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The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Cataly-
sis Group Meeting, “Paths to Cephalopod Genomics- Strategies, Choices, Organization,” held in 
Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine coun-
tries (Austria, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the 
pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod 
biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, 
bioinformaticians and researchers active in sequencing, assembling and annotating genomes, agreed 
on a set of cephalopod species of particular importance for initial sequencing and developed strategies 
and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recom-
mendations of this meeting are described in this white paper. 
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Cephalopods 
Cephalopods (octopus, squid, cuttlefish, Nautilus) 
have captured the imagination of scientists and 
the general public since Aristotle. These predato-
ry creatures are an ancient group, known from at 
least the Late Cambrian and today comprising 
more than 700 species [1,2]. Cephalopods range 
in size from the pygmy squids (thumbnail-sized 
adults) to the colossal and giant squids (18 me-
ters in total length), which are the largest known 
invertebrates. Cephalopods are believed to be 
among the most “advanced” invertebrates, hav-
ing evolved large, highly differentiated brains, a 
sophisticated set of sensory organs that includes 
vertebrate-like eyes, and fast jet-propelled loco-
motion [3]. The neuroendocrine and heart-blood 
vascular systems of cephalopods have long been 
recognized for their complexity and similarity to 
those found in vertebrates [4-6]. A particularly 
striking trait of cephalopods is that they are mas-
ters of rapid adaptive coloration, having the abil-
ity to change quickly the texture, pattern, color 
and brightness of their skin. Dynamic camouflage 
helps the animals evade detection by predators 
and approach prey with stealth; the same sys-
tems produce signals for communication with 
conspecifics [3]. The remarkable morphological 
and physiological innovations of cephalopods 
provide the scientific community with a tremen-
dous opportunity for insight into mechanisms of 
evolutionary convergence and innovation in 
structure and function. 

Cephalopods have diversified to inhabit all 
oceans of the world, from benthic to pelagic 
zones, from intertidal areas to the deep sea, and 
from the polar regions to the tropics. They share 
the “behavioral space” in their many marine hab-
itats with teleost fishes and marine mammals [7], 
placing them in some of the most competitive 
ecohabitats on Earth. Cephalopods are ecologi-
cally important for the central position they play 
in trophic predator-prey relationships; they are a 
primary food source for marine mammals and for 
many harvested fish species. Their importance in 
the food web is often underestimated, but they 
constitute a crucial element in coastal ecosystem 
equilibrium. Moreover, cephalopods themselves 
are the target of large commercial fisheries 
worldwide, with an annual harvest of two million 
metric tons of squid alone [8]. 

Cephalopod biological research has a long history 
involving a wide range of experimental para-
digms, the best known of which is the work on 
squid giant axon physiology that led to Nobel 
Prize awards for Alan Hodgkin and Andrew Hux-
ley. Also prominent are the extensive investiga-
tions by J.Z. Young, Brian Boycott, Martin Wells 
and colleagues into cephalopod brain and behav-
ior, with a particular focus on the sophisticated 
learning and memory systems of the octopus [9]. 
Cephalopod biology has recently become rele-
vant to the field of biomimetic research, particu-
larly for robotics and materials science [10,11]. 
There are likely to be many new areas of cepha-
lopod-based research. For example, cephalopods 
immobilize prey organisms withtoxins, some of 
which are very poisonous to humans [1]. Study of 
such toxins may serve to identify new 
biomedically valuable reagents [12]. 

Cephalopods are mollusks, which show a greater 
variety of forms than do any other extant animal 
phylum. Even within the Mollusca, cephalopods 
display a remarkable level of modification in 
body plan organization. Particularly notable 
among the soft-bodied (coleoid) cephalopods are 
the reduction or loss of the shell, the adaptation 
of the mantle for locomotion and respiration, and 
the modification of the ventral molluscan foot 
into arms [2]. These innovations are undoubtedly 
tightly linked to the selective pressures from the 
loss of the shell and the development of a “high-
performance” nervous system. The cephalopod 
lineage, and its origins from a monoplacophoran-
like molluscan ancestor [2,13], thus represents a 
deeply attractive model for understanding the 
acquisition of novelty through evolutionary time. 

All of these areas of cephalopod biology, from 
neuronal function at the cellular and systems 
levels to cephalopod population dynamics to the 
evolution of gene regulatory elements mediating 
body plan variation, would benefit greatly from 
the molecular insight that high-quality cephalo-
pod genomics would provide. Indeed, it is aston-
ishing that, in 2012, with the explosion of ge-
nome resources for so many life forms, there is 
not yet available a single assembled cephalopod 
genome. The goal of the NESCent meeting and 
this white paper is to provide organizational 
mechanisms for cephalopod biology to move 
from the pre-genomic to the post-genomic age. 
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Genomics 
Genomic and transcriptomic sequencing will 
greatly aid the biological study of cephalopods. A 
sequenced genome produces a comprehensive list 
of genes, and contains the regulatory blueprint 
dictating their expression [14]. Sequenced 
transcriptomes reveal the expression levels of 
gene sets for different cells, tissues and organs at 
different developmental stages and under differ-
ent physiological states [15,16]. Resequencing in-
dividuals of a genome-enabled species offers un-
precedented datasets that can be applied to long-
standing questions in population genetics, disease, 
and the characterization of species of commercial 
importance where there may be little a priori ge-
netic knowledge [17,18]. Comparative genomics 
has revolutionized and stabilized our understand-
ing of the evolutionary relationships among or-
ganisms throughout the Tree of Life, both living 
and recently extinct [19,20]. Sequence data have 
also advanced novel areas of research, such as 
nanotechnology, biomaterials and synthetic biolo-
gy [21-23]. 
The most obvious benefit of cephalopod genomics 
will be to individual laboratories already studying 
cephalopod biology. With a full inventory and 
complete sequences for known genes of interest, 
laboratories can study gene function much more 
rapidly and thoroughly. In addition, with a near-
complete inventory of protein-coding and non-
coding RNA genes, these researchers can assess a 
much larger set of candidate genes for function in 
their biological processes of interest. 
The greater benefits may come, however, to bio-
logical researchers outside the existing cephalo-
pod field. Until very recently, genome-scale anal-
yses of biological processes have favored the se-
quencing of two out of the three major divisions of 
bilateral animals [24]: deuterostomes (primarily 
vertebrates, with an expanding study of other 
chordates and selected non-chordates such as sea 
urchins and hemichordates) and ecdysozoans 
(from which the model organisms Drosophila mel-
anogaster and Caenorhabditis elegans both come). 
In contrast, there has been far less genomic analy-
sis of lophotrochozoans, with genomes published 
for only a handful of organisms, including three 
trematode parasitic worms and one oyster [25-
29]. The genes and gene networks regulating the 
independent evolution of the host of highly de-
rived features displayed in cephalopods are un-
known, making comparative analyses of these 

phenomena at the level of gene function and regu-
lation impossible. Sequencing of cephalopods 
would do more than expand our knowledge of ge-
nome organization within lophotrochozoans. With 
genomic data, researchers currently studying mo-
lecular evolution of complex metazoans would be 
able to investigate cephalopods as a new, inde-
pendent instance of such evolution. 
The genomes of cephalopods are known to be 
larger and more repeat-rich than many previously 
sequenced metazoan genomes [30]. With newly 
developed methods for sequencing and assembly 
[31,32], these genomes are now more tractable 
than they would have been even a few years ago. 
Indeed, the likely challenges of cephalopod ge-
nomics will prove an important test of these 
emerging technologies. 
Genomic data will allow analyses of cephalopod 
molecular biology that have, until now, not been 
considered by the cephalopod community. De-
tailed studies of the genomes of mammals, flies, 
and nematodes have revealed unanticipated 
mechanisms of gene regulation: microRNAs-first 
characterized through nematode genetics and 
then shown to be ubiquitous [33]; epigenetic mod-
ification of the genome-first documented through 
the genetics of Drosophila position-effect variega-
tion and then mechanistically clarified by studies 
in many species, including mammals [34,35]; and 
long non-coding RNAs-initially identified in 
mammals (Xist, H19) and flies (BX-C) and subse-
quently found to be pervasive [36,37]. The extent 
to which gene and protein expression in mollusks 
is regulated by the mechanisms identified in 
mouse, fruit fly, and nematode is unknown, but 
one striking example is provided by RNA editing. 
This regulatory process for protein diversification 
was initially described in mammals, but now ap-
pears to be much more widely employed in cepha-
lopods than in vertebrates [38,39]. It is possible 
that deeper genomic studies of mollusks, and in 
particular cephalopods, will reveal additional, as 
yet undiscovered mechanisms of animal gene reg-
ulation. 
Another promising arena of research that may 
benefit from cephalopod genomics is the global 
analysis of protein-coding gene families [40], 
which has to date been strongly biased towards 
deuterostomes and ecdysozoans. Proteins in these 
two groups feature extremely well characterized 
domains as well as domains that remain complete-
ly obscure and are typically described as "Domain 
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of Unknown Function" [41]. Cephalopod genomics 
can be expected to enrich our knowledge of such 
protein domain modules. Moreover, study of 
cephalopods will also almost undoubtedly expand 
the pool of protein domains, as it has already done 
in the identification of the reflectin protein family 
[11]. 

Choices of cephalopod species for genomic 
sequencing 
Within the Mollusca, cephalopods diverged from a 
monoplacophoran-like ancestor over 500 million 
years ago, later branching into the extant clades 
Nautiloidea (Nautilus and Allonautilus) and 
Coleoidea (squid, cuttlefish and octopus) [2,42-44]. 
The CephSeq Consortium has come together with 
the intention of using strategic genomic and 
transcriptomic sequencing of key cephalopod spe-
cies to address previously unanswerable questions 
about this group. Taking into account the challeng-
es of cephalopod genome sequencing, as well as the 
necessity to address nodal taxa, we have identified 
a set of species on which to focus our initial efforts. 
Selected species have been chosen based on the 
curiosity of their biological features as well as the 
possible advantages of their practical use. These 
species also cover ecologically diverse life histories, 
representing benthic, nectobenthic and nectonic 
animals. 
Cephalopods are animals with advanced cognitive 
skills and a complex repertoire of behavioral abili-
ties [3,45]. Their brains are comparable both in size 
and complexity with those of vertebrates, and have 
been the focus of a number of studies on the neu-
robiology of behavior [46]. In particular, they have 
served as models for the cellular and systems cir-
cuitry of learning and memory [4,9]. Historically, 
Octopus vulgaris has been a key species for this 
work through studies of anatomy [9], behavior fol-
lowing lesions and brain stimulation [3,4,47] and 
cellular neurophysiology [48,49]. O. vulgaris has 
also served as an attractive model for neuroendo-
crine studies in invertebrates [5,50]. 
Recently, Octopus bimaculoides (California Two-
spot Octopus) has emerged as a model system for 
cephalopod biology. The large size of O. 
bimaculoides eggs grants unique access to early 
embryonic stages, making this species a prime can-
didate for future genetic and developmental stud-
ies. The hardiness, ready availability in the United 
States and easy husbandry of adult O. bimaculoides 
[51] add to the appeal of this model species. 

The deadly venom of blue-ringed octopus 
Hapalochlaena maculosa makes this species of in-
terest for study of the evolution and regulation of 
toxicity within octopods [1]. 
Comparative studies of these octopus species 
would illuminate the bases of both their shared 
characteristics as well as those of their divergent 
features. Additionally, these species have essential-
ly non-overlapping geographic distributions, 
providing animal accessibility to cephalopod re-
searchers globally. 
Within the decapodiforms, Sepia and Loligo are the 
most studied genera. Historically, Sepia officinalis 
has been a key cephalopod for neurobiological re-
search, and is a critical species in global fisheries. S. 
officinalis possesses a complex chromatophore 
network for countershading, camouflage and com-
munication [3,52,53]. Its internal calcified shell 
supplies buoyancy and the effect of global climate 
changes on this structure has become a focus of 
recent study [54,55]. S. officinalis is emerging as a 
particularly versatile model organism in eco-evo-
devo studies [56]. As a practical matter, S. officinalis 
eggs are voluminous, and easily collected, main-
tained and reared in the laboratory [57]. The mor-
phological events in S. officinalis embryogenesis are 
well described in the literature [58-61]. 
Loligo, and particularly its giant fiber system, has 
served as the fundamental basis for our under-
standing of nerve impulse conduction. The giant 
synapse system has recently been employed as a 
biomedical model of neurological disease [62]. 
Loligo is one of the most important groups for 
cephalopod fisheries in the North Atlantic [8]. 
Loligo pealeii is the premier experimental species 
of the loliginids, with not only an extensive publica-
tion base [63], but also annual availability at the 
Marine Biological Laboratory (Woods Hole, MA). 
Euprymna scolopes is a unique cephalopod model 
organism because of its well-described symbiotic 
relationship with the luminescent bacterium Vibrio 
fischeri. This important biomedical model has been 
employed to study the mechanisms of host coloni-
zation and symbiont specificity, host/microbe cell-
cell signaling, and innate immunity [64-67]. 
Euprymna scolopes’ short life cycle and small egg 
size also make it an attractive choice for develop-
mental studies in culture [68,69]. In 2005, the V. 
fischeri genome was sequenced [70]; having access 
to the host genome would allow this field to ad-
vance rapidly. 
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Pygmy squids (Idiosepius) have one of the smallest 
genomes among cephalopods (2.1 Gb), making 
them strong candidates for assembly and annota-
tion [30]. Their small body size and exceptionally 
short life cycle also distinguish these cephalopods 
as possible model organisms [71]. 
The giant squid Architeuthis dux serves to repre-
sent deep-sea cephalopods. Little is known about 
the species of Architeuthis. Architeuthis is globally 
distributed and a recent analysis of the complete 
mitogenomes of multiple giant squid worldwide 
showed no detectable phylogenetic structure on 
the mitochondrial level and an exceptionally low 
level of nucleotide diversity, suggesting that there 
is only one global species of giant squid [72]. A nu-
clear reference genome for Architeuthis would clar-
ify the population genetics of this species and pro-
vide critical information for comparative studies 
across cephalopods. 
Nautilus, the cephalopod “living fossil”, is a repre-
sentative of a phylogenetically unique branch of the 
cephalopods, the nautiloids. Nautilus possesses 
many presumably ancestral anatomical features 
not shared with other cephalopods, including pin-
hole eyes, rhinophores for odor detection, an ex-
ternal shell, and numerous tentacles, all without 
suckers [73]. Comparative genomic studies em-
ploying Nautilus would highlight the genetic bases 
of these divergent features. 

Sequencing strategy 
Cephalopod genomes are large, complex and full 
of repeats. Sequencing and assembly may be tech-
nically very challenging. Below we recommend 
what, with the current state of hardware and 
software, would be excellent approaches to tack-
ling cephalopod genomes. Researchers in the 
CephSeq Consortium will undoubtedly choose 
varying combinations of approaches for their spe-
cific projects. In any event, with rapid changes in 
the underlying technologies for sequencing, as-
sembly and annotation, this series of technical 
recommendations will need to be revisited on a 
regular basis, and should be viewed as the snap-
shot it is of a particular moment (May 2012) in a 
rapidly advancing field. 
Our recommendation for the initial approach to 
genome sequencing of cephalopods is to use a 
proven low-cost short-read sequencing approach 
(Illumina HiSeq with long-insert mate pairs). The 
current best practices for initial assembly of com-
plex (≥1 Gb) eukaryotic genomes involve a  

mixture of high read coverage derived from short 
insert libraries (300-2000 bp) and high clone-
coverage of longer insert (5-10 kb) and fosmid 
jump libraries (or mate-pair libraries). In this ap-
proach, approximately 45× coverage from the 
smaller insert libraries and 45× coverage from a 
5-kb insert library would be produced for each 
taxon. In addition, 5× read coverage would be 
generated for 10-kb insert size libraries. For in-
creasing genomic contiguity and long-range scaf-
folding, 40-kb fosmid jump libraries at 1× genomic 
coverage should be added for the ten pioneer 
cephalopod genomes (see Table 1). These meth-
ods have been tested and were successful in the 
sequencing of the 2.4 Gb giant panda [74] and the 
de novo assembly of the 3.2 Gb human genome 
with ALLPATHS-LG [75]. Additional approaches, 
such as sequence-based genetic mapping to bridge 
the gap between scaffolds and chromosomes and 
emerging long-read single molecule technologies 
(PacBio RS), could also be employed. 
Initial efforts in cephalopod genomics, as well as 
more mature efforts in other molluscan genomes 
(Aplysia, Biomphalaria, Lottia), have identified 
many challenges in generating useful genomic as-
semblies. Many specific taxa were discussed at the 
NESCent meeting, and several collaborative pro-
jects have been initiated. For example, two species 
of Octopus will soon have genomic sequence gen-
erated, and two groups plan to sequence the 
smallest known cephalopod genomes, those of the 
genus Idiosepius (2.1 Gb). There was broad sup-
port at the meeting for sequencing Sepia, Loligo, 
and Euprymna, based on biological significance, 
research community size and phylogenetic posi-
tion. Limited genome sequence data from Sepia 
officinalis, Euprymna scolopes, Hapalochlaena 
maculosa, Architeuthis dux and Nautilus pompilius 
are or will soon be available. Integration of these 
sequence data will assist with annotation and 
gene detection by sampling broadly across the 
phylogeny of cephalopods, with Nautilus provid-
ing an important outgroup for the coleoid cepha-
lopods. Interpretation of cephalopod-specific ge-
netic novelty and the innovations involved in 
nervous system specialization would be further 
assisted by the sequencing of an outgroup such as 
one from the Monoplacophora. While contiguous 
and annotated genomes are our ultimate goal, the 
strong sense of the community is that intermedi-
ate assemblies and transcriptome sequencing 
would be immensely helpful, and ideally would be 
exchanged prior to publication. 
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Table 1. Cephalopod species proposed for initial sequencing efforts. 

Species 
Estimated genome 
size (Gb) 

Current  
sequencing 
coverage 

Geographic  
distribution 

Lifestyle  
juvenile/adult Research importance 

O. vulgaris 2.5-5 46× world-wide 
planktonic/ 
benthic 

classic model for brain 
and behavior, fisheries 
science 

O. bimaculoides 3.2 50× California, Mexico benthic 
emerging model for de-
velopment and behavior, 
fisheries science 

H. maculosa 4.5 10× Indo-Pacific benthic Toxicity 

S. officinalis 4.5 - 
East Atlantic-
Mediterranean 

nectobenthic 
classic model for behav-
ior and development, 
fisheries science 

L. pealeii 2.7 - Northwest Atlantic nectonic 
cellular neurobiology, 
fisheries science 

E. scolopes 3.7 - Hawaii nectobenthic 
animal-bacterial symbio-
sis, model for develop-
ment 

I. paradoxus 2.1 80× Japan nectobenthic 
model for development, 
small genome size 

I. notoides - 50× Australia nectobenthic 
model for development, 
small genome size 

A. dux 4.5 60× world-wide nectonic largest body size 

N. pompilius 2.8-4.2 10× Indo-Pacific nectonic 
“living fossil”, outgroup 
to coleoid cephalopods 

 
It must be emphasized that all the projects de-
scribed above are in their infancy and are ex-
pected to benefit from the formation of the 
CephSeq Consortium. Indeed, representatives 
from each of these cephalopod sequencing efforts 
participated in the NESCent meeting and agreed to 
the formation of the Consortium. 

Annotation of novel genomes is a complex prob-
lem [76]. Efforts at automated annotation of 
molluscan genomic sequences have demonstrated 
the challenge facing the future annotation of ceph-
alopod genomes. Long branch lengths within the 
phylum, the taxonomic distances to well annotat-
ed animal genomes, and the relatively low quanti-
ty of previous molecular and genetic work in the 
Mollusca will demand the generation of additional 

resources to assist and train automated gene de-
tection programs. Of primary importance will be 
the generation of transcript inventories to identify 
genes, refine gene models, detect start points and 
intron-exon boundaries, and train automated gene 
identification algorithms. Transcriptome data 
such as those from RNAseq are quick and relative-
ly inexpensive to generate, and will be immensely 
useful. Systematic sequencing of nervous system 
tissues and embryonic stages can be combined 
with relatively early-stage assemblies to generate 
gene models and exon structures. In addition, 
pairs of Octopus species (O. vulgaris and O. 
bimaculoides) and Idiosepius species (I. notoides 
and I. paradoxus), through comparative sequence 
analysis, may be critical for annotation. 
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Annotation efforts are labor-intensive but also offer 
an opportunity to grow the cephalopod research 
community and attract outside expertise. For exam-
ple, domain experts of particular gene families or 
pathways can be recruited to assist in the descrip-
tion of likely protein function. Bioinformatics re-
searchers interested in the problems of annotation 
across long phylogenetic distances, the assessment 
of unique gene families and the evolution of bio-
chemical novelty, and the likely challenges of exten-
sively RNA-edited transcriptomes, will also be en-
listed. Finally, annotation provides an outreach op-
portunity to involve young scientists and K-12 class-
rooms in cutting-edge scientific discovery on these 
fascinating organisms. 

Data sharing plan 
An important goal of the CephSeq Consortium is to 
share data rapidly and effectively both within and 
beyond the Consortium. Data sharing is necessary 
to foster the broadest possible impact of our se-
quencing and annotation efforts. This sharing will 
prove critically important for the cephalopod 
community. We expect sequence homology within 
the taxon to be an important foundation for col-
laboration within the field because cephalopods 
have evolved many new and unique character fea-
tures. Sharing data prior to publication could sig-
nificantly accelerate cephalopod research. How-
ever, data sharing policies must also recognize 
that there is significant publication, funding, and 
career recognition risks involved in making data 
available before publication: often the first to pub-
lish a particular observation garners the most 
recognition. 
Broad data-sharing agreements such as the Ft. 
Lauderdale agreement [77] have already been 
adopted by the international genomics communi-
ty, and, most significantly, by many large sequenc-
ing centers. However, as the sequencing capacity 
of small collaborations has increased, this type of 
agreement is an increasingly poor fit for the data 
being generated. Moreover, for a federated com-
munity such as the CephSeq Consortium, with sig-
nificant international participation by many small 
groups, enforcement of any agreement is challeng-
ing. We believe that an explicit policy should be 
adopted to protect data generators while creating 
incentives for the earliest possible sharing of data. 
An effective policy should also encourage use of 
cephalopod sequence data beyond the currently 

defined cephalopod community, while protecting 
the interests of those generating the data. 
We therefore propose to adopt a liberal opt-in da-
ta sharing policy, modeled in part on the JGI data 
usage policy [78], which will support the rapid 
sharing of sequence data, subject to significant 
restrictions on certain types of usage. Community 
members will be encouraged to submit their data, 
but not required to do so. We plan to provide in-
centives for this private data sharing by (1) devel-
oping a community data and analysis site with a 
simple set of automated analyses such as contig 
assembly and RNAseq transcript assembly; (2) 
offering pre-computed analyses such as homology 
search across the entire database; and (3) sup-
porting simple investigative analyses such as 
BLAST and HMMER. We also plan to provide bulk 
download services in support of analysis and re-
analysis of the entire dataset upon mutual agree-
ment between the requesting scientist and the 
CephSeq Consortium Steering Committee (see be-
low), who will represent the depositing scientists. 
Collectively, these policies would provide for 
community engagement and participation with 
the CephSeq Consortium while protecting the in-
terests of individual contributors, both scientifi-
cally and with respect to the Convention on Bio-
logical Diversity [79]. Policy details will need to be 
specified and implementation is subject to fund-
ing. Our intent is to build an international com-
munity by putting the fewest barriers between the 
data and potential researchers, while still protect-
ing the data generators. 

The CephSeq Consortium: Mission 
statement and organization 
Mission Statement: The vision of the Cephalopod 
Sequencing Consortium is rapid advancement of 
cephalopod science into the genomics era, one 
employing the most modern and efficient methods 
available and engaging broad international partic-
ipation by the entire cephalopod scientific com-
munity. This vision entails communication and 
active promotion of sequencing technologies and 
findings to researchers across a great diversity of 
fields. Bioinformatics experts initially outside of 
cephalopod biology will participate with cephalo-
pod researchers in this effort. The Consortium will 
help facilitate funding endeavors by individuals 
and groups by providing basic summary docu-
ments (e.g., white papers, letters of support) that 
describe the current state and consensus goals of 
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cephalopod genomics efforts worldwide. In addi-
tion to promoting and accelerating scientific pro-
gress, the CephSeq Consortium aims to translate 
the contributions of cephalopod science to society 
at large by encouraging applied science in fields as 
diverse as fisheries science, materials science and 
biomedical research. Education and outreach will 
be emphasized for broad dissemination of pro-
gress in cephalopod genomics at multiple levels, 
including K-12, undergraduate and graduate stu-
dents, and the public at large. 
Organizational Structure: Establishment of a 
Steering Committee was agreed upon at the May 
2012 NESCent Catalysis Group Meeting. The com-
position of the committee was initially set at seven 
members, with broad international representation 
of cephalopod biologists, genomicists and 
bioinformaticians. The Committee will initially 
meet every 4 months, either in person, or remote-
ly, or both. The Steering Committee is charged 
with providing international oversight of the 
community’s activities, fostering the free-flow of 
information among CephSeq Consortium mem-
bers (see Data Sharing Plan), promoting collabora-
tions, and ensuring that the CephSeq Consortium 
remains focused on the Mission Statement objec-
tives set forth above. The Steering Committee will 
also work to facilitate community-wide efforts to 
annotate assembled genomes. 
The tenure of the Committee will initially be two 
years, and any and all cephalopod researchers are 
encouraged to contact the Committee about the 
changing needs of the community. The inaugural 
members are: Laure Bonnaud (Univ. Paris, 
France), C. Titus Brown (Michigan State Univ., 
USA), Roger Hanlon (Marine Biological Laborato-
ry, USA), Atsushi Ogura (Ochanomizu Univ., Ja-
pan), Clifton Ragsdale/Chair (Univ. Chicago, USA), 
Jan Strugnell (La Trobe Univ., Australia) and 
Guojie Zhang (BGI, China). 
A web site [80] will serve as a point of contact for 
the worldwide community. An auxiliary site for 
sharing cephalopod genomic and transcriptomic 
data is to be established within the next six 
months (see Data Sharing Plan). The CephSeq 
Consortium will coordinate internationally with 
the Cephalopod International Advisory Council 
(CIAC) [81] and with the newly established 
CephRes-Associazione Cephalopod Research-
ONLUS [82], which is based in Europe. 
Workshops will be organized annually to ensure 
coordinated and cooperative progress in genomics 

on an international scale. One likely venue for 
such workshops would be society meetings, such 
as the annual meeting of the Society for Integra-
tive and Comparative Biology (SICB). 

The Steering Committee urges scientists 
who support the goals of this white paper 
to join the consortium by signing the 
white paper and participating in the ac-
tivities of the consortium. 

Broader impacts 
A specific recommendation of this white paper is 
to compete for a Research Coordination Network 
(RCN) grant from the NSF. A Cephalopod RCN 
would facilitate annotation of the cephalopod ge-
nomes being produced worldwide, mediate the 
exchange of emerging technologies that will bene-
fit from genomic resources and accelerate the ad-
vent of new areas of research made possible by 
cephalopod genomics. It would also serve to ex-
pand the next generation of cephalopod research-
ers. Consequently, a central element of a Cephalo-
pod RCN would be short-term laboratory ex-
changes for undergraduate and graduate students 
to aid in genome annotation and analysis, to pro-
mote education in bioinformatics and cephalopod 
biology and to foster new collaborations across 
the cephalopod community. 
Cephalopods are important to science, including 
the fields of cellular neurobiology, learning and 
memory, neuroethology, biomaterial engineering, 
animal-microbe interactions, developmental biol-
ogy, and fundamental molecular biology such as 
RNA editing. Access to genomic information will 
greatly facilitate this ongoing research, particular-
ly through gene discovery. Cephalopod genomics 
will also drive the creation of new areas of inves-
tigation, including such biomedically important 
topics as regeneration and aging [83,84]. Other 
examples of promising post-genomic cephalopod 
research include study of the unknown chemosen-
sory systems by which cephalopods monitor their 
marine environments, and the isolation of cepha-
lopod neurotoxins, which could lead to novel rea-
gents for research and drug-based therapies [12]. 
Cephalopod genomics will also be important for 
evolutionary biology, particularly for understand-
ing the great diversity and genomic complexity of 
the whole molluscan phylum and for probing the 
emergence of the evolutionary innovations that 
are represented by cephalopod eyes, large brains 
and prehensile arms. 
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Cephalopods are a critical component of marine 
ecology, are important commercially to the fisher-
ies industry and are an emerging aquaculture tax-
on. The effects of global warming and marine acid-
ification and hypoxification on cephalopod health 
and viability are unknown and can only be fully 
assessed with improved species delineation and a 
deeper understanding of population dynamics. 
Specifically, cephalopod genomics will aid our 
ability to track population migrations and monitor 
demographic expansions and contractions. This 
information will in turn directly inform efforts to 
assess the effects of climate change on cephalopod 
stocks [85]. Cephalopods are a critical food source 
and genomic resources can also be expected to 

help monitor cephalopod overfishing and improve 
cephalopod aquaculture. 
People are fascinated by cephalopods, from Nauti-
lus to the octopus to the giant squid. The coupling 
of genomics to cephalopod biology represents a 
fusion of two areas of great interest and excite-
ment for the public. This fusion presents a tre-
mendous educational platform, particularly for K-
12 students, who can be engaged in the classroom 
and through the public media. Public outreach 
about cephalopod genomics will help build sup-
port for basic scientific research, including study 
of marine fauna and ecology, and will add to the 
public’s understanding of global changes in the 
biosphere. 
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