283 research outputs found

    Evaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100)

    Get PDF
    Droplet size spectra measurements are crucial to obtain a quantitative microphysical description of clouds and fog. However, cloud droplet size measurements are subject to various uncertainties. This work focuses on the error analysis of two key measurement uncertainties arising during cloud droplet size measurements with a conventional droplet size spectrometer (FM-100): first, we addressed the precision with which droplets can be sized with the FM-100 on the basis of the Mie theory. We deduced error assumptions and proposed a new method on how to correct measured size distributions for these errors by redistributing the measured droplet size distribution using a stochastic approach. Second, based on a literature study, we summarized corrections for particle losses during sampling with the FM-100. We applied both corrections to cloud droplet size spectra measured at the high alpine site Jungfraujoch for a temperature range from 0 °C to 11 °C. We showed that Mie scattering led to spikes in the droplet size distributions using the default sizing procedure, while the new stochastic approach reproduced the ambient size distribution adequately. A detailed analysis of the FM-100 sampling efficiency revealed that particle losses were typically below 10% for droplet diameters up to 10 μm. For larger droplets, particle losses can increase up to 90% for the largest droplets of 50 μm at ambient wind speeds below 4.4 m s<sup>−1</sup> and even to >90% for larger angles between the instrument orientation and the wind vector (sampling angle) at higher wind speeds. Comparisons of the FM-100 to other reference instruments revealed that the total liquid water content (LWC) measured by the FM-100 was more sensitive to particle losses than to re-sizing based on Mie scattering, while the total number concentration was only marginally influenced by particle losses. Consequently, for further LWC measurements with the FM-100 we strongly recommend to consider (1) the error arising due to Mie scattering, and (2) the particle losses, especially for larger droplets depending on the set-up and wind conditions

    Departure from the constant-period ephemeris for the transiting exoplanet WASP-12 b

    Get PDF
    Most hot Jupiters are expected to spiral in towards their host stars due to transfering of the angular momentum of the orbital motion to the stellar spin. Their orbits can also precess due to planet-star interactions. Calculations show that both effects could be detected for the very-hot exoplanet WASP-12 b using the method of precise transit timing over a timespan of the order of 10 yr. We acquired new precise light curves for 29 transits of WASP-12 b, spannning 4 observing seasons from November 2012 to February 2016. New mid-transit times, together with literature ones, were used to refine the transit ephemeris and analyse the timing residuals. We find that the transit times of WASP-12 b do not follow a linear ephemeris with a 5 sigma confidence level. They may be approximated with a quadratic ephemeris that gives a rate of change in the orbital period of -2.56 +/- 0.40 x 10^{-2} s/yr. The tidal quality parameter of the host star was found to be equal to 2.5 x 10^5 that is comparable to theoretical predictions for Sun-like stars. We also consider a model, in which the observed timing residuals are interpreted as a result of the apsidal precession. We find, however, that this model is statistically less probable than the orbital decay.Comment: Accepted for publication in A&A Letter

    The stellar content of the young open cluster Trumpler 37

    Get PDF
    With an apparent cluster diameter of 1.5{\deg} and an age of ~4 Myr, Trumpler 37 is an ideal target for photometric monitoring of young stars as well as for the search of planetary transits, eclipsing binaries and other sources of variability. The YETI consortium has monitored Trumpler 37 throughout 2010 and 2011 to obtain a comprehensive view of variable phenomena in this region. In this first paper we present the cluster properties and membership determination as derived from an extensive investigation of the literature. We also compared the coordinate list to some YETI images. For 1872 stars we found literature data. Among them 774 have high probability of being member and 125 a medium probability. Based on infrared data we re-calculate a cluster extinction of 0.9-1.2 mag. We can confirm the age and distance to be 3-5 Myr and ~870 pc. Stellar masses are determined from theoretical models and the mass function is fitted with a power-law index of alpha=1.90 (0.1-0.4 M_sun) and alpha=1.12 (1-10 M_sun).Comment: 9 pages, 10 figures, 2 long tables, accepte

    Multi-site campaign for transit timing variations of WASP-12 b: possible detection of a long-period signal of planetary origin

    Full text link
    The transiting planet WASP-12 b was identified as a potential target for transit timing studies because a departure from a linear ephemeris was reported in the literature. Such deviations could be caused by an additional planet in the system. We attempt to confirm the existence of claimed variations in transit timing and interpret its origin. We organised a multi-site campaign to observe transits by WASP-12 b in three observing seasons, using 0.5-2.6-metre telescopes. We obtained 61 transit light curves, many of them with sub-millimagnitude precision. The simultaneous analysis of the best-quality datasets allowed us to obtain refined system parameters, which agree with values reported in previous studies. The residuals versus a linear ephemeris reveal a possible periodic signal that may be approximated by a sinusoid with an amplitude of 0.00068+/-0.00013 d and period of 500+/-20 orbital periods of WASP-12 b. The joint analysis of timing data and published radial velocity measurements results in a two-planet model which better explains observations than single-planet scenarios. We hypothesize that WASP-12 b might be not the only planet in the system and there might be the additional 0.1 M_Jup body on a 3.6-d eccentric orbit. A dynamical analysis indicates that the proposed two-planet system is stable over long timescales.Comment: Accepted for publication in A&

    A Possible Detection of Occultation by a Proto-planetary Clump in GM Cephei

    Get PDF
    GM Cep in the young (~4 Myr) open cluster Trumpler 37 has been known to be an abrupt variable and to have a circumstellar disk with very active accretion. Our monitoring observations in 2009-2011 revealed the star to show sporadic flare events, each with brightening of < 0.5 mag lasting for days. These brightening events, associated with a color change toward the blue, should originate from an increased accretion activity. Moreover, the star also underwent a brightness drop of ~1 mag lasting for about a month, during which the star became bluer when fainter. Such brightness drops seem to have a recurrence time scale of a year, as evidenced in our data and the photometric behavior of GM Cep over a century. Between consecutive drops, the star brightened gradually by about 1 mag and became blue at peak luminosity. We propose that the drop is caused by obscuration of the central star by an orbiting dust concentration. The UX Orionis type of activity in GM Cep therefore exemplifies the disk inhomogeneity process in transition between grain coagulation and planetesimal formation in a young circumstellar disk.Comment: In submission to the Astrophysical Journal, 4 figure

    XPR1 mediates the pancreatic B-cell phosphate flush

    Get PDF
    Glucose-stimulated insulin secretion is the hallmark of the pancreatic β-cell, a critical player in the regulation of blood glucose concentration. In 1974, the remarkable observation was made that an efflux of intracellular inorganic phosphate (P ) accompanied the events of stimulated insulin secretion. The mechanism behind this "phosphate flush," its association with insulin secretion, and its regulation have since then remained a mystery. We recapitulated the phosphate flush in the MIN6m9 β-cell line and pseudoislets. We demonstrated that knockdown of XPR1, a phosphate transporter present in MIN6m9 cells and pancreatic islets, prevented this flush. Concomitantly, XPR1 silencing led to intracellular P accumulation and a potential impact on Ca signaling. XPR1 knockdown slightly blunted first-phase glucose-stimulated insulin secretion in MIN6m9 cells, but had no significant impact on pseudoislet secretion. In keeping with other cell types, basal P efflux was stimulated by inositol pyrophosphates, and basal intracellular P accumulated following knockdown of inositol hexakisphosphate kinases. However, the glucose-driven phosphate flush occurred despite inositol pyrophosphate depletion. Finally, while it is unlikely that XPR1 directly affects exocytosis, it may protect Ca signaling. Thus, we have revealed XPR1 as the missing mediator of the phosphate flush, shedding light on a 45-year-old mystery
    corecore