300 research outputs found

    Phase Properties of Laser High-Order Harmonics Generated on Plasma Mirrors

    Get PDF
    International audienceAs a high-intensity laser-pulse reflects on a plasma mirror, high-order harmonics of the incident frequency can be generated in the reflected beam. We present a numerical study of the phase properties of these individual harmonics, and demonstrate experimentally that they can be coherently controlled through the phase of the driving laser field. The harmonic intrinsic phase, resulting from the generation process, is directly related to the coherent sub-laser-cycle dynamics of plasma electrons, and thus constitutes a new experimental probe of these dynamics

    Modelling the damage costs of invasive alien species

    Get PDF
    The rate of biological invasions is growing unprecedentedly, threatening ecological and socioeconomic systems worldwide. Quantitative understandings of invasion temporal trajectories are essential to discern current and future economic impacts of invaders, and then to inform future management strategies. Here, we examine the temporal trends of cumulative invasion costs by developing and testing a novel mathematical model with a population dynamical approach based on logistic growth. This model characterises temporal cost developments into four curve types (I–IV), each with distinct mathematical and qualitative properties, allowing for the parameterization of maximum cumulative costs, carrying capacities and growth rates. We test our model using damage cost data for eight genera (Rattus, Aedes, Canis, Oryctolagus, Sturnus, Ceratitis, Sus and Lymantria) extracted from the InvaCost database—which is the most up-to-date and comprehensive global compilation of economic cost estimates associated with invasive alien species. We find fundamental differences in the temporal dynamics of damage costs among genera, indicating they depend on invasion duration, species ecology and impacted sectors of economic activity. The fitted cost curves indicate a lack of broadscale support for saturation between invader density and impact, including for Canis, Oryctolagus and Lymantria, whereby costs continue to increase with no sign of saturation. For other taxa, predicted saturations may arise from data availability issues resulting from an underreporting of costs in many invaded regions. Overall, this population dynamical approach can produce cost trajectories for additional existing and emerging species, and can estimate the ecological parameters governing the linkage between population dynamics and cost dynamics

    Hysteresis from Multiscale Porosity: Modeling Water Sorption and Shrinkage in Cement Paste

    Get PDF
    Cement paste has a complex distribution of pores and molecular-scale spaces. This distribution controls the hysteresis of water sorption isotherms and associated bulk dimensional changes (shrinkage). We focus on two locations of evaporable water within the fine structure of pastes, each having unique properties, and we present applied physics models that capture the hysteresis by dividing drying and rewetting into two related regimes based on relative humidity (RH). We show that a continuum model, incorporating a pore-blocking mechanism for desorption and equilibrium thermodynamics for adsorption, explains well the sorption hysteresis for a paste that remains above approximately 20% RH. In addition, we show with molecular models and experiments that water in spaces of ≲1  nm width evaporates below approximately 20% RH but reenters throughout the entire RH range. This water is responsible for a drying shrinkage hysteresis similar to that of clays but opposite in direction to typical mesoporous glass. Combining the models of these two regimes allows the entire drying and rewetting hysteresis to be reproduced accurately and provides parameters to predict the corresponding dimensional changes. The resulting model can improve the engineering predictions of long-term drying shrinkage accounting also for the history dependence of strain induced by hysteresis. Alternative strategies for quantitative analyses of the microstructure of cement paste based on this mesoscale physical model of water content within porous spaces are discussed.Portland Cement AssociationNational Ready Mixed Concrete Association (Research and Education Foundation)Schlumberger Foundatio

    Human-cat relationship in an oceanic biosphere reserve: the case of La Palma Island, Canary archipelago

    Get PDF
    Removal of feral cats from island environments is a useful mechanism by which their ecological impact on endangered species can be reduced or ended. Nevertheless, because cats are anthropogenic in their origins, social perceptions of management practices play a large role in their implementation. Four-hundred questionnaires were delivered (386 were returned) with 100 going to each of the following: local residents; environmental workers; tourists; and, hunters. Questions explored respondents’ knowledge about island biodiversity and invasive species as well as attitudes towards cat population management methods. Habitat destruction and introduction of invasive species were considered the main threats for the conservation of island biodiversity. Most respondents considered cats to have a negative impact on biodiversity and sterilization campaigns were considered most appropriate for cat population control. Several free sterilization campaigns have been conducted in La Palma Island Biosphere Reserve in order to reduce free-ranging cats and were well received by local people. This research, which combined concepts of management, ecology and social sciences, provides valuable insights which may to be applicable on several other islands where cats and people are present and in conflict with conservation priorities

    Cephalopod genomics : a plan of strategies and organization

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Standards in Genomic Sciences 7 (2012): 175-188, doi:10.4056/sigs.3136559.The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, “Paths to Cephalopod Genomics- Strategies, Choices, Organization,” held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod molluscs. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described in this White Paper.The Catalysis Group Meeting was supported by the National Science Foundation through the National Evolutionary Synthesis Center (NESCent) under grant number NSF #EF-0905606
    • …
    corecore