479 research outputs found

    Eccentricity signal in the nannofossil time-series across the Mid-Pleistocene Transition in the northwestern Pacific Ocean (ODP Site 1209)

    Get PDF
    The Mid-Pleistocene Transition (MPT; 1.25–0.6 million years ago, Ma) is one of the most important and still debated climate reorganizations during which the glacial/interglacial cycles switched from a 41-thousand years (kyr) cycle (i.e. obliquity) to a quasi-periodic 100-kyr cycle (associated with orbital eccentricity). Variations in the orbital geometry can affect the abundance and distribution of certain marine biota such as the coccolithophores, a group of unicellular calcifying phytoplankton, whose skeletal remains – called nannofossils – represent a valid tool within the geological archives to infer change in surface water conditions and/or coccolithophore productivity and how orbital variations may have impacted them. Here, we apply for the first time various time series analytical techniques to the nannofossil dataset from mid-latitudinal Ocean Drilling Program (ODP) Site 1209 in the northwest Pacific Ocean for the interval spanning the last 1.6 Myr. To better interpret the orbital signal recorded by different nannofossil species we used time series analyses (i.e. wavelet, autocorrelation and cross correlation) to identify the main periodicities by single nannofossil species during the MPT, and to investigate further their response timings to those orbital drivers. In addition, we investigated how the recorded periodicities can improve understanding of the paleoecological preferences of particular species. The combination of multiple time series analyses allowed identification of the 100-kyr periodicity as the main cyclicity recorded in most analyzed species at Site 1209, documenting the predominance of the eccentricity-related signal at mid-latitudes and a reduced or absent influence of the obliquity response. Thus, our data highlight how orbital influence varies by latitude impacting the nannofossil species. The lag between eccentricity and species abundance fluctuations was also investigated, identifying a fast response ranging between 20 and 40 kyr for the taxa Calcidiscus leptoporus subspecies leptoporus, Gephyrocapsa caribbeanica small, and Reticulofenestra spp. (>5 μm). This study corroborates the potential of nannofossils to deepen understanding of the dynamics and effects of variations in orbital geometry through time. It also underlines the need to extend the study of the responses of specific species through the use of different time series analysis techniques in order to return complementary information and detect clearer orbital signals

    Thermal equation of state of cubic boron nitride: Implications for a high-temperature pressure scale

    Get PDF
    The equation of state of cubic boron nitride (cBN) has been determined to a maximum temperature of 3300 K at a simultaneous static pressure of up to more than 70 GPa. Ab initio calculations to 80 GPa and 2000 K have also been performed. Our experimental data can be reconciled with theoretical results and with the known thermal expansion at 1 bar if we assume a small increase in pressure during heating relative to that measured at ambient temperature. The present data combined with the Raman measurements we presented earlier form the basis of a high-temperature pressure scale that is good to at least 3300 K

    Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition

    Get PDF
    We discover that hcp phases of Fe and Fe0.9Ni0.1 undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a lattice parameter ratio and M\"ossbauer center shift observed in our experiments. First-principles simulations within the dynamic mean field approach demonstrate that the transition is induced by many-electron effects. It is absent in one-electron calculations and represents a clear signature of correlation effects in hcp Fe

    Synthesis of Alkaline Earth Diazenides MAEN2 (MAE = Ca, Sr, Ba) by Controlled Thermal Decomposition of Azides under High Pressure

    Get PDF
    The alkaline earth diazenides MAEN2 with MAE = Ca, Sr and Ba were synthesized by a novel synthetic approach, namely, a controlled decomposition of the corresponding azides in a multianvil press at highpressure/ high-temperature conditions. The crystal structure of hitherto unknown calcium diazenide (space group I4/mmm (no. 139), a = 3.5747(6) Å, c = 5.9844(9) Å, Z = 2, wRp = 0.078) was solved and refined on the basis of powder X-ray diffraction data as well as that of SrN2 and BaN2. Accordingly, CaN2 is isotypic with SrN2 (space group I4/mmm (no. 139), a = 3.8054(2) Å, c = 6.8961(4) Å, Z = 2, wRp = 0.057) and the corresponding alkaline earth acetylenides (MAEC2) crystallizing in a tetragonally distorted NaCl structure type. In accordance with literature data, BaN2 adopts a more distorted structure in space group C2/c (no. 15) with a = 7.1608(4) Å, b = 4.3776(3) Å, c = 7.2188(4) Å, β = 104.9679(33)°, Z = 4 and wRp = 0.049). The N−N bond lengths of 1.202(4) Å in CaN2 (SrN2 1.239(4) Å, BaN2 1.23(2) Å) correspond well with a double-bonded dinitrogen unit confirming a diazenide ion [N2]2−. Temperature-dependent in situ powder X-ray diffractometry of the three alkaline earth diazenides resulted in formation of the corresponding subnitrides MAE2N (MAE = Ca, Sr, Ba) at higher temperatures. FTIR spectroscopy revealed a band at about 1380 cm−1 assigned to the N−N stretching vibration of the diazenide unit. Electronic structure calculations support the metallic character of alkaline earth diazenides

    A method for isolating and culturing placental cells from failed early equine pregnancies

    Get PDF
    Early pregnancy loss occurs in 6–10% of equine pregnancies making it the main cause of reproductive wastage. Despite this, reasons for the losses are known in only 16% of cases. Lack of viable conceptus material has inhibited investigations of many potential genetic and pathological causes. We present a method for isolating and culturing placental cells from failed early equine pregnancies. Trophoblast cells from 18/30 (60%) failed equine pregnancies of gestational ages 14–65 days were successfully cultured in three different media, with the greatest growth achieved for cells cultured in AmnioChrome™ Plus. Genomic DNA of a suitable quality for molecular assays was also isolated from 29/30 of these cases. This method will enable future investigations determining pathologies causing EPL

    A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin

    Get PDF
    Weproduced a composite depth scale and chronology for Site U1385 on the SWIberianMargin. Using log(Ca/Ti)measured by core scanning XRF at 1-cm resolution in all holes, a composite section was constructed to166.5 meter composite depth (mcd) that corrects for stretching and squeezing in each core. Oxygen isotopesof benthic foraminifera were correlated to a stacked d18O reference signal (LR04) to produce an oxygen isotopestratigraphy and age model.Variations in sediment color contain very strong precession signals at Site U1385, and the amplitude modulationof these cycles provides a powerful tool for developing an orbitally-tuned agemodel.We tuned the U1385 recordby correlating peaks in L* to the local summer insolation maxima at 37°N. The benthic d18O record of Site U1385,when placed on the tuned agemodel, generally agrees with other time scaleswithin their respective chronologicuncertainties.The age model is transferred to down-core data to produce a continuous time series of log(Ca/Ti) that reflectrelative changes of biogenic carbonate and detrital sediment. Biogenic carbonate increases during interglacialand interstadial climate states and decreases during glacial and stadial periods. Much of the variance in thelog(Ca/Ti) is explained by a linear combination of orbital frequencies (precession, tilt and eccentricity), whereasthe residual signal reflects suborbital climate variability. The strong correlation between suborbital log(Ca/Ti)variability and Greenland temperature over the last glacial cycle at Site U1385 suggests that this signal can beused as a proxy for millennial-scale climate variability over the past 1.5 Ma.Millennial climate variability, as expressed by log(Ca/Ti) at Site U1385, was a persistent feature of glacial climatesover the past 1.5Ma, including glacial periods of the early Pleistocene (‘41-kyrworld’)when boundary conditionsdiffered significantly from those of the late Pleistocene (‘100-kyr world’). Suborbital variability was suppressedduring interglacial stages and enhanced during glacial periods, especially when benthic d18O surpassed ~3.3–3.5‰. Each glacial inception was marked by appearance of strong millennial variability and each deglaciatio
    corecore