310 research outputs found
Recommended from our members
Permeability and pore-fluid chemistry of the Bullfrog Tuff in a temperature gradient: summary of results
In order to study the changes that take place with time when groundwater comes in contact with heated rock, and to determine the ease with which potential radionuclide-bearing groundwater could be carried into the environment, the permeability and fluid chemistry of the Bullfrog Tuff from Yucca Mountain were studied under conditions simulating a nuclear waste repository environment. (ACR
Recommended from our members
Changes in permeability and fluid chemistry of the Topopah Spring Member of the Paintbrush tuff (Nevada Test Site) when held in a temperature gradient: summary of results
The permeability and groundwater chemistry results for the Topopah Spring Member are reported and compared with the results from the previous work on Bullfrog. Permeability measurements made on samples of the Topopah Spring Member of the Paintbrush Tuff at room-temperature and in a temperature gradient show that the initially high (3-65 {mu}da) permeabilities are little affected by heating to at least 150{sup 0}C. These permeability relationships are favvorable for the disposal of nuclear waste in this stuff in an unsaturated zone at the Nevada Test Site. The fluids discharged from the samples of tuff during the experiments are dilute, nearly neutral solutions that differ only slightly from the starting groundwater composition. 8 references, 10 figures, 5 tables
Factors that transformed maize productivity in Ethiopia
Published online: 26 July 2015Maize became increasingly important in the food
security of Ethiopia following the major drought and famine
that occurred in 1984. More than 9 million smallholder house-
holds, more than for any other crop in the country, grow maize
in Ethiopia at present. Ethiopia has doubled its maize produc-
tivity and production in less than two decades. The yield,
currently estimated at >3 metric tons/ha, is the second highest
in Sub-Saharan Africa, after South Africa; yield gains for
Ethiopia grew at an annual rate of 68 kg/ha between 1990
and 2013, only second to South Africa and greater than
Mexico, China, or India. The maize area covered by improved
varieties in Ethiopia grew from 14 % in 2004 to 40 % in 2013,
and the application rate of mineral fertilizers from 16 to 34 kg/
ha during the same period. Ethiopia
’
s extension worker to
farmer ratio is 1:476, compared to 1:1000 for Kenya, 1:1603
for Malawi and 1:2500 for Tanzania. Increased use of im-
proved maize varieties and mineral fertilizers, coupled with
increased extension services and the absence of devastating
droughts are the key factors promoting the accelerated growth
in maize productivity in Ethiopia. Ethiopia took a homegrown
solutions approach to the research and development of its
maize and other commodities. The lesson from Ethiopia
’
s
experience with maize is that sustained investment in agricul-
tural research and development and policy support by the
national government are crucial for continued growth of
agricultur
Examining the Determinants of Food Prices in Developing Asia
How the price of food is determined has become a critical issue, given the drastic surges in prices in recent years and the prevailing expectation of further increases. Along this line, this paper examines the sources of food price fluctuations in 11 developing Asian countries. The working model is a block vector autoregression (VAR), and 10 variables are classified into three blocks - world, region, and country - depending on their origin and nature. Empirical evidence shows that the regional shock plays a pivotal role in explaining the variations of domestic food prices, particularly at medium- to long-term horizons. Contrary to conventional belief, the world food price shock contributes little to the dynamics of domestic food prices in developing Asia. The findings suggest Asian food markets are more integrated regionally than with the world market. The short-run movements of domestic food prices are accounted for largely by the country's own shock. Taken together, our findings suggest that promoting food price stability would require efforts at the regional level as well as at the domestic level, reflecting the influence of region-specific factors. Extensions to the developing countries in other regions produce similar findings on the determination of food prices
Lead exposure in adult males in urban Transvaal Province, South Africa during the apartheid era
Human exposure to lead is a substantial public health hazard worldwide and is particularly problematic in the Republic of South Africa given the country’s late cessation of leaded petrol. Lead exposure is associated with a number of serious health issues and diseases including developmental and cognitive deficiency, hypertension and heart disease. Understanding the distribution of lifetime lead burden within a given population is critical for reducing exposure rates. Femoral bone from 101 deceased adult males living in urban Transvaal Province (now Gauteng Province), South Africa between 1960 and 1998 were analyzed for lead concentration by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Of the 72 black and 29 white individuals sampled, chronic lead exposure was apparent in nearly all individuals. White males showed significantly higher median bone lead concentration (ME = 10.04 µg·g−1), than black males (ME = 3.80 µg·g−1) despite higher socioeconomic status. Bone lead concentration covaries significantly, though weakly, with individual age. There was no significant temporal trend in bone lead concentration. These results indicate that long-term low to moderate lead exposure is the historical norm among South African males. Unexpectedly, this research indicates that white males in the sample population were more highly exposed to lead
Timescales of transformational climate change adaptation in sub-Saharan African agriculture
Climate change is projected to constitute a significant threat to food security if no adaptation actions are taken. Transformation of agricultural systems, for example switching crop types or moving out of agriculture, is projected to be necessary in some cases. However, little attention has been paid to the timing of these transformations. Here, we develop a temporal uncertainty framework using the CMIP5 ensemble to assess when and where cultivation of key crops in sub-Saharan Africa becomes unviable. We report potential transformational changes for all major crops during the twenty-first century, as climates shift and areas become unsuitable. For most crops, however, transformation is limited to small pockets (<15% of area), and only for beans, maize and banana is transformation more widespread (â 1/430% area for maize and banana, 60% for beans). We envisage three overlapping adaptation phases to enable projected transformational changes: an incremental adaptation phase focused on improvements to crops and management, a preparatory phase that establishes appropriate policies and enabling environments, and a transformational adaptation phase in which farmers substitute crops, explore alternative livelihoods strategies, or relocate. To best align policies with production triggers for no-regret actions, monitoring capacities to track farming systems as well as climate are needed
Spreading continents kick-started plate tectonics
International audienceStresses acting on cold, thick and negatively buoyant oceanic litho- sphere are thought to be crucial to the initiation of subduction and the operation of plate tectonics, which characterizes the present- day geodynamics of the Earth. Because the Earth’s interior was hotter in the Archaean eon, the oceanic crust may have been thicker, thereby making the oceanic lithosphere more buoyant than at present, and whether subduction and plate tectonics occurred during this time is ambiguous, both in the geological record and in geodynamic models. Here we show that because the oceanic crust was thick and buoyant5, early continents may have produced intra-lithospheric gravitational stresses large enough to drive their gravitational spreading, to initiate subduction at their margins and to trigger episodes of subduction. Our model predicts the co-occurrence of deep to progressively shallower mafic volcanics and arc magmatism within continents in a self-consistent geodynamic framework, explaining the enigmatic multimodal volcanism and tectonic record of Archaean cratons. Moreover, our model predicts a petrological stratification and tectonic structure of the sub-continental lithospheric mantle, two predictions that are consistent with xenolith and seismic studies, respectively, and consistent with the existence of a mid-lithospheric seismic discontinuity. The slow gravitational collapse of early continents could have kick-started transient episodes of plate tectonics until, as the Earth’s interior cooled and oceanic lithosphere became heavier, plate tectonics became self-sustaining
How phyllosilicate mineral structure affects fault strength in Mg-rich fault systems
The clay mineralogy of fault gouges has important implications for the frictional properties of faults, often identified as a major factor contributing to profound fault weakness. This work compares the frictional strength of a group of Mg‐rich minerals common in the Mg‐Al‐Si‐O compositional space (talc, saponite, sepiolite, and palygorskite) by conducting triaxial frictional tests with water or argon as pore fluid. The studied minerals are chemically similar but differ in their crystallographic structure. Results show that fibrous Mg‐rich phyllosilicates are stronger than their planar equivalents. Frictional strength in this group of minerals is highly influenced by strength of the atomic bonds, continuity of water layers within the crystals, and interactions of mineral surfaces with water molecules, all of which are dictated by crystal structure. The formation and stability of the minerals studied are mainly controlled by small changes in pore fluid chemistry, which can lead to significant differences in fault strength
- …