269 research outputs found

    Using network science to analyze football passing networks: dynamics, space, time and the multilayer nature of the game

    Full text link
    From the diversity of applications of Network Science, in this Opinion Paper we are concerned about its potential to analyze one of the most extended group sports: Football (soccer in U.S. terminology). As we will see, Network Science allows addressing different aspects of the team organization and performance not captured by classical analyses based on the performance of individual players. The reason behind relies on the complex nature of the game, which, paraphrasing the foundational paradigm of complexity sciences "can not be analyzed by looking at its components (i.e., players) individually but, on the contrary, considering the system as a whole" or, in the classical words of after-match interviews "it's not just me, it's the team".Comment: 7 pages, 1 figur

    Xps Study of the Oxidation State of Uranium Dioxide

    Get PDF
    In this article we report an investigation of the oxidation state of uranium dioxide using X-Ray Photoelectron Spectroscopy, and by comparing to results obtained in previous studies. We find that uranium dioxide in powder appears to share its six valence electrons with the oxygen atoms to form crystalline UO3

    Charge transport through a single molecule of trans-1-bis-diazofluorene [60]fullerene

    Get PDF
    Fullerenes have attracted interest for their possible applications in various electronic, biological, and optoelectronic devices. However, for efficient use in such devices, a suitable anchoring group has to be employed that forms well-defined and stable contacts with the electrodes. In this work, we propose a novel fullerene tetramalonate derivate functionalized with trans-1 4,5-diazafluorene anchoring groups. The conductance of single-molecule junctions, investigated in two different setups with the mechanically controlled break junction technique, reveals the formation of molecular junctions at three conductance levels. We attribute the conductance peaks to three binding modes of the anchoring groups to the gold electrodes. Density functional theory calculations confirm the existence of multiple binding configurations and calculated transmission functions are consistent with experimentally determined conductance values.Comment: 22 pages, 6 figure

    Facile synthesis of C60-nano materials and their application in High-Performance Water Splitting Electrocatalysis

    Get PDF
    Here, we report the synthesis and characterization of crystalline C60 nanomaterials and their applications as bifunctional water splitting catalysts. The shapes of the resulting materials were tuned via a solvent engineering approach to form rhombic-shaped nanosheets and nanotubes with hexagonal close packed-crystal structures. The as-synthesized materials exhibited suitable properties as bifunctional catalysts for HER and ORR reactions surpassing by far the electrocatalytic activity of commercially available amorphous C60. The C60 nanotubes displayed the most efficient catalytic performance with a small onset potential of −0.13 V vs. RHE and ultrahigh electrochemical stability properties towards the generation of molecular hydrogen. Additionally, the rotating-disk electrode measurements revealed that the oxygen reduction mechanism at the nanotube electrochemical surfaces followed an effective four-electron pathway. The improved catalytic activity was attributed to the enhanced local electric fields at the high curvature surfaces

    Single-molecule transport of fullerene-based curcuminoids

    Get PDF
    We present experimental and theoretical studies of single-molecule conductance through nonplanar fullerocurcuminoid molecular dyads in ambient conditions using the mechanically controllable break junction technique. We show that molecular dyads with bare fullerenes form configurations with conductance features related to different transport channels within the molecules, as identified with filtering and clustering methods. The primary channel corresponds to charge transport through the methylthio-terminated backbone. Additional low-conductance channels involve one backbone side and the fullerene. In fullerenes with four additional equatorial diethyl malonate groups attached to them, the latter transport pathway is blocked. Density functional theory calculations corroborate the experimental observations. In combination with nonequilibrium green functions, the conductance values of the fullerocurcuminoid backbones are found to be similar to those of a planar curcuminoid molecule without a fullerene attached. In the nonplanar fullerocurcuminoid systems, the highest-conductance peak occurs partly through space, compensating for the charge delocalization loss present in the curcuminoid system
    • …
    corecore