506 research outputs found
Eosinophils Are Recruited in Response to Chitin Exposure and Enhance Th2-Mediated Immune Pathology in Aspergillus fumigatus Infection
In patients infected with the fungus Aspergillus fumigatus, Th1 responses are considered protective, while Th2 responses are associated with increased morbidity and mortality. How host-pathogen interactions influence the development of these protective or detrimental immune responses is not clear. We compared lung immune responses to conidia from two fungal isolates that expressed different levels of the fungal cell wall component chitin. We observed that repeated aspirations of the high-chitin-expressing isolate Af5517 induced increased airway eosinophilia in the lungs of recipient mice compared to the level of eosinophilia induced by isolate Af293. CD4+ T cells in the bronchoalveolar lavage fluid (BALF) of Af5517-aspirated mice displayed decreased gamma interferon secretion and increased interleukin-4 transcription. In addition, repeated aspirations of Af5517 induced lung transcription of the Th2-associated chemokines CCL11 (eotaxin-1) and CCL22 (macrophage-derived chemokine). Eosinophil recruitment in response to conidial aspiration was correlated with the level of chitin exposure during germination and was decreased by constitutive lung chitinase expression. Moreover, eosinophil-deficient mice subjected to multiple aspirations of Af5517 prior to neutrophil depletion and infection exhibited decreased morbidity and fungal burden compared to the levels of morbidity and fungal burden found in wild-type mice. These results suggest that exposure of chitin in germinating conidia promotes eosinophil recruitment and ultimately induces Th2-skewed immune responses after repeated aspiration. Furthermore, our results suggest that eosinophils should be examined as a potential therapeutic target in patients that mount poorly protective Th2 responses to A. fumigatus infection
ALADIN is Required for the Production of Fertile Mouse Oocytes
Asymmetric cell divisions depend on the precise placement of the spindle apparatus. In mammalian oocytes, spindles assemble close to the cell's center, but chromosome segregation takes place at the cell periphery where half of the chromosomes are expelled into small, nondeveloping polar bodies at anaphase. By dividing so asymmetrically, most of the cytoplasmic content within the oocyte is preserved, which is critical for successful fertilization and early development. Recently we determined that the nucleoporin ALADIN participates in spindle assembly in somatic cells, and we have also shown that female mice homozygously null for ALADIN are sterile. In this study we show that this protein is involved in specific meiotic stages, including meiotic resumption, spindle assembly, and spindle positioning. In the absence of ALADIN, polar body extrusion is compromised due to problems in spindle orientation and anchoring at the first meiotic anaphase. ALADIN null oocytes that mature far enough to be fertilized in vitro are unable to support embryonic development beyond the two-cell stage. Overall, we find that ALADIN is critical for oocyte maturation and appears to be far more essential for this process than for somatic cell divisions
Can Charisma Be Taught? Tests of Two Interventions
We tested whether we could teach individuals to behave more charismatically, andwhether changes in charisma affected leader outcomes. In Study 1, a mixed-design fieldexperiment, we randomly assigned 34 middle-level managers to a control or anexperimental group. Three months later, we reassessed the managers using theircoworker ratings (Time 1 raters = 343; Time 2 raters = 321). In Study 2, a within-subjectslaboratory experiment, we videotaped 41 MBA participants giving a speech. We thentaught them how to behave more charismatically, and they redelivered the speech6 weeks later. Independent assessors (n = 135) rated the speeches. Results from thestudies indicated that the training had significant effects on ratings of leader charisma(mean D = .62) and that charisma had significant effects on ratings of leaderprototypicality and emergence...............................................................................................................................
Nucleocytoplasmic transport: a thermodynamic mechanism
The nuclear pore supports molecular communication between cytoplasm and
nucleus in eukaryotic cells. Selective transport of proteins is mediated by
soluble receptors, whose regulation by the small GTPase Ran leads to cargo
accumulation in, or depletion from the nucleus, i.e., nuclear import or nuclear
export. We consider the operation of this transport system by a combined
analytical and experimental approach. Provocative predictions of a simple model
were tested using cell-free nuclei reconstituted in Xenopus egg extract, a
system well suited to quantitative studies. We found that accumulation capacity
is limited, so that introduction of one import cargo leads to egress of
another. Clearly, the pore per se does not determine transport directionality.
Moreover, different cargo reach a similar ratio of nuclear to cytoplasmic
concentration in steady-state. The model shows that this ratio should in fact
be independent of the receptor-cargo affinity, though kinetics may be strongly
influenced. Numerical conservation of the system components highlights a
conflict between the observations and the popular concept of transport cycles.
We suggest that chemical partitioning provides a framework to understand the
capacity to generate concentration gradients by equilibration of the
receptor-cargo intermediary.Comment: in press at HFSP Journal, vol 3 16 text pages, 1 table, 4 figures,
  plus Supplementary Material include
Pore timing:the evolutionary origins of the nucleus and nuclear pore complex
The name “eukaryote” is derived from Greek, meaning “true kernel”, and describes the domain of organisms whose cells have a nucleus. The nucleus is thus the defining feature of eukaryotes and distinguishes them from prokaryotes (Archaea and Bacteria), whose cells lack nuclei. Despite this, we discuss the intriguing possibility that organisms on the path from the first eukaryotic common ancestor to the last common ancestor of all eukaryotes did not possess a nucleus at all—at least not in a form we would recognize today—and that the nucleus in fact arrived relatively late in the evolution of eukaryotes. The clues to this alternative evolutionary path lie, most of all, in recent discoveries concerning the structure of the nuclear pore complex. We discuss the evidence for such a possibility and how this impacts our views of eukaryote origins and how eukaryotes have diversified subsequent to their last common ancestor
Political Branding: The Tea Party and Its Use of Participation Branding
The emergence of the Tea Party movement in 2009 witnessed the surfacing of a populist, anti-Obama libertarian mobilization within the United States. The Tea Party, a movement that brought together a number of disparate groups—some new, some established—utilized participation branding where the consumer attributed the movement its own identity and brand. Its consumer-facing approach, lack of one single leader, and lack of a detailed party platform, in combination with its impact on the 2010 election races in America, earmarks it as a contemporary and unconventional brand phenomenon worthy of investigation. Copyright © Taylor & Francis Group, LLC
Proteomic analysis of the mammalian nuclear pore complex
As the sole site of nucleocytoplasmic transport, the nuclear pore complex (NPC) has a vital cellular role. Nonetheless, much remains to be learned about many fundamental aspects of NPC function. To further understand the structure and function of the mammalian NPC, we have completed a proteomic analysis to identify and classify all of its protein components. We used mass spectrometry to identify all proteins present in a biochemically purified NPC fraction. Based on previous characterization, sequence homology, and subcellular localization, 29 of these proteins were classified as nucleoporins, and a further 18 were classified as NPC-associated proteins. Among the 29 nucleoporins were six previously undiscovered nucleoporins and a novel family of WD repeat nucleoporins. One of these WD repeat nucleoporins is ALADIN, the gene mutated in triple-A (or Allgrove) syndrome. Our analysis defines the proteome of the mammalian NPC for the first time and paves the way for a more detailed characterization of NPC structure and function
International Perspectives on the Legal Environment for Selection
Perspectives from 22 countries on aspects of the legal environment for selection are presented in this article. Issues addressed include (a) whether there are racial/ethnic/religious subgroups viewed as "disadvantaged,” (b) whether research documents mean differences between groups on individual difference measures relevant to job performance, (c) whether there are laws prohibiting discrimination against specific groups, (d) the evidence required to make and refute a claim of discrimination, (e) the consequences of violation of the laws, (f) whether particular selection methods are limited or banned, (g) whether preferential treatment of members of disadvantaged groups is permitted, and (h) whether the practice of industrial and organizational psychology has been affected by the legal environmen
- …
