848 research outputs found

    Collodictyon—An Ancient Lineage in the Tree of Eukaryotes

    Get PDF
    The current consensus for the eukaryote tree of life consists of several large assemblages (supergroups) that are hypothesized to describe the existing diversity. Phylogenomic analyses have shed light on the evolutionary relationships within and between supergroups as well as placed newly sequenced enigmatic species close to known lineages. Yet, a few eukaryote species remain of unknown origin and could represent key evolutionary forms for inferring ancient genomic and cellular characteristics of eukaryotes. Here, we investigate the evolutionary origin of the poorly studied protist Collodictyon (subphylum Diphyllatia) by sequencing a cDNA library as well as the 18S and 28S ribosomal DNA (rDNA) genes. Phylogenomic trees inferred from 124 genes placed Collodictyon close to the bifurcation of the “unikont” and “bikont” groups, either alone or as sister to the potentially contentious excavate Malawimonas. Phylogenies based on rDNA genes confirmed that Collodictyon is closely related to another genus, Diphylleia, and revealed a very low diversity in environmental DNA samples. The early and distinct origin of Collodictyon suggests that it constitutes a new lineage in the global eukaryote phylogeny. Collodictyon shares cellular characteristics with Excavata and Amoebozoa, such as ventral feeding groove supported by microtubular structures and the ability to form thin and broad pseudopods. These may therefore be ancient morphological features among eukaryotes. Overall, this shows that Collodictyon is a key lineage to understand early eukaryote evolution

    The night-sky at the Calar Alto Observatory

    Get PDF
    We present a characterization of the main properties of the night-sky at the Calar Alto observatory for the time period between 2004 and 2007. We use optical spectrophotometric data, photometric calibrated images taken in moonless observing periods, together with the observing conditions regularly monitored at the observatory, such as atmospheric extinction and seeing. We derive, for the first time, the typical moonless night-sky optical spectrum for the observatory. The spectrum shows a strong contamination by different pollution lines, in particular from Mercury lines, which contribution to the sky-brightness in the different bands is of the order of ~0.09 mag, ~0.16 mag and ~0.10 mag in B, V and R respectively. The zenith-corrected values of the moonless night-sky surface brightness are 22.39, 22.86, 22.01, 21.36 and 19.25 mag arcsec^-2 in U, B, V, R and I, which indicates that Calar Alto is a particularly dark site for optical observations up to the I-band. The fraction of astronomical useful nights at the observatory is ~70%, with a ~30% of photometric nights. The typical extinction at the observatory is k_V~0.15 mag in the Winter season, with little dispersion. In summer the extinction has a wider range of values, although it does not reach the extreme peaks observed at other sites. The median seeing for the last two years (2005-6) was ~0.90", being smaller in the Summer (~0.87") than in the Winter (~0.96"). We conclude in general that after 26 years of operations Calar Alto is still a good astronomical site, being a natural candidate for future large aperture optical telescopes.Comment: 16 pages, 5 figures, accepted for publishing in the Publications of Astronomical Society of the Pacific (PASP

    High resolution spectroscopy for Cepheids distance determination. V. Impact of the cross-correlation method on the p-factor and the gamma-velocities

    Full text link
    The cross correlation method (hereafter CC) is widely used to derive the radial velocity curve of Cepheids when the signal to noise of the spectra is low. However, if it is used with the wrong projection factor, it might introduce some biases in the Baade-Wesselink (hereafter BW) methods of determining the distance of Cepheids. In addition, it might affect the average value of the radial velocity curve (or gamma-velocity) important for Galactic structure studies. We aim to derive a period-projection factor relation (hereafter Pp) appropriate to be used together with the CC method. Moreover, we investigate whether the CC method can explain the misunderstood previous calculation of the K-term of Cepheids. We observed eight galactic Cepheids with the HARPS spectrograph. For each star, we derive an interpolated CC radial velocity curve using the HARPS pipeline. The amplitudes of these curves are used to determine the correction to be applied to the semi-theoretical projection factor derived in Nardetto et al. (2007). Their average value (or gamma-velocity) are also compared to the center-of-mass velocities derived in Nardetto et al. (2008). The correction in amplitudes allows us to derive a new Pp relation: p = [-0.08+-0.05] log P +[1.31+-0.06]. We also find a negligible wavelength dependence (over the optical range) of the Pp relation. We finally show that the gamma-velocity derived from the CC method is systematically blue-shifted by about 1.0 +- 0.2km/s compared to the center-of-mass velocity of the star. An additional blue-shift of 1.0km/s is thus needed to totally explain the previous calculation of the K-term of Cepheids (around 2km/s). The new Pp relation we derived is a solid tool for the distance scale calibration (abridged).Comment: Comments : 9 pages, 3 Postscript figures, 5 Tables, accepted for publication in A&

    Individual tracking reveals long-distance flight-path control in a nocturnally migrating moth

    Get PDF
    Each year, trillions of insects make long-range seasonal migrations. These movements are relatively well understood at a population level, but how individual insects achieve them remains elusive. Behavioral responses to conditions en route are little studied, primarily owing to the challenges of tracking individual insects. Using a light aircraft and individual radio tracking, we show that nocturnally migrating death's-head hawkmoths maintain control of their flight trajectories over long distances. The moths did not just fly with favorable tailwinds; during a given night, they also adjusted for head and crosswinds to precisely hold course. This behavior indicates that the moths use a sophisticated internal compass to maintain seasonally beneficial migratory trajectories independent of wind conditions, illuminating how insects traverse long distances to take advantage of seasonal resources

    Photometric and kinematic studies of open star clusters. III. NGC 4103, NGC 5281, and NGC 4755

    Full text link
    We present CCD photometry and proper motion studies of the three open star clusters NGC 4103, NGC 5281, and NGC 4755 (kappa Cru). By fitting isochrones to the colour magnitude diagrams, we found that all three objects are young open star clusters with ages of at most t=45 Myr. They are located at distances from approx. 1600 pc to 2200 pc, derived from distance moduli (m-M)_0 ranging from 11 mag to 12 mag. We combined membership determinations based on proper motions and statistical field star subtraction to derive the initial mass function (IMF) of the clusters. The shape of the IMFs could be represented by power laws with exponents of Gamma=-1.46 +/- 0.22 for NGC 4103, Gamma=-1.60 +/- 0.50 for NGC 5281, and Gamma=-1.68 +/- 0.14 for NGC 4755, when - as a reference - Salpeter's (1955) value would be Gamma=-1.35. These results agree well with other IMF studies of open star clusters.Comment: 16 pages, 14 figures, accepted for publication in Astronomy & Astrophysic

    Velocity Dispersion of Dissolving OB Associations Affected by External Pressure of Formation Environment

    Full text link
    This paper presents a possible way to understand dissolution of OB associations (or groups). Assuming rapid escape of parental cloud gas from associations, we show that the shadow of the formation environment for associations can be partially imprinted on the velocity dispersion at their dissolution. This conclusion is not surprising as long as associations are formed in a multiphase interstellar medium, because the external pressure should suppress expansion caused by the internal motion of the parental clouds. Our model predicts a few km s−1^{-1} as the internal velocity dispersion. Observationally, the internal velocity dispersion is ∌1\sim 1 km s−1^{-1} which is smaller than our prediction. This suggests that the dissipation of internal energy happens before the formation of OB associations.Comment: 6 pages. AJ accepte

    Discovery of a peculiar Cepheid-like star towards the northern edge of the Small Magellanic Cloud

    Full text link
    For seven years, the EROS-2 project obtained a mass of photometric data on variable stars. We present a peculiar Cepheid-like star, in the direction of the Small Magellanic Cloud, which demonstrates unusual photometric behaviour over a short time interval. We report on data of the photometry acquired by the MARLY telescope and spectroscopy from the EFOSC instrument for this star, called EROS2 J005135-714459(sm0060n13842), which resembles the unusual Cepheid HR 7308. The light curve of our target is analysed using the Analysis of Variance method to determine a pulsational period of 5.5675 days. A fit of time-dependent Fourier coefficients is performed and a search for proper motion is conducted. The light curve exhibits a previously unobserved and spectacular change in both mean magnitude and amplitude, which has no clear theoretical explanation. Our analysis of the spectrum implies a radial velocity of 104 km s−1^{-1} and a metallicity of -0.4±\pm0.2 dex. In the direction of right ascension, we measure a proper motion of 17.4±\pm6.0 mas yr−1^{-1} using EROS astrometry, which is compatible with data from the NOMAD catalogue. The nature of EROS2 J005135-714459(sm0060n13842) remains unclear. For this star, we may have detected a non-zero proper motion for this star, which would imply that it is a foreground object. Its radial velocity, pulsational characteristics, and photometric data, however, suggest that it is instead a Cepheid-like object located in the SMC. In such a case, it would present a challenge to conventional Cepheid models.Comment: Correction of typos in the abstrac
    • 

    corecore