devonian, the fossil record attests to arthropods becoming the first animals to colonize land, However, a growing body of molecular dating and palaeontological evidence suggests that the three major terrestrial arthropod groups (myriapods, hexapods, and arachnids), as well as vascular plants, may have invaded land as early as the Cambrian-Ordovician. These dates precede the oldest fossil evidence of those groups and suggest an unrecorded continental 'Cambrian explosion' a hundred million years prior to the formation of early complex terrestrial ecosystems in the Silurian-Devonian. We review the palaeontological, phylogenomic, and molecular clock evidence pertaining to the proposed Cambrian terrestrialization of the arthropods. We argue that despite the challenges posed by incomplete preservation and the scarcity of early Palaeozoic terrestrial deposits, the discrepancy between molecular clock estimates and the fossil record is narrower than is often claimed. We discuss strategies for closing the gap between molecular clock estimates and fossil data in the evolution of early ecosystems on lan
A vision for global monitoring of biological invasions
Managing biological invasions relies on good global coverage of species distributions. Accurate information on alien species distributions, obtained from international policy and cross-border co-operation, is required to evaluate trans-boundary and trading partnership risks. However, a standardized approach for systematically monitoring alien species and tracking biological invasions is still lacking. This Perspective presents a vision for global observation and monitoring of biological invasions. We show how the architecture for tracking biological invasions is provided by a minimum information set of Essential Variables, global collaboration on data sharing and infrastructure, and strategic contributions by countries. We show how this novel, synthetic approach to an observation system for alien species provides a tangible and attainable solution to delivering the information needed to slow the rate of new incursions and reduce the impacts of invaders. We identify three Essential Variables for Invasion Monitoring; alien species occurrence, species alien status and alien species impact. We outline how delivery of this minimum information set by joint, complementary contributions from countries and global community initiatives is possible. Country contributions are made feasible using a modular approach where all countries are able to participate and strategically build their contributions to a global information set over time. The vision we outline will deliver wide-ranging benefits to countries and international efforts to slow the rate of biological invasions and minimize their environmental impacts. These benefits will accrue over time as global coverage and information on alien species increases
High-throughput screening with the Eimeria tenella CDC2-related kinase2/cyclin complex EtCRK2/EtCYC3a
The poultry disease coccidiosis, caused by infection with Eimeria spp. apicomplexan parasites, is responsible for enormous economic losses to the global poultry industry. The rapid increase of resistance to therapeutic agents, as well as the expense of vaccination with live attenuated vaccines, requires the development of new effective treatments for coccidiosis. Because of their key regulatory function in the eukaryotic cell cycle, cyclin-dependent kinases (CDKs) are prominent drug targets. The Eimeria tenella CDC2-related kinase 2 (EtCRK2) is a validated drug target that can be activated in vitro by the CDK activator XlRINGO (Xenopus laevis rapid inducer of G2/M progression in oocytes). Bioinformatics analyses revealed four putative E. tenella cyclins (EtCYCs) that are closely related to cyclins found in the human apicomplexan parasite Plasmodium falciparum. EtCYC3a was cloned, expressed in Escherichia coli and purified in a complex with EtCRK2. Using the non-radioactive time-resolved fluorescence energy transfer (TR-FRET) assay, we demonstrated the ability of EtCYC3a to activate EtCRK2 as shown previously for XlRINGO. The EtCRK2/EtCYC3a complex was used for a combined in vitro and in silico high-throughput screening approach, which resulted in three lead structures, a naphthoquinone, an 8-hydroxyquinoline and a 2-pyrimidinyl-aminopiperidine-propane-2-ol. This constitutes a promising starting point for the subsequent lead optimization phase and the development of novel anticoccidial drugs
Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters
This study reports the estimation of the inverted Er fraction in a system of Er doped silicon oxide sensitized by Si nanoclusters, made by magnetron sputtering. Electroluminescence was obtained from the sensitized erbium, with a power efficiency of 10¿2 %. By estimating the density of Er ions that are in the first excited state, we find that up to 20% of the total Er concentration is inverted in the best device, which is one order of magnitude higher than that achieved by optical pumping of similar materials
On the geometry of closed G2-structure
We give an answer to a question posed recently by R.Bryant, namely we show
that a compact 7-dimensional manifold equipped with a G2-structure with closed
fundamental form is Einstein if and only if the Riemannian holonomy of the
induced metric is contained in G2. This could be considered to be a G2 analogue
of the Goldberg conjecture in almost Kahler geometry. The result was
generalized by R.L.Bryant to closed G2-structures with too tightly pinched
Ricci tensor. We extend it in another direction proving that a compact
G2-manifold with closed fundamental form and divergence-free Weyl tensor is a
G2-manifold with parallel fundamental form. We introduce a second symmetric
Ricci-type tensor and show that Einstein conditions applied to the two Ricci
tensors on a closed G2-structure again imply that the induced metric has
holonomy group contained in G2.Comment: 14 pages, the Einstein condition in the assumptions of the Main
theorem is generalized to the assumption that the Weyl tensor is
divergence-free, clarity improved, typos correcte
Biogeographic ranges do not support niche theory in radiating Canary Island plant clades
Aim: Ecological niche concepts, in combination with biogeographic history, underlie our understanding of biogeographic ranges. Two pillars of this understanding are competitive displacement and niche conservatism. The competitive displacement hypothesis holds that very similar (e.g. closely related) co-occurring species should diverge, forced apart by competition. In contrast, according to the niche conservatism hypothesis, closely related species should have similar niches. If these are fundamental structuring forces, they should be detectable when comparing the climatic niches of endemic species in radiating clades in oceanic archipelagos, where closely related species exist in both sympatry and allopatry and the species' entire ranges are known. We took advantage of this natural experimental system to test whether the climatic niche relationships predicted by the two hypotheses are found.
Location: Canary Islands.
Methods: For the plant clades Aeonium, Argyranthemum, Descurainia, Echium, Lotus and Sonchus, separately, we tested relationships between phylogenetic distance and climatic niche differentiation (in temperature, precipitation and their combination), using a high-resolution dataset. We also tested for niche conservatism using Blomberg's K and Pagel's λ. We compared climatic niche differentiation between pairs of species existing in sympatry with that for pairs of species in allopatry. For each comparison, we focused on the climatic niche space available to both species.
Results: The relationships between phylogenetic distance and climatic niche differentiation were mostly non-significant; some weak but significant positive relationships were found, mainly for Aeonium and Sonchus. Where differences between sympatry and allopatry were found, niche differentiation tended to be greater in allopatry.
Main conclusions: The expectations from niche conservatism were frequently not met; instead our results suggest considerable climatic niche lability. All significant differences in climatic niche differentiation were opposite to the predictions from competitive displacement. These forces may be less important in structuring biogeographic ranges than is commonly thought, at least on islands
FEV1 over time in patients with connective tissue disease-related bronchiolitis
SummaryBackgroundFibrosis or inflammation of the bronchioles is a well-known manifestation of connective tissue disease (CTD). However, the natural history of CTD-related bronchiolitis is largely unknown.MethodsWe analyzed consecutive patients evaluated at National Jewish Health (Denver, CO) from 1998 to 2008 with CTD and surgical lung biopsy-confirmed bronchiolitis. Linear mixed effects models were used to estimate the longitudinal postbronchodilator FEV1 %predicted (%pred) course and differences between subjects with or without constrictive bronchiolitis (CB).ResultsOf 28 subjects with a mean age of 53 ± 9 years, fourteen (50%) had CB. The most common CTD diagnosis was rheumatoid arthritis (n = 14; 50%). There were no significant differences in demographics, smoking status, underlying CTD diagnoses, 6-min walk distance, dyspnea score or drug therapy between subjects with CB and those with cellular bronchiolitis. Three subjects with CB (11%) and four with cellular bronchiolitis (14%) died. Compared with subjects with CB, those with cellular bronchiolitis had higher mean FEV1 %pred at all times. There were no significant differences in FEV1 %pred slope within- or between-groups (CB vs. cellular bronchiolitis) preceding surgical lung biopsy or afterward.ConclusionSubjects with CTD-related CB had lower FEV1 %pred values than those with CTD-related cellular bronchiolitis at all time points, but FEV1 %pred remained stable over time in both groups regardless of therapy received
Recommended from our members
LNK suppresses interferon signaling in melanoma.
LNK (SH2B3) is a key negative regulator of JAK-STAT signaling which has been extensively studied in malignant hematopoietic diseases. We found that LNK is significantly elevated in cutaneous melanoma; this elevation is correlated with hyperactive signaling of the RAS-RAF-MEK pathway. Elevated LNK enhances cell growth and survival in adverse conditions. Forced expression of LNK inhibits signaling by interferon-STAT1 and suppresses interferon (IFN) induced cell cycle arrest and cell apoptosis. In contrast, silencing LNK expression by either shRNA or CRISPR-Cas9 potentiates the killing effect of IFN. The IFN-LNK signaling is tightly regulated by a negative feedback mechanism; melanoma cells exposed to IFN upregulate expression of LNK to prevent overactivation of this signaling pathway. Our study reveals an unappreciated function of LNK in melanoma and highlights the critical role of the IFN-STAT1-LNK signaling axis in this potentially devastating disease. LNK may be further explored as a potential therapeutic target for melanoma immunotherapy
- …